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Abstract

We consider the nth-order parameter dependent differential equation satisfying
Dirichlet conditions and nonlocal boundary conditions. After imposing continuity
and uniqueness conditions, solutions of the boundary value problem are differenti-
ated with respect to the parameter. This new equation is shown to solve a nonho-
mogeneous boundary value problem similar to the associated variational equation.
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1 Introduction
Consider the nth-order parameter dependent boundary value problem

y(n) =
(
x, y, y′, y′′, . . . , y(n−1), λ

)
, a < x < b, (1.1)

satisfying the Dirichlet conditions

y(i−1) (x1) = yi, 1 ≤ i ≤ n− 1,

and nonlocal boundary condition

y (x2)−
m∑
j=1

pjy (χj) = yn,
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where a < x1 < χ1 < · · · < χm < x2 < b, p1, . . ., pm, y1, y2, . . ., yn ∈ R.
A few hypotheses are imposed upon (1.1):

(H1) f (x, u1, . . . , un, λ) : (a, b)× Rn+1 → R is continuous,

(H2)
∂f

∂ui
(x, u1, . . . , un, λ) : (a, b)× Rn+1 → R is continuous, i = 1, 2, . . . , n,

(H3)
∂f

∂λ
(x, u1, . . . , un, λ) : (a, b)× Rn+1 → R is continuous, and

(H4) solutions of initial value problems for (1.1) extend to (a, b).

Remark 1.1. Note that (H4) is not a necessary condition but lets us avoid continually
making statements about maximal intervals of existence inside (a, b).

The main motivation for this work is a recent paper by Henderson and Jiang [13]
in which the authors considered an nth-order parameter dependent difference equation
with Dirichlet and nonlocal boundary conditions. Henderson and Jiang imposed con-
tinuity conditions upon the nonlinearity and uniqueness assumptions upon solutions of
the boundary value problem and the associated variational equation. These conditions
allowed the authors to seek a derivative of the solution of the boundary value problem
with respect to the parameter. This derivative solved an associated nonhomogeneous
equation of the given difference equation.

Research on the relationship between the solution of a differential, difference, or
dynamic equation and its associated variational equation is rooted in a result found in
Hartman [10] attributed to Peano that discusses initial value problems. Since then, au-
thors have used continuous dependence on boundary value results to establish analogous
results for boundary value problems. In the realm of differential equations, one finds re-
sults for right–focal problems [11], functional problems [7,8], and nonlocal, multipoint,
and integral problems [9, 16, 18, 19, 22]. For difference equations, we point to analo-
gous results to those of differential equations [1,3–6,12,15,20]. Lyons [21] published a
second-order dynamic equation result for the hZ time scale which was later generalized
to a second-order dynamic equation on an arbitrary time scale [2].

In Section 2, the reader will find preliminary definitions, assumptions, and results to
include Peano’s theorem with a parameter. Section 3 is where our main result is found;
an analogue of both Peano’s theorem and Henderson and Jiang’s theorem.

2 Preparatory Work

First, we present the variational equation and a related nonhomogeneous equation fol-
lowed by Peano’s result with a parameter.
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Definition 2.1. Given a solution y(x) of (1.1), we define the variational equation along
y(x) by

z(n) =
n∑
i=1

∂f

∂yi

(
x, y, y′, . . . , y(n−1), λ

)
z(i−1). (2.1)

Definition 2.2. Given a solution y(x) of (1.1), an associated nonhomogeneous equation
is given by

z(n) =
n∑
i=1

∂f

∂yi

(
x, y, y′, . . . , y(n−1), λ

)
z(i−1) +

∂f

∂λ

(
x, y, y′, . . . , y(n−1), λ

)
. (2.2)

Theorem 2.3 (parameter Peano). Assume that, with respect to (1.1), conditions (H1)–
(H4) are satisfied. Let x0 ∈ (a, b) and let y(x) := y (x;x0, c1, c2, . . . , cn, λ) denote the
solution of (1.1) satisfying the initial conditions y(i−1) (x0) = ci, i = 1, . . . , n. Then

(A) for each j = 1, . . . , n, αj(x) :=
∂y

∂cj
(x) exists on (a, b) and is the solution of the

variational equation (2.1) along y(x) satisfying the initial conditions

α
(i−1)
j (x0) = δij, i = 1, . . . , n.

(B) β(x) :=
∂y

∂x0
(x) exists on (a, b) and is the solution of the variational equation

(2.1) along y(x) satisfying the initial conditions

β(i−1) (x0) = −y(i) (x0) , i = 1, . . . , n.

(C) Λ(x) :=
∂y

∂λ
(x) exists on (a, b) and is the solution of the nonhomogeneous equa-

tion (2.2) along y(x) satisfying the initial conditions

Λ(i−1) (x0) = 0, i = 1, . . . , n.

Remark 2.4. The primary focus of this work is differentiation with respect to the param-
eter λ; a BVP analogue to part (C) of Peano’s theorem. Therefore, we will not consider
differentiation with respect to the boundary data. However, the approach is quite similar
to that presented here, and we refer the interested reader to the referenced works in the
introduction for those details.

Next, we present two uniqueness conditions that allow us to connect initial value
problems to boundary value problems. The first assumption applies to (1.1) and second
to (2.1).
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(H5) If y(x) and z(x) are solutions of (1.1) such that y(i−1)(x1) = z(i−1)(x1), i =

1, . . . , n and y(x2) −
m∑
j=1

pjy(χj) = z(x2) −
m∑
j=1

pjz(χj), then y(x) ≡ z(x) on

(a, b).

(H6) Let y(x) be a solution of (1.1) and u(x) be a solution of (2.1) along y(x). Then

if u(i−1)(x1) = 0, i = 1, . . . , n and u(x2) −
m∑
j=1

pju(χj) = 0, then u(x) ≡ 0 on

(a, b).

We also will make use of continuous dependence on boundary values and parameters.
We refer the avid reader to [14, 17] for proof ideas.

Theorem 2.5 (Continuous dependence on boundary conditions and parameters). As-
sume (H1)–(H5) are satisfied with respect to (1.1). Let y(x) be a solution of (1.1)
on (a, b). Then there exists a δ > 0 such that, for |x1 − t1| < δ, |x2 − t2| < δ,
|pj − ρj| < δ, j = 1, . . . ,m, |χj −Xj| < δ, j = 1, . . . ,m,

∣∣y(i−1)(x1)− yi∣∣ < δ,

i = 1, . . . , n − 1,

∣∣∣∣∣y(x2)−
m∑
j=1

pjy(χj)− yn

∣∣∣∣∣ < δ, and |λ− L| < δ, there exists a

unique solution yδ(x) of (1.1) with respect to parameter L such that

y
(i−1)
δ (tj) = yi, i = 1, . . . , n− 1,

and

yδ(t2)−
m∑
j=1

ρjy(Xj) = yn.

In addition, for i = 1, . . . , n,
{
y
(i−1)
δ (x)

}
converges uniformly to y(i−1)(x) as δ → 0 on

[α, β] ⊂ (a, b).

3 Main Result
Now, we present our analogue of Theorem 2.3 with respect to the parameter λ.

Theorem 3.1. Assume conditions (H1)–(H6) are satisfied.
Let y(x) = y (x;x1, x2, y1, . . . , yn, p1, . . . , pm, χ1, . . . , χm, c, d, λ) be the solution of

(1.1) on (a, b) satisfying

y(i−1) (x1) = yi, i = 1, . . . , n− 1,

and

y(x2)−
m∑
j=1

pjy(χj) = yn.
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Then L(x) :=
∂y

∂λ
(x) exists on (a, b) and is the solution of the nonhomogeneous equa-

tion (2.2) along y(x) satisfying the boundary conditions

L(i−1)(x1) = 0, i = 1, . . . , n− 1,

and

L(x2)−
m∑
j=1

pjL(χj) = 0.

Proof. To ease the burdensome notation and realizing that everything is fixed except
x and λ, we denote y (x;x1, x2, χ1, . . . , χm, y1, . . . , yn, p1, . . . , pm, λ) by y(x;λ). Let
δ > 0 be as in Theorem 2.5 with 0 ≤ |h| ≤ δ, and define the difference quotient for λ
by

Lh(x) =
1

h
[y(x;λ+ h)− y(x;λ)].

First, we substitute the boundary conditions into Lh(x). For h 6= 0,

L
(i−1)
h (x1) =

1

h

[
y(i−1)(x1;λ+ h)− y(i−1)(x1;λ)

]
=

1

h
[yi − yi] = 0, i = 1, . . . , n− 1,

and

Lh(x2)−
m∑
j=1

pjLh(χj) =
1

h
[y(x2;λ+ h)− y(x2;λ)]−

m∑
j=1

1

h
[y(x;λ+ h)− y(x;λ)]

=
1

h
[yn − yn] = 0.

Next, we show that Lh(x) is a solution of the nonhomogeneous equation (2.2). To that
end, define µ = y(n−1)(x1;λ) and ν = ν(h) = y(n−1)(x1;λ+ h)− µ.

Note by Theorem 2.5, ν = ν(h) → 0 as h → 0. View y(x) as the solution of
an initial value problem at x1 and use the notation of initial values problems to get
y(x) = y(x;x1, y1, . . . , yn, µ, λ). Thus, we have

Lh(x) =
1

h
[y(x;x1, y1, . . . , yn−1, µ+ ν, λ+ h)− y(x;x1, y1, . . . , yn−1, µ, λ)] .

Next, by utilizing telescoping sums to vary only one component at a time, we have

Lh(x) =
1

h
[y(x;x1, y1, . . . , yn−1, µ+ ν, λ+ h)− y(x;x1, y1, . . . , yn−1, µ, λ+ h)

+ y(x;x1, y1, . . . , yn−1, µ, λ+ h)− y(x;x1, y1, . . . , yn−1, µ, λ)].
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By Theorem 2.3 and the mean value theorem, we obtain

Lh(x) =
1

h
[αn(x; y(x;x1, y1, . . . , yn−1, µ+ ν̄, λ+ h))(µ+ ν − µ)

+ Λ(x; y(x;x1, y1, . . . , yn−1, µ, λ+ h̄))(λ+ h− λ)]

=
ν

h
αn(x; y(x;x1, y1, . . . , yn−1, µ+ ν̄, λ+ h))

+ Λ(x; y(x;x1, y1, . . . , yn−1, µ, λ+ h̄)),

where αn(x; y(x;x1, y1, . . . , yn−1, µ + ν̄, λ + h)) solves the variational equation (2.1)
and Λ(x; y(x;x1, y1, . . . , yn−1, µ, λ + h̄)) solves the nonhomogeneous equation (2.2).
Furthermore, µ+ ν̄ is between µ and µ+ ν and λ+ h̄ is between λ and λ+ h.

Thus, to show lim
h→0

Lh(x) exists, it suffices to show, lim
h→0

ν

h
exists. Recall, from the

construction of Lh(x), we have

L
(i−1)
h (x1) = 0, i = 1, . . . , n− 1,

and

Lh(x2)−
m∑
j=1

pjLh(χj) = 0.

From the latter condition, we have

ν

h
αn(x2; y(x;x1, y1, . . . , yn−1, µ+ ν̄, λ+ h)) + Λ(x2; y(x;x1, y1, . . . , yn−1, µ, λ+ h̄))

−
m∑
j=1

pj

[ν
h
αn(χj; y(x;x1, y1, . . . , yn−1, µ+ ν̄, λ+ h))

+ Λ(χj; y(x;x1, y1, . . . , yn−1, µ, λ+ h̄))
]

= 0.

Solve for
ν

h
to get

ν

h
=
−Λ(x2; y(·)) +

∑m
j=1 pjΛ(χj; y(·))

αn(x2; y(·))−
∑m

j=1 pjαn(χj; y(·))
.

Since α(n−1)
n (x1; y(x;x1, y1, . . . , yn−1, µ, λ)) = 1, we have

αn(x; y(x;x1, y1, . . . , yn−1, µ, λ)) 6≡ 0.

Coupled with hypothesis (H6),

αn(x2; y(x;x1, y1, . . . , yn−1, µ, λ))−
m∑
j=1

pjαn(χj; y(x;x1, y1, . . . , yn−1, µ, λ)) 6= 0.
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By Theorem 2.5 and for sufficiently small h, we have

αn(x2; y(x;x1, y1, . . . , yn−1, µ+ ν̄, λ+ h))

−
m∑
j=1

pjαn(χj; y(x;x1, y1, . . . , yn−1, µ+ ν̄, λ+ h)) 6= 0

implying E := lim
h→0

ν

h
exists. Hence, we have

L(x) =
∂u

∂λ
= lim

h→0
Lh(x) = Eαn(x; y(x)) + Λ(x; y(x))

exists on (a, b) and solves the nonhomogeneous equation (2.2).
Finally, we have

L(i−1)(x1) = lim
h→0

L
(i−1)
h (x1) = lim

h→0
0 = 0, i = 1, . . . , n− 1,

and

L(x2)−
m∑
j=1

pjL(χj) = lim
h→0

[
Lh(x2)−

m∑
j=1

pjLh(χj)

]
= lim

h→0
0 = 0.

Therefore, L(x) is the solution to the nonhomogeneous equation (2.2) satisfying

L(i−1)(x1) = 0, i = 1, . . . , n− 1 and L(x2)−
m∑
j=1

pjL(χj) = 0.

This concludes the proof.
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