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Abstract

The present research work is devoted to study the existence of solutions and re-
lated results for the integrodifferential equation, where all the functions take values
in a Banach space while the used integral is Henstock–Kurzweil–Pettis. Moreover,
in order to exhibit the structure of the solution set some topological properties will
be determined for the underlying problem.
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1 Introduction and Background Material
If an equation involves both differential operator and integral operator, then such an
equation is called an integrodifferential equation. Applications of such kinds of equa-
tions appear in various branches of science like fluid dynamics, biological models, and
chemical kinetics. The most common example of such an equation occurs in “Basic
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Electric Circuit Analysis.” For the last few years this theory has received ample atten-
tion from researchers and scientists. Keeping in view the applications of Banach spaces,
the theory for initial value problems and for integrodifferential equations has been ex-
tended to vector valued functions. Using these new tools, some significant work has
been done, and we suggest the readers see the papers [5–7, 11–13, 19], and references
therein. In reality, mathematical modeling of various epidemiological and other essen-
tial phenomena require integrodifferential equations. From an application point of view,
different investigations of such kinds of equations lead to inspection of dynamical be-
havior of various models. Physical systems that are characterized via Levy jumps, can
be modeled using these equations.

For a quantum system the fractional-Schrödinger equation can also be solved using
integrodifferential equations [9]. R.C. Maccamy in [14] established an asymptotic sta-
bility theory for a certain type of integrodifferential equation. It has been shown that the
underlying problem is associated with heat flow theory in materials along with mem-
ory. Another application of integrodifferential equations can be seen in [2]. Initially, the
authors in [2] studied theoretical aspects of the proposed integrodifferential equation.
Results related to local existence and uniqueness of solutions, as well as continuous de-
pendence, of an abstract integrodifferential equation were obtained. Moreover, the au-
thors provided applications of their obtained results, including results that are connected
with strongly damped plate equations with memory. Various theories have applied to
study integrodifferential equations. Among these, the theory of semigroups of bounded
and linear operators is deeply associated with solutions of integrodifferential equations
in Banach spaces. In the recent past, assuming the ground set to be a Banach space,
this theory has applied to family of nonlinear differential equations. On the basis of this
theory, Pazy in [15] studied the existence, and uniqueness of mild solutions. In addi-
tion, strong as well as classical solutions of semilinear evolution equations have been
explored.

A literature review of integrodifferential equations reveals some valuable theoretical
work about the study of integrodifferential equations. In this regard the authors in [13]
studied the following semilinear integrodifferential equation along with a nonlocal sub-
sidiary initial condition,

dw(s)

ds
= A

[
w(s) +

∫ s

s0

f (s− τ)w(τ)dτ

]
+ F (s, w(s)), s ∈ [s0, s0 + T ]

w(s0) = w0 − h(s1, s2, . . . , sp, w),
(1.1)

where A is a generator for a C0 semigroup on some Banach space X . The operator
f(·) is bounded and linear and is defined on a Banach space X satisfying some auxil-
iary conditions. The function h is continuous and takes on vector values. The authors
in [13] established new results related to existence and uniqueness of solutions of their
underlying nonlocal problem. Outcomes of their finding were the unification and exten-
sion of previous work carried out for differential or integrodifferential equations. Some
illustrative examples related to heat conduction in materials with memory were given to
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show that their outcomes fulfilled these gaps.
Following the work of [13] several authors have studied different classes of inte-

grodifferential equations. In [17] the author obtained existence results for the following
integrodifferential equations via a new kind of vector valued integral,

du(t)

dt
= f

(
t, u(t),

∫ t

0

K(t, s, u(s))ds

)
,

u(0) = u0, t ∈ [0, a], a > 0, u0 ∈ E.
(1.2)

Here, the underlying ground set is taken to be a Banach space E, and the integral for
this model is the Henstock–Lebesgue (HL) integral. Using the measure of noncompact-
ness and some fixed point theorem, the author obtained existence results for (1.2). The
purpose of using the HL Integral was to construct equations that include highly oscilla-
tory functions. Dealing with such kinds of integration the existence theory of Riemann
and Lebesgue is insufficient. Therefore, Henstock and Kurzweil independently defined
a new integral, now known as the Henstock–Kurzweil integral [16]. In addition, the
author in [18] reconsidered the problem studied in [17] while using the theory of time
scales calculus. In fact the purpose of this theory was to unify discrete and continuous
calculus.

Motivated by the literature review, the present work will provide existence results as
well as some topological aspects of the solution set for the integrodifferential equation
in Banach spaces given as,


dw(t)

dtp
= f

(
t, w(t), (HKP )

∫ t

0

k1 (t, s)w(s)ds,

(HKP )

∫ t

0

k2 (t, s)w(s)ds
)
,

w(0) = w0.

(1.3)

with t ∈ [0, b], involving the Henstock–Kurzweil–Pettis integral.

2 Henstock–Kurzweil–Pettis Integral and Related Re-
sults in Banach Spaces

In this section we include some definitions and properties needed to establish our main
results. These include the Henstock–Kurzweil–Pettis integral that generalizes both the
Pettis integral and the Henstock–Kurzweil integral. The following fundamental results
and definitions have taken from [8, 16].

Definition 2.1 (See [8]). Let δ : [a, b] → R be a positive function. A tagged interval
(τ, [p, q]) consists of an interval [p, q] and a point τ ∈ [p, q] where, [p, q] is subset of
[a, b]. An interval with a tag “τ”, expressed as (τ, [p, q]) is subordinate to δ, if [p, q] ⊆
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(τ − δ(τ), τ + δ(τ)). If we denote by P = {(τi, [pi, qi])|1 ≤ i ≤ n, n ∈ N} such a
collection in [a, b], then

(a) the set of points, {τi|1 ≤ i ≤ n} are named the tags of the partition P ;

(b) the collection of subintervals {[pi, qi]|1 ≤ i ≤ n} are named the intervals of P ;

(c) the partition P will be known as sub − δ, if {(τi, [pi, qi])|1 ≤ i ≤ n, n ∈ N} is
subordinate to the gauge value δ for every i;

(d) the partition P is known as a tagged partition of [a, b], whenever

[a, b] = ∪ni=1[pi, qi];

(e) if h is a function with domain [a, b] and range set E, then

h(P ) = Σn
i=1h(τi)(qi − pi);

(f) if a function G is defined on the subintervals [pi, qi] of [a, b], then

G(P ) = Σn
i=1G([pi, qi]) = Σn

i=1[G(qi)−G(pi)].

If G : [a, b]→ E, then G can be considered as a function of intervals, and defined
asG([c, d]) = h(q)−h(p). In such kind of conditions the functionG has the form
G(P ) = h(q)− h(p) where P is a tagged partition of [a, b].

Definition 2.2 (See [8]). A mapping h defined on [a, b] into R is Henstock–Kurzweil
integrable if for a given real number I with the property: If for each ε > 0 we can find a
positive function δ : [a, b]→ R+ such that |h(P )− I| < ε where P is a tagged partition

of [a, b] that is subordinate to δ. This integral is denoted by (HK)

∫ b

a

h(t)dt.

Lemma 2.3 (See [4]). Let U ⊂ C([a, b], E) be bounded and equicontinuous. Then

1. the function t→ β(U(t)) is continuous on [a, b],

2. βc(U) = sup
t∈[a,b]

β(U(t)), here βc denote the measure of weak noncompactness on

C([a, b], E), while U(t) = {u(t);u ∈ U}, t ∈ [a, b].

Definition 2.4 (See [8]). A function h : [a, b]→ E is Henstock–Kurzweil integrable on
[a, b] if there exists a vector I ∈ E with the following property: if for each ε ∈ (0, ∞)
there exists a positive function δ on [a, b] such that ||h(P ) − I|| < ε whenever P is a
tagged partition of [a, b] sub− δ. The function h is Henstock–Kurzweil integrable on a
measurable set A ⊆ [a, b], if hχA is Henstock-Kurzweil integrable on [a, b]. The vector
I is the Henstock–Kurzweil integral of h.
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Definition 2.5 (See [16]). A function h defined on [a, b] into the Banach space E is
Pettis integrable if:

(i) for each functional, x∗ ∈ E∗, the function x∗h is Lebesgue integrable on [a, b];

(ii) for all measurable subsets A of [a, b], there exists an element g of E such that for

all x∗ ∈ E∗, x∗g = (L)

∫
A

x∗h(s)ds.”

We now provide a definition, which extends both Pettis and Henstock–Kurzweil
integrals to a new integral.

Definition 2.6 (See [8]). A function h : [a, b] → E is said to be (HKP) Henstock–
Kurzweil–Pettis integrable if there exists a function g : [a, b] → E with the following
properties:

(i) for all x∗ ∈ E∗, x∗h is Henstock–Kurzweil integrable on [a, b]; and

(ii) for each element t ∈ [a, b], there exists x∗ ∈ E∗ such that

x∗g(t) = HK

∫ t

0

x∗h(s)ds.

Here, the function g is called a primitive of h and we denote by g(t) =

∫ t

0

h(s)ds, the

Henstock–Kurzweil–Pettis integral of h on the interval [a, b].

Theorem 2.7 (See [10]). Assume E is a locally convex topological vector space that is
metrizable. Let D be a closed convex subset of E, and G be a weakly-weakly sequen-
tially continuous map of D into itself. If for some y ∈ D, the implication

Γ = conv (y ∪G(Γ)) , implies Γ is relatively weakly compact

holds for every subset Γ of D, then G has a fixed point.

For the sequel we provide a list of some properties of the HKP integral which are
important for studying existence results of differential equations via the HKP integral.

Theorem 2.8 (See [8]). Assume h : [a, b]→ E is an HKP integrable function, and let

F (x) =

∫ x

a

h(s)ds, x ∈ [a, b].

Then

(i) for each x∗ ∈ E∗, the real valued function x∗h is a Henstock–Kurzweil integrable
function on the same interval [a, b] and

(HK)

∫ x

a

x∗(h(s))ds = x∗(F (x));
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(ii) the function h is the pseudo-derivative of F on [a, b], while F is a weakly continuous
function on [a, b].

Theorem 2.9 (See [16]). Assume h : [a, b] → E. If h = 0 a.e. on [a, b], then h is HKP

integrable on [a, b] and
∫ b

a

h(t)dt = 0.

Remark 2.10. The mean value theorem plays an important role in the study of differ-
ential equations. In the present study we deal with the HKP integral, and therefore, we
provide a mean value theorem for the HKP integral.

Theorem 2.11 (See [8]). If a given function h : [a, b]→ E is HKP integrable, then∫
I

h(t)dt ∈ |I| · conv{h(I)},

where I is an arbitrary subinterval of [a, b] and |I| represents the length of I .

Theorem 2.12 (See [8,16]). Assume h : [a, b]→ E and suppose hn : [a, b]→ E, n ∈ N,
is a sequence of HKP integrable functions. Let Fn be the relative primitives of hn. If we
suppose:

(i) for each x∗ ∈ E∗, x∗(hn(t))→ x∗(h(t)) a.e. on [a, b],

(ii) for each x∗ ∈ E∗, the family G = {x∗Fn|n = 1, 2, 3, . . .} is uniformly ACG∗ on
[a, b], and

(iii) for each x∗ ∈ E∗ the set G is equicontinuous on [a, b],

then h is HKP integrable on [a, b] and
∫ t

0

hn(s)ds approaches weakly inE to
∫ t

0

h(s)ds

for each t ∈ [a, b].

Definition 2.13 (See [16]). Let G : [a, b]→ R be a function and let F be a subset of the
interval [a, b] ⊂ R. Then G is absolutely continuous in the generalized sense (ACG∗)
on F , if G is continuous on F and if F can be expressed as a countable union of sets on
each of which G is absolutely continuous.

In the next section, we will study solutions of an integrodifferential equation. Then
in a later section, we will study topological properties of the set of solutions.

3 Weak Topology and Existence Results for Integrodif-
ferential Equations

In this section, we will establish existence results for solutions of the integrodifferential
equation,
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
dw(t)

dtp
= f

(
t, w(t), (HKP )

∫ t

0

k1 (t, s)w(s)ds,

(HKP )

∫ t

0

k2 (t, s)w(s)ds
)
,

w(0) = w0,

(3.1)

where t ∈ [0, b]. The functions f(·, ·, ·, ·), k1(·, ·) and k2(·, ·) take values in a Banach
space. The integral is the Henstock–Kurzweil–Pettis integral. In addition to the above,
assume

a1 = sup
t∈[0,b]

∥∥∥∥∫ t

0

k1(t, s)ds

∥∥∥∥ ,
a2 = sup

t∈[0,b]

∥∥∥∥∫ t

0

k2(t, s)ds

∥∥∥∥ .
The following problem is considered while fixing the functional w∗ ∈ E∗,

d

dtp
〈w∗, w(t)〉 =

〈
w∗, f

(
t, w(t), (HKP )

∫ t

0

k1 (t, s)w(s)ds,

(HKP )

∫ t

0

k2 (t, s)w(s)ds

)〉
,

w(0) = w0,

where the operator
d

dtp
denotes the pseudo-derivative of the function w(·).

In order to establish a solution of the equation (3.1), we define some sets that will
be used in the sequel,

H := {w ∈ E : ‖w‖E ≤ ‖w0‖E + h, h ∈ (0,∞)} ,
H̃ := {w ∈ (C[Ib, E], ω) : w(0) = w0, ‖w‖E ≤ ‖w0‖E + h, h ∈ (0,∞)} .

In addition to, we define an operator,

Gw(t) = w0 + (HKP )

∫ t

0

f

(
z, w(z), (HKP )

∫ z

0

k1 (z, s)w(s)ds,

(HKP )

∫ z

0

k1 (z, s)w(s)ds

)
dz.

To avoid tedious calculations, we define some additional sets given below,

X :=
{
G(w) : w ∈ H̃

}
,
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X1 :=

{
(HKP )

∫ z

0

k1 (z, s)w(s)ds : z ∈ [0, t], t ∈ [0, b], w ∈ H̃
}
,

X2 :=

{
(HKP )

∫ z

0

k2 (z, s)w(s)ds : z ∈ [0, t], t ∈ [0, b], w ∈ H̃
}
.

To discuss the existence of solutions of the proposed integrodifferential equation (3.1),
we consider the problem,

w(t) = w0 + (HKP )

∫ t

0

f

(
z, w(z), (HKP )

∫ z

0

k1 (z, s)w(s)ds,

(HKP )

∫ z

0

k1 (z, s)w(s)ds

)
dz.

Prior to showing the existence of a solution of the integrodifferential equation (3.1), as
well as to inspect the solution set structure, we provide the definition of a solution of
(3.1).

Definition 3.1. A weakly continuous function w(·) be a solution of (3.1) if it satisfies
the following conditions.

1. w(·) should be an absolutely continuous function in the generalized sense;

2. w(0) = w0;

3. There exists a set A(w∗) of Lebesgue measure zero, where w∗ ∈ E∗, and for
every t /∈ A(w∗) the relation holds,

d

dtp
〈w∗, w(t)〉 =

〈
w∗, f

(
t, w(t), (HKP )

∫ t

0

k1 (t, s)w(s)ds,

(HKP )

∫ t

0

k2 (t, s)w(s)ds

)〉
,

where
d

dtp
denotes pseudo derivatives of the solution.

Theorem 3.2. Suppose the following hold:

1. For each t ∈ Ib = [0, b], the functions k1 (t, ·)w(·), k2 (t, ·)w(·) and

f

(
·, w(·), (HKP )

∫ (·)

0

k1 (·, s)w(s)ds, (HKP )

∫ (·)

0

k1 (·, s)w(s)

)

are HKP integrable functions for every function w(·) : Ib → E which is uniformly
ACG∗.
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2. For each t ∈ Ib, the function f (t, ·, ·, ·) is a weakly-weakly sequentially contin-
uous function.

3. For each t ∈ Ib, the functions ki(t, ·) ∈ BV (Ib,R), for each i = 1, 2, and the
applications t 7→ ki(t, ·) are ‖ · ‖BV -continuous.

4. With β denoting the measure of noncompactness, there exist positive constants q1,
q2, q3, q4 and q5 such that

β (f (J, D1, D2, D3)) ≤ q1β (D1) + q2β (D2) + q3β (D3)

where D1, D2 are proper subsets of H and J ⊂ Ib,

β (k1 (J, J)w(D4)) ≤ q4β (D4) where D4 ⊆ H and J ⊂ Ib,

β (k2 (J, J)w(D5)) ≤ q5β (D5) where D5 ⊆ H and J ⊂ Ib,

and where the entities, f (J,D1, D2, D3), k1 (J, J)w(D4) and k2 (J, J)w(D5)
are defined as,

f (J,D1, D2, D3) := {f (t, y1, y2, y3) : | (t, y1, y2, y3) ∈ J ×D1 ×D2 ×D3}
ki(J, J) := {ki(t, s) : | (t, s) ∈ J × J} , i = 1, 2.

5. The sets X , X1 and X2 are uniformly ACG∗ and equicontinuous on Ib.

Then the problem (3.1) has a pseudo solution on Iλ for some 0 < λ ≤ b and q1λ +
q2q4λ

2 + q3q5λ
2 ∈ (0, 1).

Proof. Assume the spaces,

H := {w ∈ E : ‖w‖E ≤ ‖w0‖E + h, h ∈ (0,∞)} ,
H̃ := {w ∈ (C[Id, E], ω) : w(0) = w0, ‖w‖E ≤ ‖w0‖E + h, h ∈ (0,∞)} ,

for some fixed h ≥ 0, and for some suitable d. By the definition of equicontinuity, for
each positive value of ε, there exist δ > 0 such that∥∥∥∥∫ t

τ

f

(
y, w(y), (HKP )

∫ y

0

k1 (y, s)w(s)ds, (HKP )

∫ t

0

k1 (y, s)w(s)

)
dy

∥∥∥∥ < ε,

for w ∈ H̃ , where |t − τ | < δ and τ, t ∈ [0, b]. Following the preceding fact, we can
find a number λ ∈ (0, b] such that∥∥∥∥∫ t

0

f

(
y, w(y), (HKP )

∫ y

0

k1 (y, s)w(s)ds, (HKP )

∫ y

0

k2 (y, s)w(s)ds

)
dy

∥∥∥∥ ≤ h,

for Iλ and w ∈ H̃ .
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Now we show that the operator G(·) is well defined and maps the space H̃ into H̃ .
For this, let us assume there exists a functional w∗ ∈ E∗ such that ||w∗|| ≤ 1. For any
t ∈ Iλ and w ∈ H̃ , we have∣∣∣ 〈w∗, G(w)(t)〉

∣∣∣
≤

∣∣∣ 〈w∗, w0〉
∣∣∣+

∣∣∣∣〈w∗,∫ t

0

f

(
y, w(y), (HKP )

∫ y

0

k1 (y, s)w(s)ds,

(HKP )

∫ y

0

k2 (y, s)w(s)ds

)
dy

〉∣∣∣∣
≤ ‖w∗‖ ‖w0‖+ ‖w∗‖

∥∥∥∥∫ t

0

f

(
y, w(y), (HKP )

∫ y

0

k1 (y, s)w(s)ds,

(HKP )

∫ y

0

k2 (y, s)w(s)ds

)
dy

∥∥∥∥
≤ ‖w0‖+ h,

which implies that

sup {〈w∗, G(w)(t)〉 : w∗ ∈ E∗, ||w∗|| ≤ 1} ≤ ‖w0‖+ h.

Finally, it follows that
‖G(w)‖ ≤ ‖w0‖+ h.

Thus, we obtain that G(w) ∈ H̃ .
Now we need to show that the operator G(·) is weakly-weakly sequentially con-

tinuous. To do this, we assume there exists a sequence (wn(t))n∈N in C(Iλ, E) which
converges weakly to w(t) for t ∈ Iλ. Let s ∈ [0, b]. Then ki(t, s)wn(s)→ ki(t, s)w(s),
as n→∞ for i = 1 , 2. Using the assumptions on X̃i we can obtain

lim
n→∞

〈
w∗,

∫ t

0

ki(t, s)wn(s)ds

〉
=

〈
w∗,

∫ t

0

ki(t, s)w(s)ds

〉
,

for i = 1, 2, w∗ ∈ E∗ and t ∈ Iλ. Furthermore, the function f is weakly-weakly
sequentially continuous, so for each t ∈ Iλ, we obtain〈

w∗, f

(
t, wn(t), (HKP )

∫ t

0

k1 (t, s)wn(s), (HKP )

∫ t

0

k2 (t, s)wn(s)

)
ds

〉
→
〈
w∗, f

(
t, w(t), (HKP )

∫ t

0

k1 (t, s)w(s), (HKP )

∫ t

0

k2 (t, s)w(s)ds

)〉
,

as n→∞, in E. Hence, using Theorem 2.12, we obtain that for t ∈ Iλ

〈w∗, Gwn(t)〉 → 〈w∗, Gw(t)〉 ,
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as n → ∞ for each w∗ ∈ E∗, which implies that Gwn(t) converges to Gw(t) in
(C(Iλ, E), w).

Now, assume that U ⊂ H̃ fulfills the assumption U = conv ({y} ∪G(U)). It will
be proved in the sequel that U is relatively weakly compact. As U ⊂ H̃ , G(U) ⊂ X,
then U ⊂ U = conv ({y} ∪G(U)) is equicontinuous. Therefore, by Lemma 2.3 we
can see that the function t 7→ u(t) = β(U(t)) satisfies the condition of continuity
on the interval Iλ. For fixed t ∈ Iλ we divide the intervals [0, t] into k parts where

tj =
jt

k
, i = 1, 2, . . . , k, and for fixed z ∈ [0, t], we divide the interval [0, z] into k parts

where zj =
jz

k
, j = 1, 2, . . . , k. Furthermore, we consider

U ([zj, zj+1]) = {w(s) |w ∈ U, zi ≤ s ≤ zj+1} j = 1, 2, . . . , k.

As u is a continuous function on a closed interval, therefore by the intermediate value
property there exist qj ∈ Jj = [zj, zj+1] so that

β (U ([zj, zj+1])) = sup {β(U(s)), zi ≤ s ≤ zj+1} := u(qj).

Using Theorem 2.12 as well as properties of the Henstock–Kurzweil–Pettis integral we
can obtain that for w ∈ U,

G(w)(t) = w0

+
k−1∑
i=0

∫ ti+1

ti

f

(
z, w(z),

k−1∑
j=0

(HKP )

∫ zj+1

zj

k1 (z, s)w(s)ds,

k−1∑
j=0

(HKP )

∫ zj+1

zj

k2 (z, s)w(s)ds

)
dz,

∈ w0 +
k−1∑
i=0

(∆ti)convf

(
Ii, U(Ii),

k−1∑
j=0

(∆zj)conv(k1 (Jj, Jj)U(Jj)),

k−1∑
j=0

(∆zj)conv(k2 (Jj, Jj)U(Jj))

)
,

where Ii = [ti, ti+1] and Jj = [zj, zj+1] for i, j = 0, 1, . . .k − 1. Applying β, the
measure of weak noncompactness, and using its properties, we obtain the following
inequalities,

β (GU (t)) ≤
k−1∑
i=0

(∆ti)β

(
f

(
Ii, U(Ii),

k−1∑
j=0

(∆zj)conv(k1 (Jj, Jj)U(Jj)),

k−1∑
j=0

(∆zj)conv(k2 (Jj, Jj)U(Jj))

))
,
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≤
k−1∑
i=0

∆tiq1β(U(Ii))

+
k−1∑
i=0

∆tiq2β

(
k−1∑
j=0

(∆zj)conv(k1 (Jj, Jj)U(Jj))

)

+
k−1∑
i=0

∆tiq3β

(
k−1∑
j=0

(∆zj)conv(k2 (Jj, Jj)U(Jj))

)
,

≤
k−1∑
i=0

(∆ti)q1β(U(Iλ)) +
k−1∑
i=0

(∆ti)q2

k−1∑
j=0

∆zjβ(k1(Jj, Jj)U(Jj))

+
k−1∑
i=0

(∆ti)q3

k−1∑
j=0

∆zjβ(k2(Ji, Ji)U(Ji)),

≤ β(U(Iλ))q1λ+ q4

k−1∑
i=0

∆tiq2

k−1∑
j=0

∆zjβ(U(Jj))

+q5

k−1∑
i=0

∆tiq3

k−1∑
j=0

∆zjβ(U(Jj)),

≤ β(U(Iλ))q1λ+ β(U(Iλ))q2q4λ
2 + β(U(Iλ))q3q5λ

2

= β(U(Iλ))
(
q1λ+ q2q4λ

2 + q3q5λ
2
)
.

Using the given stated assumptions, we reach to the conclusion that

β (GU(t)) ≤ β(U(Iλ)).

Hence, we conclude that
u(t) = βU(t) = 0

for all t ∈ Iλ. All hypotheses of the Arzelà–Ascoli’s theorem are satisfied, so the col-
lection U is relatively weakly compact. Thus, by the fixed point theorem, Theorem 2.7,
the operator G(·) has a fixed point, which results in the existence of a pseudo solution
for the system (3.1).

Theorem 3.3. Assume that for each t ∈ Ib, the functions k1(t, ·)w(·), k2(t, ·)w(·) and

f

(
·, w(·), (HKP )

∫ (·)

0

k1 (·, s)w(·)ds, (HKP )

∫ (·)

0

k2 (·, s)w(·)ds

)

are Henstock Kurzweil Pettis integrable for every uniformlyACG∗ functionw : Ib → E,
while k1(t, s)w(·), k2(t, s)w(·) and f(t, ·, ·, ·) are weakly–weakly sequentially contin-
uous functions. Assume there exist positive constants r2 and r3 and functions C1−b and
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C2−b that are continuous on Ib into R+ satisfying the following conditions,

β(f(I,D1, D2, D3)) ≤ r2β(D2) + r3β(D3) for each D1, D2, D3 ⊂ H and I ⊂ Ib,

β(k1(I, I)w(Y )) ≤ sup
s∈I

C1−b(s)β(Y ) for each subset Y of H, I ⊂ Ib,

β(k2(I, I)w(Y )) ≤ sup
s∈I

C2−b(s)β(Y ) for each subset Y of H, I ⊂ Ib,

where

f(I,D1, D2, D3) = {f(t, y1, y2, y3)|(t, y1, y2, y3) ∈ I ×D1 ×D2 ×D3},
k(I, I) = {k(t, s)|(t, s) ∈ I × I}.

Furthermore, let X , X1 and X2 be equicontinuous as well as uniformly ACG∗ on Ib.
Then there exists a pseudo-solution of the problem (3.1) on Iλ, for some 0 < λ ≤ b.

Proof. Following along the same lines as in Theorem 3.2, we can obtain the proof of
the first part. Now it needs to be shown that the set U , where U is defined in Theorem
3.2, is relatively weakly compact. One can see that for zj and t ∈ Iλ as in Theorem 3.2,
we have

β (U (t)) ≤
k−1∑
i=0

(∆ti)β

(
f

(
Ii, U(Ii),

k−1∑
j=0

(∆zj)convk1 (Jj, Jj)U(Jj),

k−1∑
j=0

(∆zj)convk2 (Jj, Jj)U(Jj)

))

≤
k−1∑
i=0

∆tir2β

(
k−1∑
j=0

(∆zj)convk1 (Jj, Jj)U(Jj)

)

+
k−1∑
j=0

∆tir3β

(
k−1∑
j=0

(∆zj)convk2 (Jj, Jj)U(Jj)

)

≤
k−1∑
i=0

∆tir2

k−1∑
j=0

∆zjβ (k1(Jj, Jj)U(Jj))

+
k−1∑
i=0

∆tir3

k−1∑
j=0

∆zjβ (k2(Jj, Jj)U(Jj))

≤
k−1∑
i=0

∆tir2

k−1∑
j=0

∆zj sup
s∈Jj

C1−b(s)(βU(Jj))

+
k−1∑
i=0

∆tir3

k−1∑
j=0

∆zj sup
s∈Jj

C2−b(s)β(U(Jj))
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≤ λr2

k−1∑
j=0

∆zjC1−b(pj)u(sj) + λr3

k−1∑
j=0

∆zjC2−b(pj)u(sj),

= λr2

[
k−1∑
j=0

∆zjC1−b(pi)u(pj) +
k−1∑
j=0

∆zjC1−b(pj) (u(sj)− u(pj))

]

+λr3

[
k−1∑
j=0

∆zjC2−b(pj)u(pj) +
k−1∑
j=0

∆zjC2−b(pj) (u(sj)− u(pj))

]
,

for some pj ∈ Jj. Let us fix ε > 0. Since the function u(·) is continuous, there exists a
natural number k, large enough such that u(sj)− u(pj) < ε, j = 0, . . . , k − 1.. Then,

β (U (t)) ≤ λr2

[
k−1∑
j=0

∆zjC1−b(pj)u(pj) +
k−1∑
j=0

z

k
C1−b(pj)ε

]

+ λr3

[
k−1∑
j=0

∆zjC2−b(pj)u(pj) +
k−1∑
j=0

z

k
C1−b(pj)ε

]

≤ λr2

[
k−1∑
j=0

∆zjC1−b(pj)u(pj) + max
0≤l≤k−1

z

k
C1−b(pl)ε

]

+ λr3

[
k−1∑
j=0

∆zjC2−b(pj)u(pj) + max
0≤l≤k−1

z

k
C2−b(pl)ε

]
.

Also, we can see that z max
0≤l≤k−1

C1−b(pl) as well as z max
0≤l≤k−1

C2−b(pl) are bounded, and

if ε→ 0, then both εz max
0≤l≤k−1

C1−b(pl) and εz max
0≤l≤k−1

C2−b(pl) approach zero. Thus,

β(U(t)) ≤ λ.

∫ t

0

(r2C1−b(τ) + r3C2−b(τ)) βU(τ)dτ,

for t ∈ [0 , λ]. Application of Gronwall’s inequality give us the result,

β(U(t)) = 0,

for t ∈ [0, λ]. The hypotheses of Arzelà–Ascoli’s theorem are fulfilled, soU is relatively
weakly compact and hence by the fixed point theorem, Theorem 2.7, the operator G(·)
has a fixed point. The fixed point of the operator G(·) is the required pseudo solution of
our proposed problem.

4 Topological Properties of the Solution Set
This section is devoted to study topological properties of the set of solutions of problem
(3.1). Considering the problem (3.1), it will be shown that the related set of all solutions
is weakly compact and connected in the space (C(Iλ, E), ω) .
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Remark 4.1. According to Definition 3.1 a weakly continuous function is solution of
problem (3.1) if it satisfy all three conditions given in the definition. So before we move
towards the topological properties of the solution set we came to know from the nature
of solution of (3.1), that we are in the space, (C(Iλ, E), ω) .

Theorem 4.2. Assume that the hypotheses of Theorem 3.2 hold. Then the set Ω of all
solutions, defined on the interval Iλ, of (3.1) is connected and weakly compact in the
space (C(Iλ, E), ω) .

Proof. Assume that Ω is a set of all solutions of (3.1) defined on Iλ. Since Ω = G(Ω),
following in the same lines as in the proof of Theorem 3.2 with U = Ω, we can obtain
that the set Ω is relatively weakly compact in (C(Iλ, E), ω). As G(·) is a weakly con-
tinuous function on Ωω(Iλ) (the weak closure of set Ω(Iλ)), Ω is closed with respect to
the weak topology and consequently is weakly compact.

Now it will be shown that the solution set, Ω, is a connected set in (C(Iλ, E), ω) .
Therefore, for any ρ > 0, we represent by Ωρ, the set of those functions v : Iλ → E
obeying the following properties:

1. v(0) = w0, v ∈ H̃,

2.

sup
Iλ

∥∥∥∥v(t)− w0 −
∫ t

0

f

(
t, v(t), (HKP )

∫ t

0

k1 (t, s) v(s)ds,

(HKP )

∫ t

0

k2 (t, s) v(s)ds

)∥∥∥∥ < ρ.

It is trivial to see that the set Ωρ is nonempty because Ω ⊂ Ωρ. If we assume there exists
a real number ρ0 such that ρ0 < ρ, then by the equicontinuity of the family of functions
X we can find ξ such that∥∥∥∥∫

J

f

(
t, w(t), (HKP )

∫ t

0

k1 (t, s)w(s)ds, (HKP )

∫ t

0

k2 (t, s)w(s)ds

)∥∥∥∥ ≤ ρ0 < ρ,

for every weakly continuous function w defined on Iλ into the Banach spaceEw, J ⊂ Iλ
and |J | < ξ. For any ε ∈ (0, λ), suppose χ(·, ε) : Iλ → E is a function defined by

χ(t, ε) :=


w0, if 0 ≤ t ≤ ε,

w0 +

∫ t−ε

0

f

(
ζ, χ(ζ, ε), (HKP )

∫ ζ

0

k1 (ζ, s)χ(s, ε)ds,

(HKP )

∫ ζ

0

k2 (ζ, s)χ(s, ε)ds

)
dζ, if ε ≤ t ≤ λ.

One can easily observe that χ(·, ε) satisfies the Condition 1. Moreover, for 0 < ε ≤
min(ξ, λ) := m, we obtain a norm which is defined by∥∥∥∥χ(t, ε)− w0 −

∫ t

0

f

(
ζ, χ(ζ, ε), (HKP )

∫ ζ

0

k1 (ζ, s)χ(s, ε)ds,
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(HKP )

∫ ζ

0

k2 (ζ, s)χ(s, ε)ds

)
dζ

∥∥∥∥

=



∥∥∥∥∫ t

0

f

(
ζ, χ(ζ, ε), (HKP )

∫ ζ

0

k1 (ζ, s)χ(s, ε)ds,

(HKP )

∫ ζ

0

k2 (ζ, s)χ(s, ε)ds

)
dζ

∥∥∥∥
if 0 ≤ t ≤ ε,∥∥∥∥∫ t

t−ε
f

(
ζ, χ(ζ, ε), (HKP )

∫ ζ

0

k1 (ζ, s)χ(s, ε)ds,

(HKP )

∫ ζ

0

k2 (ζ, s)χ(s, ε)ds

)
dζ

∥∥∥∥
if ε ≤ t ≤ λ.

(4.1)

It follows that the norm (4.1) is less than ρ0, and furthermore, ρ0 ≤ ρ, for all t ∈ J.
Hence, we have that χ(·, ε) fulfills Condition 2.

In order to show that the set Ωρ is connected let us define a function

χε(t) :=

{
w0 if 0 ≤ t ≤ ε,
G (χε) (t− ε) if ε < t ≤ λ,

where χε = χ (·, ε). Now, we will prove that the function ε → χε(·) is sequentially
continuous for 0 < ε ≤ λ such that χε(·) ∈ (C(Iλ, E), ω) . Without loss of generality
assume 0 < ε ≤ δ ≤ λ. Consider a functional w∗ ∈ E∗, such that ‖w∗‖ ≤ 1. Now, for
t ∈ [0, ε], by the definition of the function χε(t), it follows that,

〈w∗, (χε(t)− χδ(t))〉 = 0. (4.2)

Now for t ∈ (ε, δ], we obtain
Thus, one can infer that

〈w∗, χε(t)− χδ(t)〉 ≤
∥∥∥∥∫ t−ε

t−δ
f

(
ζ, χε(ζ), (HKP )

∫ ζ

0

k1 (ζ, s)χε(s)ds,

(HKP )

∫ ζ

0

k2 (ζ, s)χε(s)ds

)
dζ

∥∥∥∥ = Ξδ. (4.3)

As the space X is equicontinuous, an observation shows that Ξδ → 0 as δ approaches
to ε. Also, for δ < t < 2δ, we have

〈w∗, χε(t)− χδ(t)〉 ≤ ‖w∗‖ ‖G(χε)(t− ε)−G(χε)(t− δ)‖
+ ‖w∗‖ ‖G(χε)(t− δ)−G(χδ)(t− δ)‖ . (4.4)
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Now we consider a sequence (δn)n∈N that converges to ε as n → ∞. Using (4.2) and
(4.3) one can obtain that χδn(t) converges weakly uniformly to χε(t) for t ∈ [0, δ].
Therefore, G(χδn) → wG(χε)(t)) on the interval [0, δ]. Now by (4.4), lim

n→∞
χδn(t) =

χε(t), where the convergence is in the weak sense for t ∈ [0, 2δ]. While using induction
and following in the same lines as above we can get that the function from (0, λ) to
(C(Iλ, E)), defined by ε → χε(·), is sequentially continuous. Hence, the set V =
{χε(.)|ε ∈ (0 λ)} is connected in the space (C(Iλ, E), ω). Let w ∈ Ωρ and consider a
parameter ε ∈ (0, λ) as well as

sup
t∈Iλ

∥∥∥∥w(t)− w0 −
∫ t

0

f

(
z, w(z), (HKP )

∫ z

0

k1 (z, s)w(s)ds,

(HKP )

∫ z

0

k2 (z, s)w(s)ds

)
dz

∥∥∥∥
+

∥∥∥∥∫
Iε

f

(
z, w(z), (HKP )

∫ z

0

k1 (z, s)w(s)ds,

(HKP )

∫ z

0

k2 (z, s)w(s)ds

)
dz

∥∥∥∥ < ρ.

Let a function Θ(·, q) : Iλ → E, where q ∈ (0, λ), be defined piecewise by

Θ(t, q) =



w(t); for 0 ≤ t ≤ q

w(q) +
w0 − w(q)

ε
(t− q); for q ≤ t ≤ min(λ, q + ε)

w0 +

∫ t−ε

q

f
(
z, w(z), (HKP )

∫ z

0

k1 (z, s)w(s)ds,

(HKP )

∫ z

0

k2 (z, s)w(s)ds
)
dz;

for min(λ, q + ε) ≤ t ≤ λ,

and Θ(t, 0) = χ(t, ε). Replacing χ(·, ε) by Θ(·, q), and repeating the preceding ar-
gument, it is easy to get that Θ(·, q) ∈ Ωρ, for such q ∈ Iλ. Moreover, the function
q → Θ(·, q) with domain [0, λ] into the space (C(Iλ, E), ω), is a sequentially con-
tinuous function. This results in the fact that, the set Tw = {Θ(·, q)|q ∈ [0, λ]} is a
connected subset of (C(Iλ, E), ω). As it is known that Θ(t, 0) = χ(t, ε) is a connected
set and is a subset of V ∩ Tw, hence the set Z = ∪w∈ΩρTw ∪ V is a connected subset in
the space (C(Iλ, E), ω). Furthermore, Ωρ ⊆ Z, due to the fact that w = Θ(·, q) ∈ Tw,
for which w ∈ Ωρ. While Z ⊆ Ωρ, as Tw ⊆ Ωρ and v ⊂ Ωρ. Therefore, Ωρ = Z is a
connected subset of (C(Iλ, E), ω).

We now suppose that the solution set Ω is disconnected. Since it has been proved
that Ω is a weakly compact set, then we can find weakly compact sets B1 6= ∅ and
B2 6= ∅, such that B1∪B2 = Ω. Therefore, there exist two disjoint weakly open subsets
K1 and K2, so that B1 ∩ B2 = ∅ and B2 ⊂ K2. Assume that, for each natural number
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n, we can find xn ∈ Vn−U , here Vn = Ωω
1
n

and U = K1∪K2. This suggests that each
Vn is a nonempty, weakly compact and connected subset of (C(Iλ, E), ω) which is also
monotonically decreasing.

Assume that J = {xn|n ∈ N}ω. We notice, lim
n→∞

(xn −G(xn)) = 0 in the space

(C(Iλ, E), ω) and J(t) ⊂ {xn(t) − G(xn)(t)|xn ∈ J} + G(J)(t). Following in the
same lines as we did in Theorem 3.2, it can be shown that we can find x0 ∈ J such that
x0 = G(x0), i.e., x0 ∈ Ω. Thus, the set U is open with respect to the weak topology and
xn ∈ Vn−U , hence x0 /∈ U , which contradicts the fact that x0 ∈ Ω ⊂ U. Hence, we can
find l ∈ N such that Vl ⊂ U = U1 ∪K2 withK1 ∩K2 = ∅. Since, Ω ⊂ Vl we have that
K1 ∩ Vl 6= ∅ 6= K2 ∩ Vl. Therefore, Vl is not a connected set, and that is a contradiction
to the fact that each Vn is connected. Therefore, the set of all solutions of problem (3.1)
is a connected subset in (C(Iλ, E), ω).

5 Conclusions
Functions that are of highly oscillatory behavior has wide range of applications in
physics, engineering, finance etc. [16]. These kinds of functions are integrable in the
sense of the Henstock–Kurzweil–Pettis(HKP) definition. This newly introduced work
uses the HKP integral to formulate a novel integrodifferential equation. The results
obtained in this paper are about existence of solutions, and some topological aspects
of the underlying problem. Under different hypotheses various existence results have
been explored and it is shown that the solution set is a compact and connected subset of
(C(Iλ, E), ω) . The results have been obtained via applying various tools of the fixed
point theory and the measure of weak noncompactness.

The topological generalization of finiteness is considered as compactness. Basically
topology deals with open sets and this assertion provides the information that behav-
ior of some mathematical notion with open sets is same as its behavior with the entire
ground set. Consequently, compactness of a space gives information that there exist
at most finitely many behaviors. Similarly another important property of topological
spaces is connectedness. This property of a space or subspace is among few properties
of geometric figures that denote change under a homeomorphism. Without loss of gen-
erality if we assume Euclidean plane, then a point is limit point if there does not exist
minimum distance from the point to elements of the set. So a set is not connected if it
can be segregated into two subsets such that an element of one set is never a limit point
of other subset. Therefore, our obtained result about the compactness is to show that
there can be finitely many behaviors with the solution set of integrodifferential equa-
tions. Similarly, we have shown that the solution set Ω is connected, so it will predict
that solution sets of other kinds of equations that are homeomorphic to Ω will have the
same properties as Ω.

Concisely, the integrodifferential equations explored in the present manuscript are
of fairly general nature and include a variety of particular cases. For k2(·, ·) = 0 we ob-
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tain the results carried out in [1]. Last but not least, the present work will provide a new
way of thinking to formulate novel integrodifferential equations. In addition, this work
will motivate researchers to use other kinds of vector valued integrals to formulate a va-
riety of (ordinary / partial / fractional order) differential, integral and integrodifferential
equations.
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