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Abstract

In this paper, the layered compression-expansion fixed point theorem is ap-
plied to show the existence of solutions of a second order difference equation with
Dirichlet boundary conditions where the nonlinearity is the sum of a monotonic
increasing and a monotonic decreasing function. A cone consisting of nonnegative
symmetric functions that satisfy a concavity condition is integral to the analysis.
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1 Introduction
Let N ∈ N, N > 1. In this paper, we give an application of an Avery, Anderson, and
Henderson fixed point theorem to obtain at least one positive symmetric solution of the
difference equation

∆2u(k) + f(u(k)) = 0, k ∈ {0, 1, ..., N} , (1.1)

with boundary conditions
u(0) = u(N + 2) = 0, (1.2)

where f : [0,∞) → [0,∞) and ∆2 is the second forward difference operator which
acts on u by ∆2u(k) = u(k + 2) − 2u(k + 1) + u(k). We assume f = f↑ + f↓ is
the sum of a monotonic increasing and a monotonic decreasing function, respectively,
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where f↑, f↓ : [0,∞) → [0,∞). Under certain conditions imposed onf↑ and f↓, we
show (1.1), (1.2) has a positive symmetric solution in the sense that u(k) ≥ 0 and
u(N + 2− k) = u(k) for all k ∈ {0, 1, ..., N + 2}.

Fixed point theorems due to Avery, Anderson, and Henderson and others, (see, for
example, [4, 5, 7–9, 11–13]) when applied to boundary value problems with right focal
boundary conditions, require functions from a cone to be nonnegative, nondecreasing
and satisfy a concavity-like property [3, 14–17]. Boundary value problems with conju-
gate boundary conditions can also be studied using these fixed point theorems, but now
the functions from the cone are required to be nondecreasing on half the interval and
symmetric [1, 2, 10, 18]. Then the maximum value of the function occurs at the mid-
point of the interval instead of the right endpoint, and by requiring symmetry, a similar
approach can be taken.

In this paper, we see that by writing the nonlinearity f as a sum of a monotonic in-
creasing and a monotonic decreasing function, the layered compression-expansion fixed
point theorem [6] can be used to show the existence of positive symmetric solutions of a
difference equation with Dirichlet boundary conditions. The proof of the main theorem
relies on the fact that functions from the cone are symmetric and satisfy a concavity
property.

2 The Fixed Point Theorem
Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is
called a cone provided:

(i) u ∈ P , λ ≥ 0 implies λu ∈ P;

(ii) u ∈ P , −u ∈ P implies u = 0.

Definition 2.2. A map α is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E if

α : P → [0,∞)

is continuous and
α(tu+ (1− t)v) ≥ tα(u) + (1− t)α(v),

for all u, v ∈ P and t ∈ [0, 1].
Similarly, the map β is a nonnegative continuous convex functional on a cone P of

a real Banach space E if
β : P → [0,∞)

is continuous and
β(tu+ (1− t)v) ≤ tβ(u) + (1− t)β(v),

for all u, v ∈ P and t ∈ [0, 1].



Symmetry, Concavity and Solutions of a Difference Equation 485

Let P be a cone, let u and v be real numbers, φ be a continuous concave functional
and ξ a continuous convex functional. Define

P(φ, u, ξ, v) = {x ∈ P : φ(x) < u and ξ(x) > v}.

We employ the following fixed point theorem to show the existence of positive sym-
metric solutions of (1.1), (1.2).

Lemma 2.3 (See [12]). Suppose P is a cone in a real Banach space E, α and ψ are
nonnegative continuous concave functionals on P , β and θ are nonnegative contin-
uous convex functionals on P , and R, S, T are completely continuous operators on
P with T = R + S. If there exist nonnegative real numbers a, b, c, d and (r0, s0) ∈
P(β, b, α, a)× P(θ, c, ψ, d) such that

(A0) P(β, b, α, a)× P(θ, c, ψ, d) is bounded;

(A1) if r ∈ ∂P(β, b, α, a) with α(r) = a and s ∈ P(θ, c, ψ, d), then α(R(r + s)) > a;

(A2) if r ∈ ∂P(β, b, α, a) with β(r) = b and s ∈ P(θ, c, ψ, d), then β(R(r + s)) < b;

(A3) if s ∈ ∂P(θ, c, ψ, d) with θ(s) = c and r ∈ P(β, b, α, a), then θ(S(r + s)) < c;
and

(A4) if s ∈ ∂P(θ, c, ψ, d) with ψ(s) = d and r ∈ P(β, b, α, a), then ψ(S(r + s)) > d;

then there exists an (r∗, s∗) ∈ P(β, b, α, a) × P(θ, c, ψ, d) such that x∗ = r∗ + s∗ is a
fixed point for T .

3 Preliminaries
Let E be Banach space

E = {u : {0, . . . , N + 2} → R}

with the usual supremum norm

‖u‖ = max
k∈{0,1,...,N+2}

|u(k)|.

The corresponding Green’s function for −∆2u = 0 satisfying the boundary conditions
(1.2) is given by

H(k, l) =
1

N + 2


k(N + 2− l), k ∈ {0, . . . , l} ,

l(N + 2− k), k ∈ {l + 1, . . . N + 2} .
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Thus if u is a solution of the summation equation

u(k) =
N+1∑
l=1

H(k, l)f(u(l)),

then u is a solution of the boundary value problem (1.1), (1.2). We also point out that
for fixed k,

N+1∑
l=1

H(k, l) =
k

2
(N + 2− k).

For notational purposes, define

N̄ =

⌊
N + 2

2

⌋

to be the greatest integer less than or equal to
N + 2

2
. Define the cone P ⊂ E by

P = {u ∈ E : u(0) = 0, u(N + 2− k) = u(k), u is nonnegative and nondecreasing

on
{

0, 1, . . . , N̄
}
, and wu(y) ≥ yu(w) for w ≥ y with y, w ∈

{
0, 1, . . . , N̄

}}
.

Notice when N is even, if u ∈ P , then the maximum value of u occurs when k = N̄ =
N + 2

2
, and ifN+2 is odd, the maximum value of u occurs when k = N̄ =

N + 2− 1

2
,

and because of symmetry, at k = N̄ + 1 =
N + 2 + 1

2
.

Let τ, ν ∈ {1, . . . , N̄ − 1}. For u ∈ P , define the nonnegative continuous convex
functionals β and θ on P by

β(u) = max
l∈{0,...,N̄}

u(l) = u(N̄),

and
θ(u) = max

l∈{0,...,τ}
u(l) = u(τ),

and the nonnegative continuous concave functionals α and ψ on P by

α(u) = min
l∈{ν,...,N̄}

u(l) = u(ν),

and
ψ(u) = u(N̄).
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4 Positive Symmetric Solutions
Theorem 4.1. Let τ, ν ∈ {1, . . . , N̄ − 1} and let a, b, c, d be nonnegative real numbers
with b > a. If f↓, f↑ : [0,∞)→ [0,∞) are continuous with

(1) f↑

(
a+

N̄

ν
d

)
>

2a

ν(N + 1− 2ν)
;

(2) f↑

(
b+

N̄

τ
c

)
<

2b

(N̄(N + 2− N̄)
;

(3) f↓(0) <
2c

τ(N + 2− τ)
; and

(4) f↓(b+ d) >
2d

N̄(N + 2− N̄)
.

then there exists a solution u∗ ∈ P of (1.1), (1.2).

Proof. Define the operators T,R, S : E → E by

Tu(k) =
N+1∑
l=1

H(k, l)f(u(l)),

Ru(k) =
N+1∑
l=1

H(k, l)f↑(u(l)),

and

Su(k) =
N+1∑
l=1

H(k, l)f↓(u(l)).

Now T = R + S, and if u is a fixed point of T , then u is a solution of the boundary
value problem (1.1), (1.2).

Notice H has the properties that

H (N + 2− k,N + 2− l) = H (k, l) , (4.1)

and
wH (y, l) ≥ yH (w, l) (4.2)

for all w, y ∈ {0, . . . , N + 2} with w ≥ y. Therefore, T,R, S : P → P . A stan-
dard application of the Arzelà–Ascoli theorem shows that T , R, and S are completely
continuous.

We now show that (A0) holds. Let (r, s) ∈ P(β, b, α, a)× P(θ, c, ψ, d). Now,

r(k) ≤ r(N̄) = β(r) < b,
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and

s(t) ≤ s(N̄) ≤ N̄

τ
s(τ) <

N̄

τ
c.

Since r and s achieve their maximum values at k = N̄ , P(β, b, α, a) × P(θ, c, ψ, d) is
bounded.

Here, we show (A1) holds. To do this, start by letting r ∈ ∂P(β, b, α, a) with
α(r) = a and s ∈ P(θ, c, ψ, d). Then, for l ∈ {ν + 1, . . . , N + 1− ν},

r(l) + s(l) ≥ r(ν) + s(ν) ≥ r(ν) +
N̄

ν
s(N̄) ≥ a+

N̄

ν
d.

This implies that if l ∈ {ν + 1, . . . , N + 1 − ν}, f↑(r(l) + s(l)) ≥ f↑

(
a+

N̄

ν
d

)
. By

assumption (1),

α(R(r + s)) =
N+1∑
l=1

H (ν, l) f↑(r(l) + s(l))

≥
N+1−ν∑
l=ν+1

H (ν, l) f↑(r(l) + s(l))

≥ f↑

(
a+

N̄

ν
d

)N+1−ν∑
l=ν+1

ν(N + 2− l)
N + 2

= f↑

(
a+

N̄

ν
d

)
ν

2
(N + 1− 2ν)

> a.

This implies that (A1) holds.
We show (A2) holds. Let r ∈ ∂P(β, b, α, a) with β(r) = b and s ∈ P(θ, c, ψ, d).

Since r and s attain their maximum values at l = N̄ , for l ∈ {1, . . . , N̄},

r(l) + s(l) ≤ r(N̄) + s(N̄) ≤ r(N̄) +
N̄

τ
s(τ) ≤ b+

N̄

τ
c.

Therefore, for l ∈ {1, . . . , N + 1}, f↑(r(l) + s(l)) ≤ f↑(b+
N̄

τ
c). Assumption (2) gives

that

β(R(r + s)) =
N+1∑
l=1

H(N̄ , l)f↑(r(l) + s(l))

≤ f↑

(
b+

N̄

τ
c

)N+1∑
l=1

H(N̄ , l)
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≤ f↑

(
b+

N̄

τ
c

)
N̄

2
(N + 2− N̄)

< b.

The next step in the proof is to show (A3) holds. To do that, let s ∈ ∂P(θ, c, ψ, d) with
θ(s) = c and r ∈ P(β, b, α, a). Now f↓(0) ≥ f↓(r(l) + s(l)) for all l ∈ {1, . . . , N̄}. By
(3),

θ(S(r + s)) =
N+1∑
i=1

H(τ, l)f↓(r(l) + s(l))

≤ f↓(0)
N+1∑
i=1

H(τ, l)

= f↓(0)
τ

2
(N + 2− τ)

< c.

Finally, we show (A4) holds. Let s ∈ ∂P(θ, c, ψ, d) with ψ(s) = d and r ∈
P(β, b, α, a). For l ∈ {1, . . . , N + 1},

r(l) + s(l) ≤ r(N̄) + s(N̄) ≤ b+ d.

Then for l ∈ {1, . . . , N + 1}, f↓(r(l) + s(l)) ≥ f↓(b+ d). By assumption (4), we have

ψ(S(r + s)) =
N+1∑
l=1

H(N̄ , l)f↓(r(l) + s(l))

≥ f↓(b+ d)
N+1∑
l=1

H(N̄ , l)

= f↓(b+ d)
N̄

2
(N + 2− N̄)

> d.

Therefore, by Theorem 2.3, T must have a fixed point u∗ ∈ P , and u∗ is a solution of
(1.1), (1.2).

Example 4.2. Let N = 22, τ = ν = 6, a = d = 0 and b = c = 1. Assumptions (1)–(4)
of Theorem 4.1 reduce to

(1) f↑(0) > 0;

(2) f↑(3) <
1

72
;
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(3) f↓(0) <
1

54
; and

(4) f↓(2) > 0.

If f is any function where f = f↑ + f↓ with these four assumptions holding, then (1.1),
(1.2) has a positive symmetric solution.
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