Cauchy Functions for a Higher-Order Quasi-Delta Differential Equation

Eric R. Kaufmann

University of Arkansas at Little Rock Department of Mathematics and Statistics Little Rock AR 72204 USA erkaufmann@ualr.edu

Dedicated to Johnny Henderson on the occasion of his 70th birthday.

Abstract

In this paper, we define the Cauchy function, C(t, s), for an *n*th-order quasilinear dynamic equation, and show how it can be calculated given a fundamental set of solutions of the quasi-linear dynamic equation. We also show that the quasidelta derivatives of C(t, s) are Cauchy functions for related lower order quasilinear dynamic equations.

AMS Subject Classifications: 34A12, 34N05. **Keywords:** Time scales, quasi-delta derivatives, contraction mapping principle.

1 Introduction

We define the Cauchy function for a quasi-delta differential equation on a time scale as well as study some of its properties. Partial motivation for this manuscript comes from the work by Akin [1], in which the author studied Cauchy functions for the dynamic equation on a time scale $Px(t) \equiv \sum_{i=1}^{n} p_i(t)x(\sigma^i(t)) = 0, t \in \mathbb{T}$. Other motivation stems from the paper by Kaufmann [7], in which the author considered derivatives of Cauchy functions for quasi-differential and quasi-difference equations. Still other motivation comes from the papers by Bohner and Eloe [2], Eloe [5], Erbe, Mathsen, and Peterson [6], and Peterson and Schneider [9]. For more information on Cauchy functions, see [3, 4, 8]. In order for this paper to be self-contained, we present below some results about time scales, most of which can be found in [3].

Received September 28, 2020; Accepted October 24, 2020 Communicated by Douglas R. Anderson

Let \mathbb{T} be a nonempty closed subset of \mathbb{R} , and let \mathbb{T} have the subspace topology inherited from the Euclidean topology on \mathbb{R} . Then \mathbb{T} is called a *time scale*. For $t < \sup \mathbb{T}$ and $r > \inf \mathbb{T}$, we define the *forward jump operator*, σ , and the *backward jump operator* ρ , respectively, by

$$\sigma(t) := \inf\{\tau \in \mathbb{T} \mid \tau > t\},\$$
$$\rho(r) := \sup\{\tau \in \mathbb{T} \mid \tau < r\},\$$

for all $t, r \in \mathbb{T}$. If $\sigma(t) > t$, then t is said to be *right scattered*, and if $\sigma(t) = t$, then t is said to be *right dense*. If $\rho(r) < r$, then r is said to be *left scattered*, and if $\rho(r) = r$, then r is said to be *left dense*. The *graininess* function, $\mu : \mathbb{T} \to \infty$, is defined as $\mu(t) := \sigma(t) - t$. If \mathbb{T} has a left-scattered maximum, then we define \mathbb{T}^{κ} to be $\mathbb{T} - \{m\}$. Otherwise $\mathbb{T}^{\kappa} = \mathbb{T}$.

Let $f : \mathbb{T} \to \mathbb{R}$ and $t \in \mathbb{T}$. We define the *delta derivative* of f(t), $f^{\Delta}(t)$, to be the number (provided it exists), with the property that, for each $\varepsilon > 0$, there is a neighborhood, U, of t such that

$$\left| [f(\sigma(t)) - f(s)] - f^{\Delta}(t) [\sigma(t) - s] \right| \le \varepsilon \left| \sigma(t) - s \right|,$$

for all $s \in U$. Higher order delta derivatives are through the recursive formula, $f^{\Delta^n}(t) = (f^{\Delta^{n-1}})^{\Delta}(t)$.

If $f: \mathbb{T} \to \mathbb{R}$ is continuous at $t \in \mathbb{T}$, $t < \sup \mathbb{T}$, and t is right scattered, then

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}$$

In particular, if $\mathbb{T} = \mathbb{Z}$, then $f^{\Delta}(t) = \Delta f(t) = f(t+1) - f(t)$, whereas, if t is right dense, then $f^{\Delta}(t) = f'(t)$. If f is differentiable at $t \in \mathbb{T}$, then

$$f(\sigma(t)) = f(t) + \mu(t)f^{\Delta}(t).$$

Also, if f and g are differentiable functions, then

$$(fg)^{\Delta} = f^{\Delta}(t)g(t) + f(\sigma(t))g^{\Delta}(t).$$

We say that $f : \mathbb{T} \to \mathbb{R}$ is *right-dense continuous* (rd-continuous) provided f is continuous at each right-dense point $t \in \mathbb{T}$, and whenever $t \in \mathbb{T}$ is left-dense, $\lim_{s \to t^-} f(s)$ exists as a finite number. A function $F : \mathbb{T}^{\kappa} \to \mathbb{R}$ is called a *delta-antiderivative* of $f : \mathbb{T} \to \mathbb{R}$ provided $F^{\Delta}(t) = f(t)$ holds for all $t \in \mathbb{T}^{\kappa}$. The integral of f is defined by

$$\int_{a}^{t} f(s) \,\Delta s = F(t) - F(a)$$

for $t \in \mathbb{T}$. We will need the Leibniz rule for integration [3, Theorem 1.117, pg 46]. That is, if $f : \mathbb{T} \times \mathbb{T}^{\kappa} \to \mathbb{R}$ is continuous at (t,t), $f^{\Delta}(t,\cdot)$ is rd-continuous, and if $g(t) = \int_{t_0}^t f(t,\tau) \Delta \tau$, then

$$g^{\Delta}(t) = \int_{t_0}^t f^{\Delta}(t,\tau) \,\Delta\tau + f(\sigma(t),t).$$

The polynomial functions on a time scale \mathbb{T} are defined recursively. Let $h_1(t,s) = t - s$ and define $h_k(t,s), k \ge 2$, by

$$h_k(t,s) = \int_s^t h_{k-1}(\tau,s) \,\Delta\tau$$

Note that $h_k^{\Delta}(t, \cdot) = h_k(t, \cdot)$ for all $t \in \mathbb{T}^{\kappa}, k \in \mathbb{N}$.

The remainder of this paper is organized as follows. We define the Cauchy function for the equation $L_n y = 0$ in Section 2, as well as show how it can be calculated given a fundamental set of solutions for the quasi-delta derivative equation. In Section 3, we prove that if C(t,s) is the Cauchy function for L_n , then $\mathcal{K}(t,s) = (1/\varphi_{j+1}(t))L_jC(t,s)$ is the Cauchy function for \mathcal{D}_{n-j} , where $\mathcal{D}_0 y(t) = (\varphi_{j+1}y)(t)$, and $\mathcal{D}_k y(t) = \varphi_{k+j+1}(t)(D_{k-1}y)^{\Delta}(t), 1 \le k \le n-j$.

2 The Cauchy Function

Let $\varphi_k \in C^{n+1-k}(\mathbb{T},\mathbb{R}), 1 \leq k \leq n+1$, be such that φ_k does not vanish on $\mathbb{T}^{\kappa^{k-1}}$. Define the quasi-delta differential operators, L_k , by

$$L_0 y(t) = \varphi_1(t) y(t),$$

$$L_k y(t) = \varphi_{k+1}(t) (L_{k-1} y)^{\Delta}(t), \quad 1 \le k \le n.$$

The Cauchy function for the equation

$$L_n y(t) = 0 \tag{2.1}$$

is the unique function C(t,s) defined on $\mathbb{T} \times \mathbb{T}^{\kappa^n}$ that satisfies, for each $s \in \mathbb{T}^{\kappa^n}$,

$$L_n C(t,s) = 0, (2.2)$$

$$L_k C(\sigma(s), s) = 0, \ 0 \le k \le n - 2,$$
 (2.3)

$$L_{n-1}C(\sigma(s), s) = \frac{1}{\varphi_{n+1}(s)}.$$
(2.4)

Our first theorem shows how to use Wronskians to construct C(t, s), given a fundamental set of solutions of (2.1).

Theorem 2.1. Let y_1, y_2, \ldots, y_n , be *n* linearly independent solutions of equation (2.1). Then the Cauchy function for (2.1) is given by

$$C(t,s) = \frac{W(\sigma(s),t)}{\varphi_{n+1}(s)W(\sigma(s))},$$

where

$$W(s,t) = \begin{vmatrix} L_0 y_1(s) & L_0 y_2(s) & \cdots & L_0 y_n(s) \\ L_1 y_1(s) & L_1 y_2(s) & \cdots & L_1 y_n(s) \\ \vdots & \vdots & & \vdots \\ L_{n-2} y_1(s) & L_{n-2} y_2(s) & \cdots & L_{n-2} y_n(s) \\ y_1(t) & y_2(t) & \cdots & y_n(t) \end{vmatrix}$$

and

$$W(\sigma(s)) = \begin{vmatrix} L_0 y_1(\sigma(s)) & L_0 y_2(\sigma(s)) & \cdots & L_0 y_n(\sigma(s)) \\ L_1 y_1(\sigma(s)) & L_1 y_2(\sigma(s)) & \cdots & L_1 y_n(\sigma(s)) \\ \vdots & \vdots & & \vdots \\ L_{n-1} y_1(\sigma(s)) & L_{n-1} y_2(\sigma(s)) & \cdots & L_{n-1} y_n(\sigma(s)) \end{vmatrix}$$

Proof. By expanding the determinant along the last row, we see that W(s,t) is a linear combination of y_1, y_2, \ldots, y_n , and hence satisfies (2.1). Furthermore, since

$$L_{k}W(\sigma(s),t) = \begin{vmatrix} L_{0}y_{1}(\sigma(s)) & L_{0}y_{2}(\sigma(s)) & \cdots & L_{0}y_{n}(\sigma(s)) \\ L_{1}y_{1}(\sigma(s)) & L_{1}y_{2}(\sigma(s)) & \cdots & L_{1}y_{n}(\sigma(s)) \\ \vdots & \vdots & \vdots \\ L_{n-2}y_{1}(\sigma(s)) & L_{n-2}y_{2}(\sigma(s)) & \cdots & L_{n-2}y_{n}(\sigma(s)) \\ L_{k}y_{1}(t) & L_{k}y_{2}(t) & \cdots & L_{k}y_{n}(t) \end{vmatrix},$$

for $0 \le k \le n-1$, then $L_k W(\sigma(s), \sigma(s)) = 0, 0 \le k \le n-2$. Furthermore, we have $L_{n-1}W(\sigma(s), \sigma(s)) = W(\sigma(s))$. Hence $L_{n-1}C(\sigma(s), s) = 1/\varphi_{n+1}(s)$, and so C(t, s) satisfies (2.2)–(2.4).

The Cauchy function is fundamental to the variation of constants formula for solutions of initial value problems.

Theorem 2.2 (Variation of Constants). Suppose that f is a rd-continuous function and $t_0 \in \mathbb{T}$. Then, the solution of the initial value problem

$$L_n y(t) = f(t), \quad t \in \mathbb{T},$$

$$L_k y(t_0) = 0, \ 0 \le k \le n - 1,$$

is

$$y(t) = \int_{t_0}^t C(t,s) f(s) \,\Delta s,$$

where C(t, s) is the Cauchy function for (2.1).

Cauchy Functions

Proof. Let
$$y(t) = \int_{t_0}^t C(t,s)f(s) \Delta s$$
. Then,

$$L_0 y(t_0) = \varphi_1(t_0) \int_{t_0}^{t_0} C(t_0,s)f(s) \Delta s = 0.$$

For $1 \le k \le n-1$,

$$L_k y(t) = \int_{t_0}^t \varphi_{k+1}(t) L_k C(t,s) f(s) \Delta s + \varphi_{k+1}(t) L_{k-1} C(\sigma(t),t) f(t)$$

=
$$\int_{t_0}^t \varphi_{k+1}(t) L_k C(t,s) f(s) \Delta s.$$

Hence, $L_k y(t_0) = 0, 0 \le k \le n - 1$. Since $L_{n-1}C(t,s) = \frac{1}{\varphi_{n+1}(s)}$, we have

$$L_{n}y(t) = \int_{t_{0}}^{t} L_{n}C(t,s)f(s)\,\Delta s + \varphi_{n+1}(t)L_{n-1}C\big(\sigma(t),t\big)f(t)$$

= 0 + f(t) = f(t),

and the proof is complete.

3 Derivatives and Integrals of Cauchy Functions

It is well-known that the Cauchy function for $y^{\Delta^n}(t) = 0$ is $h_{n-1}(t, s)$, and the Cauchy function for $y^{\Delta^{n-1}}(t) = 0$ is $h_{n-2}(t, s)$. We know that $h_{n-2}(t, \cdot) = (h_{n-1}(t, \cdot))^{\Delta}$. In this section we show that quasi-delta derivatives of the Cauchy function for $L_n y = 0$ are Cauchy functions for related quasi-linear dynamic equations. In particular, we define $D_0 y(t) = (\varphi_2 y)(t)$ and, for $1 \leq k \leq n-1$, let $D_k y(t) = \varphi_{k+2}(t) (D_{k-1} y)^{\Delta}(t)$. Our next theorem states the relation between the Cauchy functions for $L_n y = 0$ and $D_{n-1} y(t) = 0$.

Theorem 3.1. Let C(t,s) be the Cauchy function for $L_n y(t) = 0$. Then, $K(t,s) = (1/\varphi_2(t))L_1C(t,s)$ is the Cauchy function for $D_{n-1}y(t) = 0$.

Proof. For $2 \le k \le n$, the quasi-delta differential operator $L_k y(t) = \varphi_{k+1} (L_{k-1} y)^{\Delta}(t)$ can be written as

$$L_k y(t) = \varphi_{k+1}(t) \left(\varphi_k(t) \left(\cdots \left(\varphi_3(t) \left(\varphi_2(t) (\varphi_1(t) y(t))^{\Delta} \right)^{\Delta} \cdots \right)^{\Delta} \right)^{\Delta} \cdots \right)^{\Delta} \right)^{\Delta}.$$

Since
$$\varphi_3(t) (\varphi_2(t)(\varphi_1(t)y)^{\Delta})^{\Delta} = \varphi_3(t) (\varphi_2(t) (\frac{1}{\varphi_2(t)}(L_1y)(t)))^{\Delta}$$
, then we see that $L_k y(t) = D_{k-1} (1/\varphi_2(t)(L_1y)(t))$. Hence, if $K(t,s) = (1/\varphi_2(t)) L_1 C(t,s)$, then

$$D_{n-1}K(t,s) = L_n C(t,s) = 0,$$

$$D_{k-1}K(\sigma(s),s) = L_k C(\sigma(s),s) = 0, \ 1 \le k \le n-3, \text{ and }$$

$$D_{n-2}K(\sigma(s),s) = L_{n-1}C(\sigma(s),s) = \frac{1}{\varphi(s)}.$$

That is, K(t, s) is the Cauchy function for $D_{n-1}y = 0$ and the proof is complete. \Box

We can generalize Theorem 3.1. Let $j \in \{1, 2, ..., n\}$ be given. Define $\mathcal{D}_0 y(t) = (\varphi_{j+1}y)(t)$, and let $\mathcal{D}_k y(t) = \varphi_{k+j+1}(t) (\mathcal{D}_{k-1}y)^{\Delta}(t)$ for $1 \leq k \leq n-j$. The proof of the following corollary is essentially the same as in Theorem 3.1, with the notable exception that $L_n y(t) = \mathcal{D}_{n-j} (1/\varphi_{j+1}(t)) L_j y(t)$.

Corollary 3.2. Let C(t,s) be the Cauchy function for $L_n y = 0$. Then, $\mathcal{K}(t,s) = (1/\varphi_{j+1}(t))L_jC(t,s)$ is the Cauchy function for $\mathcal{D}_{n-j}y(t) = 0$.

Again, let $j \in \{1, 2, ..., n\}$ be given. We can write $L_n y(t)$ as

$$L_n y(t) = \mathcal{D}_{n-j} \big(1/\varphi_{j+1}(t) \big) L_j y(t).$$

We denote $C_j(t,s)$ to be the Cauchy function associated with L_j , $\mathcal{K}_{n-j}(t,s)$ to be the Cauchy function associated with \mathcal{D}_{n-j} , and $C_n(t,s)$ to be the Cauchy function associated with L_n .

Suppose f is rd-continuous, and consider the initial value problem

$$L_n y(t) = \mathcal{D}_{n-j} \left(1/\varphi_{j+1}(t) \right) L_j y(t) = f(t)$$
(3.1)

$$L_k y(t_0) = 0, \ 0 \le k \le n - 1.$$
 (3.2)

Let y be the solution of (3.1), (3.2), and let $u(t) = (1/\varphi_{j+1}(t))L_j y(t)$. Then, u(t) is the solution of the initial value problem

$$\mathcal{D}_{n-j}u(t) = 0,$$

$$L_k u(t_0) = 0, \ j \le k \le n-1.$$

By Theorem 2.2,

$$u(t) = \int_{t_0}^t \mathcal{K}_{n-j}(t,s) f(s) \,\Delta s$$

Since $L_j y(t) = \varphi_{j+1}(t)u(t)$, then y is the solution of

$$L_j y(t) = \varphi_{j+1}(t)u(t),$$

$$L_k y(t_0) = 0, \ 0 \le k \le j - 1.$$

Thus,

$$y(t) = \int_{t_0}^t C_j(t,\tau) \,\varphi_{j+1}(\tau) \,u(\tau) \,\Delta\tau.$$

We see that

$$y(t) = \int_{t_0}^t C_j(t,\tau) \varphi_{j+1}(\tau) \int_{t_0}^\tau \mathcal{K}_{n-j}(\tau,s) f(s) \Delta s \, \Delta \tau$$
$$= \int_{t_0}^t \int_{t_0}^\tau \varphi_{j+1}(\tau) C_j(t,\tau) \mathcal{K}_{n-j}(\tau,s) f(s) \Delta s \, \Delta \tau.$$

Using [1, Theorem 10],

$$\int_{a}^{b} \int_{a}^{\tau} F(\tau, s) \,\Delta s \Delta \tau = \int_{a}^{b} \int_{\sigma(s)}^{b} F(\tau, s) \,\Delta \tau \Delta s,$$

we have

$$y(t) = \int_{t_0}^t \int_{\sigma(s)}^t \varphi_{j+1}(\tau) C_j(t,\tau) \mathcal{K}_{n-j}(\tau,s) \,\Delta\tau f(s) \,\Delta s.$$

Appealing to Theorem 2.2, again we have

$$y(t) = \int_{t_0}^t C_n(t,s)f(s)\,\Delta s.$$

Thus,

$$C_n(t,s) = \int_{\sigma(s)}^t \varphi_{j+1}(\tau) C_j(t,\tau) \mathcal{K}_{n-j}(\tau,s) \,\Delta\tau.$$

We have the following theorem.

Theorem 3.3. Fix $j \in \{1, 2, ..., n\}$, and suppose that $L_n y(t)$ can be factored as

$$L_n y(t) = \mathcal{D}_{n-j} \big(1/\varphi_{j+1}(t) \big) L_j y(t).$$

Suppose that $C_j(t,s)$ is the Cauchy function associated with L_j , that $\mathcal{K}_{n-j}(t,s)$ is the Cauchy function associated with \mathcal{D}_{n-j} , and that $C_n(t,s)$ is the Cauchy function associated with L_n . Then,

$$C_n(t,s) = \int_{\sigma(s)}^t \varphi_{j+1}(\tau) C_j(t,\tau) \mathcal{K}_{n-j}(\tau,s) \,\Delta\tau.$$

References

[1] Elvan Akin. Cauchy functions for dynamic equations on a measure chain. J. Math. Anal. Appl., 267(1):97–115, 2002.

- [2] Martin Bohner and Paul W. Eloe. Higher order dynamic equations on measure chains: Wronskians, disconjugacy, and interpolating families of functions. *J. Math. Anal. Appl.*, 246(2):639–656, 2000.
- [3] Martin Bohner and Allan Peterson. *Dynamic Equations on Time Scales, An Introduction with Applications.* Birkhäuser Boston, Inc., Boston, MA, 2001.
- [4] W. A. Coppel. *Disconjugacy*. Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971.
- [5] Paul W. Eloe. Sign properties of Green's functions for two classes of boundary value problems. *Canad. Math. Bull.*, 30(1):28–35, 1987.
- [6] Lynn H. Erbe, Ronald M. Mathsen, and Allan Peterson. Factoring linear differential operators on measure chains. *J. Inequal. Appl.*, 6(3):287–303, 2001.
- [7] Eric R. Kaufmann. Derivatives of Cauchy functions of *n*th order quasi-differential equations. *Panamer. Math. J.*, 3(4):9–17, 1993.
- [8] Walter G. Kelley and Allan C. Peterson. *Difference Equations, An Introduction with Applications*. Harcourt/Academic Press, San Diego, CA, second edition, 2001.
- [9] Allan Peterson and John Schneider. The Cauchy function for *n*th order linear difference equations. *Rocky Mountain J. Math.*, 25(1):441–457, 1995.