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1 Introduction

Fractional differential equations involves Riemann–Liouville, Caputo, Hadamard and
Hilfer fractional differential operators have been applied in various areas of scientific
disciplines, and studied by many mathematicians; see the monographs [1–3, 24, 25, 31,
32, 37], the papers [4, 6–8, 11, 26, 27, 36] and the references therein.

In recent years, a new approach of fractional derivative having a kernel with expo-
nential decay is known as the Caputo–Fabrizio operator has been introduced by Caputo
and Fabrizio [16]. Several researchers were recently busy in development of Caputo–
Fabrizio fractional differential equations, see [17–20,25,35] and the references therein.

Considerable attention has been given to the study of the Ulam–Hyers–Rassias sta-
bility of all kinds of functional equations, see the monographs [3, 22], and the pa-
pers [5, 9, 10]. More details from historical point of view, and developments of such
stabilities are reported in [21, 23, 28–30, 34].

In this paper we investigate the existence of solutions and some Ulam stability re-
sults for the following class of Caputo–Fabrizio implicit fractional differential equation

(CFDr
0u)(t) = f(t, u(t), (CFDr

0u)(t)), t ∈ I := [0, T ], (1.1)

with the boundary conditions

au(0) + bu(T ) = c, (1.2)

where T > 0, f : I × R × R → R is a given continuous function, a, b and c are real
constants with a + b 6= 0, CFDr

0 is the Caputo–Fabrizio fractional derivative of order
r ∈ (0, 1).

Recently, in [3, 12–15, 33] the authors applied the measure of noncompactness to
some classes of functional Riemann–Liouville or Caputo fractional differential equa-
tions in Banach spaces. By applying these techniques, we next discuss the existence
of solutions for problem (1.1)–(1.2), when f : I × E × E → E is a given continuous
function, c ∈ E, and E is a real (or complex) Banach space with a norm ‖ · ‖.

2 Preliminaries

Let C := C(I, E) be the Banach space of all continuous functions from I into E with
the norm

‖u‖C = sup
t∈I
‖u(t)‖.

In the case E = R, we have
‖u‖C = sup

t∈I
|u(t)|.
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By L1(I, E) we denote the Banach space of measurable function u : I → E with are
Bochner integrable, equipped with the norm

‖u‖L1 =

∫ T

0

‖u(t)‖dt.

LetMX denote the class of all bounded subsets of a metric space X .

Definition 2.1 (See [14]). Let X be a complete metric space. A map µ :MX → [0,∞)
is called a measure of noncompactness on X if it satisfies the following properties for
all B,B1, B2 ∈MX .

(a) µ(B) = 0 if and only if B is precompact (Regularity),

(b) µ(B) = µ(B) (Invariance under closure),

(c) µ(B1 ∪B2) = max{µ(B1), µ(B2)} (Semi-additivity).

Definition 2.2 (See [14]). LetX be a Banach space and let ΩX be the family of bounded
subsets of E. The Kuratowski measure of noncompactness is the map µ : ΩX → [0,∞)
defined by

µ(M) = inf{ε > 0 : M ⊂ ∪mj=1Mj, diam(Mj) ≤ ε},

where M ∈ ΩE.

The Kuratowski measure of noncompactness satisfies the following properties

(1) µ(M) = 0⇔M is compact (M is relatively compact).

(2) µ(M) = µ(M).

(3) M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).

(4) µ(M1 +M2) ≤ µ(M1) + µ(M2).

(5) µ(cM) = |c|µ(M), c ∈ R.

(6) µ(convM) = µ(M).

Definition 2.3 (See [16,25]). The Caputo–Fabrizio fractional integral of order 0 < r <
1 for a function h ∈ L1(I) is defined by

CF Irh(τ) =
2(1− r)

M(r)(2− r)
h(τ) +

2r

M(r)(2− r)

∫ τ

0

h(x)dx, τ ≥ 0,

where M(r) is normalization constant depending on r.
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Definition 2.4 (See [16, 25]). The Caputo–Fabrizio fractional derivative for a function
h ∈ C1(I) of order 0 < r < 1, is defined by

CFDrh(τ) =
(2− r)M(r)

2(1− r)

∫ τ

0

exp(− r

1− r
(τ − x))h′(x)dx, τ ∈ I.

Note that (CFDr)(h) = 0 if and only if h is a constant function.

Lemma 2.5. Let h ∈ L1(I, E). A function u ∈ C is a solution of problem{
(CFDr

0u)(t) = h(t), t ∈ I := [0, T ]
au(0) + bu(T ) = c,

(2.1)

if and only if u satisfies the following integral equation

u(t) = C0 + arh(t) + br

∫ t

0

h(s)ds+
bbr
a+ b

∫ T

0

h(s)ds, (2.2)

where

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
,

C0 =
1

a+ b
[c− bar(h(T )− h(0))]− arh(0).

Proof. Suppose that u satisfies (2.1). From [25, Proposition 1], the equation

(CFDr
0u)(t) = h(t),

implies that

u(t)− u(0) = ar(h(t)− h(0)) + br

∫ t

0

h(s)ds.

Thus,

u(T ) = u(0) + ar(h(T )− h(0)) + br

∫ T

0

h(s)ds.

From the mixed boundary conditions au(0) + bu(T ) = c, we get

au(0) + b(u(0) + ar(h(T )− h(0)) + br

∫ T

0

h(s)ds) = c.

Hence,

u(0) =
c− b(ar(h(T )− h(0))− br

∫ T
0
h(s)ds)

a+ b
.

So, we get (2.2).
Conversely, if u satisfies (2.2), then

(CFDr
0u)(t) = h(t), t ∈ I,

and
au(0) + bu(T ) = c.
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From Lemma 2.5, we can conclude the following lemma.

Lemma 2.6. A function u is a solution of problem (1.1)–(1.2), if and only if u satisfies
the following integral equation

u(t) = c0 + arg(t) + br

∫ t

0

g(s)ds+
bbr
a+ b

∫ T

0

g(s)ds, (2.3)

where g ∈ C, with g(t) = f(t, u(t), g(t)) and

c0 =
1

a+ b
[c− bar(g(T )− g(0))]− arg(0).

Now, we consider the Ulam stability for the problem (1.1)–(1.2). Let ε > 0 and
Φ : I → R+ be a continuous function. We consider the following inequalities

‖(HFDr
0u)(t)− f(t, u(t), (HFDr

0u)(t))‖ ≤ ε, t ∈ I. (2.4)

‖(HFDr
0u)(t)− f(t, u(t), (HFDr

0u)(t))‖ ≤ Φ(t), t ∈ I. (2.5)

‖(HFDr
0u)(t)− f(t, u(t), (HFDr

0u)(t))‖ ≤ εΦ(t), t ∈ I. (2.6)

Definition 2.7 (See [3]). The problem (1.1)–(1.2) is Ulam–Hyers stable if there exists
a real number cf > 0 such that for each ε > 0 and for each solution u ∈ C of the
inequality (2.4), there exists a solution v ∈ C of (1.1)–(1.2) with

‖u(t)− v(t)‖ ≤ εcf , t ∈ I.

Definition 2.8 (See [3]). The problem (1.1)–(1.2) is generalized Ulam–Hyers stable if
there exists cf ∈ C(R+,R+) with cf (0) = 0 such that for each ε > 0 and for each
solution u ∈ C of the inequality (2.4), there exists a solution v ∈ C of (1.1)–(1.2) with

‖u(t)− v(t)‖ ≤ cf (ε), t ∈ I.

Definition 2.9 (See [3]). The problem (1.1)–(1.2) is Ulam–Hyers–Rassias stable with
respect to Φ if there exists a real number cf,Φ > 0 such that for each ε > 0 and for each
solution u ∈ C of the inequality (2.6), there exists a solution v ∈ C of (1.1)–(1.2) with

‖u(t)− v(t)‖ ≤ εcf,ΦΦ(t), t ∈ I.

Definition 2.10 (See [3]). The problem (1.1)–(1.2) is generalized Ulam–Hyers–Rassias
stable with respect to Φ if there exists a real number cf,Φ > 0 such that for each solution
u ∈ C of the inequality (2.5), there exists a solution v ∈ C of (1.1)–(1.2) with

‖u(t)− v(t)‖ ≤ cf,ΦΦ(t), t ∈ I.
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Remark 2.11. A function u ∈ C is a solution of the inequality (2.5) if and only if there
exist a function h ∈ C (which depend on u) such that

‖h(t)‖ ≤ Φ(t),

(HFDr
0u)(t) = f(t, u(t), (HFDr

0u)(t)) + h(t), for t ∈ I.

Lemma 2.12. If u ∈ is a solution of the inequality (2.5), then u is a solution of the
following integral inequality∥∥∥∥u(t)− c0 − arg(t)− br

∫ t

0

g(s)ds− bbr
a+ b

∫ T

0

g(s)ds

∥∥∥∥
≤
(
ar + Tbr + T

bbr
a+ b

)
Φ(t), if t ∈ I, (2.7)

where g ∈ C, with g(t) = f(t, u(t), g(t)) and

c0 =
1

a+ b
[c− bar(g(T )− g(0))]− arg(0).

Proof. By Remark 2.11, for t ∈ I we have

u(t) = C0 + ar[g(t) + h(t)] + br

∫ t

0

[g(s) + h(s)]ds+
bbr
a+ b

∫ T

0

[g(s) + h(s)]ds.

Thus, we obtain

‖u(t) − C0 − arg(t)− br
∫ t

0

g(s)ds− bbr
a+ b

∫ T

0

g(s)ds‖

≤ ar‖h(t)‖+ br

∫ t

0

‖h(s)‖ds+
bbr
a+ b

∫ T

0

‖h(s)‖ds

≤
(
ar + Tbr + T

bbr
a+ b

)
Φ(t).

Hence, we get (2.7).

For our purpose we will need the following fixed point theorems.

Theorem 2.13 (Schauder fixed point theorem [33]). Let X be a Banach space, D be a
bounded closed convex subset of X and T : D → D be a compact and continuous map.
Then T has at least one fixed point in D.

Theorem 2.14 (Mönch’s fixed point theorem [27]). Let D be a bounded, closed and
convex subset of a Banach space such that 0 ∈ D, and let N be a continuous mapping
of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ V is compact, (2.8)

holds for every subset V of D, then N has a fixed point.
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3 Existence and Ulam Stability Results
In this section, we present some results concerning the existence and Ulam stability of
solutions for the problem (1.1)–(1.2),

Definition 3.1. By a solution of problem (1.1)–(1.2), we mean a function u ∈ C such
that

u(t) = c0 + arg(t) + br

∫ t

0

g(s)ds+
bbr
a+ b

∫ T

0

g(s)ds,

where g ∈ C, with g(t) = f(t, u(t), g(t)) and

c0 =
1

a+ b
[c− bar(g(T )− g(0))]− arg(0).

3.1 The Scalar Case
The following hypotheses will be used in the sequel:

(H1) There exist a nondecreasing continuous function ψ : R+ → (0,∞) and continu-
ous functions p, q : I → R+ such that

|f(t, u, v)| ≤ p(t)ψ(|u|) + q(t)|v|, for each t ∈ I u, v ∈ R.

(H2) There exists a constant R > 0, such that

R ≥ |c0|+
[
ar + Tbr + T

bbr
a+ b

]
p∗ψ(R)

1− q∗
, (3.1)

where p∗ = sup
t∈I

p(t), and q∗ = sup
t∈I

q(t), with 0 < q∗ < 1.

(H3) There exist constants d1 > 0, 0 < d2 < 1, such that

(1 + |u1 − u2|)|f(t, u1, v1)− f(t, u2, v2)| ≤ d1Φ(t)|u1 − u2|+ d2|v1 − v2|,

for each t ∈ I and ui, vi ∈ R; i = 1, 2.

(H4) There exists a constant λΦ > 0, such that for each t ∈ I we have∫ T

0

Φ(t)dt ≤ λΦΦ(t).

Remark 3.2. From (H3), for each t ∈ I, and u, v ∈ R, we have that

|f(t, u, v)| ≤ |f(t, 0, 0)|+ d1Φ(t)|u|+ d2|v|.

So, (H3) implies (H1) with

ψ(x) = 1 + x, p(t) = max{d1Φ(t), |f(t, 0, 0)|}, q(t) = d2.
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Now, we prove an existence result for the problem (1.1)–(1.2) based on Schauder’s
fixed point theorem.

Theorem 3.3. Assume that the hypotheses (H1) and (H2) hold. Then the problem (1.1)–
(1.2) has a least one solution defined on I.

Proof. Consider the operator N : C → C such that,

(Nu)(t) = c0 + arg(t) + br

∫ t

0

g(s)ds+
bbr
a+ b

∫ T

0

g(s)ds, (3.2)

where g ∈ C, with g(t) = f(t, u(t), g(t)) and

c0 =
1

a+ b
[c− bar(g(T )− g(0))]− arg(0).

Consider the ball BR := {u ∈ C : ‖u‖C ≤ R}. Let u ∈ BR From (H1), for each t ∈ I,
we have

|g(t)| = |f(t, u(t), g(t))|
≤ p(t)ψ(‖u‖C) + q(t)|g(t)|
≤ p∗ψ(R) + q∗‖g‖C .

Thus, from (H2) we get

‖g‖C ≤
p∗ψ(R)

1− q∗
. (3.3)

Next, we have

|(Nu)(t)| ≤ |c0|+ |arg(t)|+ |br
∫ t

0

g(s)ds|+ | bbr
a+ b

∫ T

0

g(s)ds|

≤ |c0|+ ar|g(t)|+ br

∫ t

0

|g(s)|ds+
bbr
a+ b

∫ T

0

|g(s)|ds

≤ |c0|+
[
ar + Tbr + T

bbr
a+ b

]
p∗ψ(R)

1− q∗
≤ R.

Hence

‖N(u)‖C ≤ R.

This proves that N transforms the ball BR into itself. We shall show that the operator
N : BR → BR satisfies all the assumptions of Theorem 2.13. The proof will be given
in two steps.
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Step 1

N : BR → BR is continuous. Let {un}n∈N be a sequence such that un → u in BR.
Then, for each t ∈ I, we have

|(Nun)(t)− (Nu)(t)| ≤ |ar(gn(t)− g(t))|

+|br
∫ t

0

(gn(s)− g(s)ds|

+

∣∣∣∣ bbra+ b

∫ T

0

(gn(s)− g(s))ds

∣∣∣∣ ,
(3.4)

where gn, g ∈ C such that

gn(t) = f(t, un(t), gn(t)) and g(t) = f(t, u(t), g(t)).

Since‖un − u‖C → 0 as n → ∞ and f, g and gn are continuous, then the Lebesgue
dominated convergence theorem, implies that

‖N(un)−N(u)‖C → 0 as n→∞.

Hence, the operator N is continuous.

Step 2

N(BR) is bounded and equicontinuous. Since N(BR) ⊂ BR and BR is bounded, then
N(BR) is bounded. Next, let t1, t2 ∈ I, with 0 ≤ t1 ≤ t2 ≤ T, and let u ∈ BR. Then
we have

|(Nu)(t2)− (Nu)(t1)| ≤ |arg(t2) + br

∫ t2

0

g(s)ds+
bbr
a+ b

∫ T

0

g(s)ds− arg(t1)

−br
∫ t1

0

g(s)ds− bbr
a+ b

∫ T

0

g(s)ds|

≤ |arg(t2) + br

∫ t2

0

g(s)ds− arg(t1) + br

∫ 0

t1

g(s)ds|

≤ ar|g(t2)− g(t1)|+ br

∫ t2

t1

|g(s)|ds

≤ ar|g(t2)− g(t1)|+ br(t2 − t1)‖g‖C .

Since ‖g‖C ≤
p∗ψ(R)

1− q∗
, in view to (3.3), we obtain

|(Nu)(t2)− (Nu)(t1)| ≤ ar|g(t2)− g(t1)|+ br(t2 − t1)
p∗ψ(R)

1− q∗
.



502 K. Salim, S. Abbas, M. Benchohra, and M. A. Darwish

As t2 → t1 the continuity of g implies that the right-hand side of the above inequality
tends to zero.

As a consequence of the above two steps, together with the Ascoli–Arzelá theorem,
we can conclude that N : BR → BR is continuous and compact. From an application
of Theorem 2.13, we deduce that N has a fixed point u which is a solution of problem
(1.1)–(1.2).

Now, we are concerned with the generalized Ulam–Hyers–Rassias stability of prob-
lem (1.1)–(1.2).

Theorem 3.4. Assume that the hypotheses (H2)–(H4) hold. Then the problem (1.1)–
(1.2) has at least one solution defined on I and it is generalized Ulam–Hyers–Rassias
stable.

Proof. From Remark 3.2, there exists a solution v of the problem (1.1)–(1.2). That is

v(t) = ch + arg(t) + br

∫ t

0

h(s)ds+
bbr
a+ b

∫ T

0

h(s)ds,

where h ∈ C, with h(t) = f(t, v(t), h(t)) and

ch =
1

a+ b
[c− bar(h(T )− h(0))]− arh(0).

Let u be a solution of the inequality (2.5), then from Lemma 2.12, u is a solution of the
integral inequality (2.7), that is∣∣∣∣u(t)− cg − arg(t)− br

∫ t

0

g(s)ds− bbr
a+ b

∫ T

0

g(s)ds

∣∣∣∣
≤

(
ar + Tbr + T

bbr
a+ b

)
Φ(t),

where g ∈ C, with g(t) = f(t, u(t), g(t)) and

cg =
1

a+ b
[c− bar(g(T )− g(0))]− arg(0).

Thus, for each t ∈ I, we obtain

|u(t, w)− v(t, w)| ≤
∣∣∣∣u(t)− cg − arg(t)− br

∫ t

0

g(s)ds− bbr
a+ b

∫ T

0

g(s)ds

∣∣∣∣
+

∣∣∣∣cg + arg(t) + br

∫ t

0

g(s)ds+
bbr
a+ b

∫ T

0

g(s)ds

− ch − arg(t) + br

∫ t

0

h(s)ds− bbr
a+ b

∫ T

0

h(s)ds

∣∣∣∣ .
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This implies that,

|u(t, w)− v(t, w)| ≤
(
ar + Tbr + T

bbr
a+ b

)
Φ(t)

+ |cg − ch|+ ar|g(t)− h(t)|+ br

∫ t

0

|g(s)− h(s)|ds

+
bbr
a+ b

∫ T

0

|g(s)− h(s)|ds.

On the other hand, from (H3), for each t ∈ I, we have

|g(t)− h(t)| = |f(t, u(t), g(t))− f(t, v(t), h(t))|
≤ d1Φ(t) + d2|g(t)− h(t)|,

which gives

|g(t)− h(t)| ≤ d1

1− d2

Φ(t). (3.5)

Again,

|cg − ch| ≤
bar
a+ b

(|g(T )− h(T )|+ |g(0)− h(0)|) + ar|g(0)− h(0)|

≤
(

2bard1

(a+ b)(1− d2)
+

ard1

1− d2

)
Φ(t).

Thus, we obtain

|u(t, w)− v(t, w)| ≤
(
ar + Tbr + T

bbr
a+ b

)
Φ(t)

+

[(
2bard1

(a+ b)(1− d2)
+

ard1

1− d2

)
+

ard1

1− d2

]
Φ(t)

+
brd1

1− d2

∫ t

0

Φ(s)ds

+
bbrd1

(a+ b)(1− d2)

∫ T

0

Φ(s)ds.

Hence, from (H4), we get

|u(t, w)− v(t, w)| ≤
(
ar + Tbr + T

bbr
a+ b

+
2bard1

(a+ b)(1− d2)
+

ard1

1− d2

+
ard1

1− d2

+
λΦbrd1

1− d2

+
λΦbbrd1

(a+ b)(1− d2)

)
Φ(t)

= cf,ΦΦ(t).

This conclude that problem (1.1)–(1.2) is generalized Ulam–Hyers–Rassias stable.
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3.2 Results in Banach Spaces
The following hypotheses will be used in the sequel:

(H01) There exist a nondecreasing continuous function Ψ : R+ → (0,∞) and continu-
ous functions p, q : I → R+ such that

‖f(t, u, v)‖ ≤ p(t)Ψ(‖u‖) + q(t)‖v‖, for each t ∈ I u, v ∈ E.

(H02) There exists a constant M > 0, such that

M ≥ ‖c0‖+

[
ar + Tbr + T

bbr
a+ b

]
p∗Ψ(M)

1− q∗
, (3.6)

where p∗ = sup
t∈I

p(t), and q∗ = sup
t∈I

q(t), with 0 < q∗ < 1.

(H03) For each bounded sets K̃, L̃ ⊂ E and each t ∈ I,

µ(f(t, K̃, L̃)) ≤ p(t)µ(K̃) + q(t)µ(L̃),

where µ is the Kuratowski measure of noncompactness on the space E.

Now, we prove an existence result for the problem (1.1)–(1.2) based on Mönch’s
fixed point theorem.

Theorem 3.5. Assume that the hypothesis (H01)–(H03) hold. If

ρ :=
p∗

1− q∗

(
ar + Tbr +

Tbbr
a+ b

)
< 1, (3.7)

then the problem (1.1)–(1.2) has a least one solution defined on I.

Proof. Consider the operator N : C → C be the operator defined in (3.2). Define the
ball

BM = {x ∈ C, ‖x‖C ≤M}.

Let u ∈ BM , from (H01), for each t ∈ I, we have

‖g(t)‖ ≤ ‖f(t, u(t), g(t))‖
≤ p(t)Ψ(‖u‖) + q(t)‖g(t)‖
≤ p∗Ψ(‖u‖C) + q∗‖g‖C
≤ p∗Ψ(‖u‖C) + q∗‖g‖C .

This gives

‖g‖C ≤
p∗Ψ(M)

1− q∗
.
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Thus, from (H02), we obtain

‖(Nu)(t)‖ ≤ ‖c0‖+

[
ar + Tbr + T

bbr
a+ b

]
p∗Ψ(M)

1− q∗
.

≤ M.

Hence
‖N(u)‖C ≤M.

This proves that N transforms the ball BM into itself.
We shall show that the operator N : BR → BR satisfies all the assumptions of

Theorem 2.14. We have N(BR) ⊂ BR, and as in the proof of Theorem 3.3, we can
easily show that N : BR → BR is continuous, and N(BR) is equicontinuous. Next,
we prove that Mönch’s condition (2.8) is satisfied. Let V be a subset of BM such
that V ⊂ N(V ) ∪ {0}, V is bounded and equicontinuous and therefore the function
t → v(t) = µ(V (t)) is continuous on I. From (H03) and the properties of the measure
µ, for each t ∈ I, we have

v(t) ≤ µ((NV )(t) ∪ {0})
≤ µ((NV )(t))

≤ ar{µ(g(t)) : u ∈ V }+ br

∫ t

0

{µ(g(s)) : u ∈ V }ds

+
bbr
a+ b

∫ T

0

{µ(g(s)) : u ∈ V }ds,

where g ∈ C, with g(t) = f(t, u(t), g(t)). However, hypothesis (H01) implies that for
each t ∈ I,

µ({g(t) : u ∈ V }) = µ({f(t, u(t), g(t)) : u ∈ V })
≤ p∗µ({u(t) : u ∈ V })) + q∗µ({g(t) : u ∈ V }),

which gives

µ({g(t) : u ∈ V }) ≤ p∗

1− q∗
µ{u(s) : u ∈ V }

=
p∗

1− q∗
µ(V (t).

Thus, we get

v(t) ≤ p∗

1− q∗

[
arµ(V (t) + br

∫ t

0

µ(V (s)ds+
bbr
a+ b

∫ T

0

µ(V (s)ds

]
≤ p∗

1− q∗

[
ar‖v‖C + br

∫ t

0

‖v‖Cds+
bbr
a+ b

∫ T

0

‖v‖Cds
]

≤ p∗

1− q∗

(
ar + Tbr +

Tbbr
a+ b

)
‖v‖C .



506 K. Salim, S. Abbas, M. Benchohra, and M. A. Darwish

Hence
‖v‖C ≤ ρ‖v‖C .

From (3.7), we get ‖v‖C = 0, that is v(t) = µ(V (t)) = 0, for each t ∈ I, and then
V (t) is relatively compact in E. In view of the Ascoli–Arzelà theorem, V is relatively
compact in BM . From Mönch’s fixed point Theorem (Theorem 2.14), we conclude that
N has a fixed point which is a solution of the problem (1.1)–(1.2).

As in the proof of Theorem 3.3, we present (without proof) a result about the gener-
alized Ulam–Hyers–Rassias stability.

Theorem 3.6. Assume that the hypotheses (H02), (H03), (H4) and the following hy-
pothesis holds.

(H04) There exist constants d1 > 0, 0 < d2 < 1, such that

(1 + ‖u1 − u2‖)‖f(t, u1, v1)− f(t, u2, v2)‖ ≤ d1Φ(t)‖u1 − u2‖+ d2‖v1 − v2‖,

for each t ∈ I and ui, vi ∈ E; i = 1, 2.

Then the problem (1.1)–(1.2) has at least one solution defined on I and it is generalized
Ulam–Hyers–Rassias stable.

4 Examples
Example 4.1. Consider the Caputo–Fabrizio implicit fractional differential equation

(CFD
1
4
0 u)(t) =

1 + ln(1 + t2)

10(1 + |u(t)|+ |(CFD
1
4
0 u)(t)|)

, t ∈ [0, 1], (4.1)

with the boundary conditions
u(0) + 2u(1) = 1. (4.2)

Set

f(t, u(t), v(t)) =
1 + ln(1 + t2)

10(1 + |u(t)|+ |v(t)|)
, t ∈ [0, 1].

The hypothesis (H3) is satisfied with

d1 = d2 =
1 + ln(2)|

10
.

Simple computations show that all conditions of Theorems 3.3 and 3.4 are satisfied.
Hence problem (4.1)–(4.2) has a solution, and it is generalized Ulam–Hyers–Rassias
stable.
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Example 4.2. Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
,

be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

Consider the Caputo–Fabrizio fractional differential equation

(CFDα
0 u)(t) =

c(2−n + un(t))

exp(t+ 3)(1 + |u(t)|+ |(CFDα
0 u)(t)|)

, t ∈ [0, 1], (4.3)

with the boundary conditions

u(0) + u(1) = (2−1, 2−2, . . . , 2−n, . . .). (4.4)

Set f = (f1, f2, . . . , fn, . . .),

fn(t, u(t), v(t)) =
c(2−n + un(t))

exp(t+ 3)(1 + |u(t)|+ |v(t)|)
, t ∈ [0, 1].

Simple computations with a good choice of the constant c, show that all conditions of
Theorem 3.5 are satisfied. Consequently, Theorem 3.5 implies that the problem (4.3)–
(4.4) has at least one solution defined on [0, 1]. Also, hypothesis (H4) is satisfied with
λΦ = e− 1. Indeed∫ T

0

Φ(t, w)dt =

∫ T

0

e−tdt = 1− e−1 ≤ λΦe
−t = λΦΦ(t, w), t ∈ [0, 1].

Consequently, Theorem 3.6 implies that (4.3)–(4.4) is generalized Ulam–Hyers–Rassias
stable.
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[12] J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive con-
densing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis.
Natur. Madrid 79 (1985), 53–66.

[13] J. M. Ayerbee Toledano, T. Dominguez Benavides, G. Lopez Acedo, Measures
of noncompactness in metric fixed point theory, Operator Theory, Advances and
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