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Abstract

In this paper, the layered compression-expansion fixed point theorem is ap-
plied to show the existence of solutions of a second order difference equation with
Dirichlet boundary conditions where the nonlinearity is the sum of a monotonic
increasing and a monotonic decreasing function. A cone consisting of nonnegative
symmetric functions that satisfy a concavity condition is integral to the analysis.
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1 Introduction

Let N € N, N > 1. In this paper, we give an application of an Avery, Anderson, and
Henderson fixed point theorem to obtain at least one positive symmetric solution of the
difference equation

Au(k) + f(u(k)) =0, ke{0,1,..,N}, (1.1)
with boundary conditions
u(0) = u(N +2) =0, (1.2)

where f : [0,00) — [0,00) and A? is the second forward difference operator which
acts on u by A%u(k) = u(k + 2) — 2u(k + 1) + u(k). We assume f = f; + f| is
the sum of a monotonic increasing and a monotonic decreasing function, respectively,
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where f;, f| : [0,00) — [0,00). Under certain conditions imposed onf; and f|, we
show (1.1), (1.2) has a positive symmetric solution in the sense that u(k) > 0 and
w(N +2—k) =u(k) forall k € {0,1,..., N + 2}.

Fixed point theorems due to Avery, Anderson, and Henderson and others, (see, for
example, [4,5,7-9, 11-13]) when applied to boundary value problems with right focal
boundary conditions, require functions from a cone to be nonnegative, nondecreasing
and satisfy a concavity-like property [3, 14—17]. Boundary value problems with conju-
gate boundary conditions can also be studied using these fixed point theorems, but now
the functions from the cone are required to be nondecreasing on half the interval and
symmetric [1,2, 10, 18]. Then the maximum value of the function occurs at the mid-
point of the interval instead of the right endpoint, and by requiring symmetry, a similar
approach can be taken.

In this paper, we see that by writing the nonlinearity f as a sum of a monotonic in-
creasing and a monotonic decreasing function, the layered compression-expansion fixed
point theorem [6] can be used to show the existence of positive symmetric solutions of a
difference equation with Dirichlet boundary conditions. The proof of the main theorem
relies on the fact that functions from the cone are symmetric and satisfy a concavity

property.

2 The Fixed Point Theorem

Definition 2.1. Let £ be a real Banach space. A nonempty closed convex set P C FE is
called a cone provided:

(1) u € P, A > 0implies \u € P;
(i) v € P, —u € P implies u = 0.
Definition 2.2. A map « is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E if
a:P —|0,00)
is continuous and
altu+ (1 —t)v) > ta(u) + (1 — t)a(v),

forall u,v € Pandt € [0, 1].
Similarly, the map /3 is a nonnegative continuous convex functional on a cone P of
a real Banach space F if

B :P —[0,00)

1s continuous and
Btu+ (1 —t)v) < tB(u) + (1 —1)B(v),
forall u,v € Pandt € [0, 1].
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Let P be a cone, let u and v be real numbers, ¢ be a continuous concave functional
and ¢ a continuous convex functional. Define

P(p,u,&v) ={x € P:o(x) <wuand {(z) > v}.

We employ the following fixed point theorem to show the existence of positive sym-
metric solutions of (1.1), (1.2).

Lemma 2.3 (See [12]). Suppose P is a cone in a real Banach space E, o« and i) are
nonnegative continuous concave functionals on P, [ and 6 are nonnegative contin-
uous convex functionals on P, and R,S,T are completely continuous operators on
P with T = R+ S. If there exist nonnegative real numbers a,b,c,d and (ro, sg) €
P(B,b,a,a) x P(0,c,1),d) such that

(A0) P(B,b,a,a) x P(6,¢,,d) is bounded;
(A1) ifr € OP(B,b, a,a) with a(r) = a and s € P(0, ¢,v,d), then o R(r + 5)) > a;
(A2) ifr € OP(B,b, a,a) with B(r) = band s € P(0,c,v,d), then B(R(r + s)) < b,
(A3) if s € OP(0,c,,d) with 0(s) = cand v € P(B,b, a,a), then §(S(r + s)) < ¢

and
(A4) if s € OP(0,c,v,d) with(s) = dand r € P(S,b,a,a), then Y(S(r + s)) > d;

then there exists an (r*,s*) € P(8,b,a,a) x P(0,¢,¢,d) such that x¥* = r* + s* is a
fixed point for T.

3 Preliminaries
Let £ be Banach space

E={u:{0,...,N+2} - R}
with the usual supremum norm

[ull = ju(k)|-

max
ke{0,1,...,N+2}
The corresponding Green’s function for —A%u = 0 satisfying the boundary conditions
(1.2) is given by

1 E(N+2-1), ked{0,...,1},

HkD =575

IN+2—-k), ke{l+1,...N+2}.
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Thus if u is a solution of the summation equation

N+1

u(k) =Y Hk, 1) f (u(l)),

=1

then w is a solution of the boundary value problem (1.1), (1.2). We also point out that
for fixed k,
N+1

> H(kl) = g(NJrQ—k).

=1

For notational purposes, define
N {MJ
2

2
to be the greatest integer less than or equal to . Define the cone P C E by

P={ueE:u0)=0, u(N+2—k)=u(k), uis nonnegative and nondecreasing
on {0,1,...,]\7}, and wu(y) > yu(w) for w > y with y, w € {0,1,...,N}}.

Notice when N is even, if © € P, then the maximum value of w occurs when k = N

N+2 - N+2- 1:
+ ,and if N +2 is odd, the maximum value of © occurs when k = N = +—,

N+2+1

[\)

and because of symmetry, atk = N + 1 =

Let 7,v € {1,...,N — 1}. For v € P, define the nonnegative continuous convex
functionals § and # on P by

and

and
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4 Positive Symmetric Solutions

Theorem 4.1. Let 7,v € {1,...,N — 1} and let a,b, ¢, d be nonnegative real numbers
withb > a. If f|, f+ : [0,00) — [0, 00) are continuous with

N 2a
() fr (a * ;d> ~ V(N +1-— 21/);

N 2b
(2) fT <b+ ?C) < (N(N+2—N>’

2c

(3) f1(0) < SNtz 7) and

2d

then there exists a solution u* € P of (1.1), (1.2).

Proof. Define the operators T, R, S : E — E by

N+1

Tu(k) = 3 Hk, 1) f(uld)).

Ru(k) =)  H(k, D) f;(u(l)),

=1

and
N+1

Su(k) = > H(k, 1) f(u(l)).

=1
Now T' = R + S, and if u is a fixed point of 7', then w is a solution of the boundary

value problem (1.1), (1.2).
Notice H has the properties that

H(N+2—kN+2—1)=H(k1I), 4.1)
and
wH (y,1) > yH (w,1) (4.2)

for all w,y € {0,...,N + 2} with w > y. Therefore, T, R, S : P — P. A stan-
dard application of the Arzela—Ascoli theorem shows that 7', R, and .S are completely

continuous.
We now show that (A0) holds. Let (r,s) € P(5,b,a,a) x P(0,c,1,d). Now,

r(k) <r(N) = B(r) <b,
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and

s(t) < s(N) <

\\|2|

N
< —C¢C.
s(T) Tc

Since r and s achieve their maximum values at k = N, P(3,b,a,a) x P(0, ¢, 1, d) is
bounded.

Here, we show (A1) holds. To do this, start by letting r € 9P(f3,b, a,a) with
a(r)=aand s € P(0,c,9,d). Then, forl e {v +1,...,N+1—v},

r(l) +s(l) >r)+s(v) >r(v)+ —s(N) > a+ —d.

N
v v

N
This implies thatif l € {v +1,...., N+ 1—v}, fr(r(l) + s(l)) > f+ (a + ;d) By

assumption (1),

N+1

a(R(r+s) =Y Hw1) f1(r(l) + (1))

N+1—v

> > H@wl) fi(r(1) + ()

l=v+1

= N+1—v

N V(N +2— l)
> —d S
_fT(aJrV )ZE,,H N3

N \ v
= —d) =(N+1-2
fT(a+V )2( + V)
> a.

This implies that (A1) holds.
We show (A2) holds. Let r € OP(5,b, v, a) with B(r) =band s € P(0,c,1,d).

Since r and s attain their maximum values at [ = N, forl € {1,..., N},
_ _ N N

r(l) +s(l) <r(N)+s(N) <r(N)+ —s(r) < b+ —c.
T T

N

Therefore, forl € {1,..., N+ 1}, f+(r(I) +s(l)) < fr(b+ —c). Assumption (2) gives
T

that
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N\ N _
< b.

The next step in the proof is to show (A3) holds. To do that, let s € 9P (6, ¢, 9, d) with
6(s) =candr € P(B,b,,a). Now f(0) > f(r(l)+s(l)) foralll € {1,...,N}. By
3),

N+1

0(S(r+s)) = Z H(r, D) fi(r(1) + (1))

< fi(o) Z H(T’ l)

= LLOZ(N +2-7)

<c

Finally, we show (A4) holds. Let s € 0P(0,c,,d) with ¢(s) = d and r €
P(B,b,a,a). Forl € {1,...,N + 1},

r(l) 4+ s(l) <r(N)+s(N) <b+d.

Then forl € {1,...,N + 1}, fi(r(I) + s(I)) > f,(b+ d). By assumption (4), we have

(S(r+9) = > HIN,f(r() + (1))
=1
> filb+d) Y H(N,I)

(N +2—N)

l\3|2|

= f1(b+d)

> d.

Therefore, by Theorem 2.3, T" must have a fixed point ©* € P, and u™ is a solution of
(1.1), (1.2). O

Example 4.2. et N =22, 7 =v =6,a=d = 0and b = ¢ = 1. Assumptions (1)-(4)
of Theorem 4.1 reduce to

(1) f+(0) > 0;

1
2 f+(3) < =1
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(3) £,(0) < = and

o4

4 fi(2) >0.

If f is any function where f = f; + f| with these four assumptions holding, then (1.1),
(1.2) has a positive symmetric solution.
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