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Abstract

In this paper, we define the Cauchy function, C(t, s), for an nth-order quasi-
linear dynamic equation, and show how it can be calculated given a fundamental
set of solutions of the quasi-linear dynamic equation. We also show that the quasi-
delta derivatives of C(t, s) are Cauchy functions for related lower order quasi-
linear dynamic equations.
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1 Introduction
We define the Cauchy function for a quasi-delta differential equation on a time scale as
well as study some of its properties. Partial motivation for this manuscript comes from
the work by Akin [1], in which the author studied Cauchy functions for the dynamic

equation on a time scale Px(t) ≡
n∑
i=1

pi(t)x(σi(t)) = 0, t ∈ T. Other motivation stems

from the paper by Kaufmann [7], in which the author considered derivatives of Cauchy
functions for quasi-differential and quasi-difference equations. Still other motivation
comes from the papers by Bohner and Eloe [2], Eloe [5], Erbe, Mathsen, and Peterson
[6], and Peterson and Schneider [9]. For more information on Cauchy functions, see
[3, 4, 8]. In order for this paper to be self-contained, we present below some results
about time scales, most of which can be found in [3].
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Let T be a nonempty closed subset of R, and let T have the subspace topology
inherited from the Euclidean topology on R. Then T is called a time scale. For t <
supT and r > inf T, we define the forward jump operator, σ, and the backward jump
operator ρ, respectively, by

σ(t) := inf{τ ∈ T | τ > t},

ρ(r) := sup{τ ∈ T | τ < r},

for all t, r ∈ T. If σ(t) > t, then t is said to be right scattered, and if σ(t) = t, then t
is said to be right dense. If ρ(r) < r, then r is said to be left scattered, and if ρ(r) = r,
then r is said to be left dense. The graininess function, µ : T → ∞, is defined as
µ(t) := σ(t)− t. If T has a left-scattered maximum, then we define Tκ to be T− {m}.
Otherwise Tκ = T.

Let f : T → R and t ∈ T. We define the delta derivative of f(t), f∆(t), to
be the number (provided it exists), with the property that, for each ε > 0, there is a
neighborhood, U , of t such that∣∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣∣ ≤ ε
∣∣∣σ(t)− s

∣∣∣,
for all s ∈ U . Higher order delta derivatives are through the recursive formula, f∆n

(t) =(
f∆n−1)∆

(t).
If f : T→ R is continuous at t ∈ T, t < supT, and t is right scattered, then

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
.

In particular, if T = Z, then f∆(t) = ∆f(t) = f(t + 1) − f(t), whereas, if t is right
dense, then f∆(t) = f ′(t). If f is differentiable at t ∈ T, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Also, if f and g are differentiable functions, then

(fg)∆ = f∆(t)g(t) + f(σ(t))g∆(t).

We say that f : T → R is right-dense continuous (rd-continuous) provided f is
continuous at each right-dense point t ∈ T, and whenever t ∈ T is left-dense, lim

s→t−
f(s)

exists as a finite number. A function F : Tκ → R is called a delta-antiderivative of
f : T→ R provided F∆(t) = f(t) holds for all t ∈ Tκ. The integral of f is defined by∫ t

a

f(s) ∆s = F (t)− F (a)
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for t ∈ T. We will need the Leibniz rule for integration [3, Theorem 1.117, pg 46].
That is, if f : T × Tκ → R is continuous at (t, t), f∆(t, ·) is rd-continuous, and if

g(t) =

∫ t

t0

f(t, τ) ∆τ , then

g∆(t) =

∫ t

t0

f∆(t, τ) ∆τ + f
(
σ(t), t

)
.

The polynomial functions on a time scale T are defined recursively. Let h1(t, s) =
t− s and define hk(t, s), k ≥ 2, by

hk(t, s) =

∫ t

s

hk−1(τ, s) ∆τ.

Note that h∆
k (t, ·) = hk(t, ·) for all t ∈ Tκ, k ∈ N.

The remainder of this paper is organized as follows. We define the Cauchy func-
tion for the equation Lny = 0 in Section 2, as well as show how it can be calcu-
lated given a fundamental set of solutions for the quasi-delta derivative equation. In
Section 3, we prove that if C(t, s) is the Cauchy function for Ln, then K(t, s) =(
1/ϕj+1(t)

)
LjC(t, s) is the Cauchy function for Dn−j , where D0y(t) =

(
ϕj+1y

)
(t),

and Dky(t) = ϕk+j+1(t)
(
Dk−1y

)∆
(t), 1 ≤ k ≤ n− j.

2 The Cauchy Function

Let ϕk ∈ Cn+1−k(T,R), 1 ≤ k ≤ n + 1, be such that ϕk does not vanish on Tκk−1

.
Define the quasi-delta differential operators, Lk, by

L0y(t) = ϕ1(t)y(t),

Lky(t) = ϕk+1(t)
(
Lk−1y

)∆
(t), 1 ≤ k ≤ n.

The Cauchy function for the equation

Lny(t) = 0 (2.1)

is the unique function C(t, s) defined on T× Tκn that satisfies, for each s ∈ Tκn ,

LnC(t, s) = 0, (2.2)
LkC(σ(s), s) = 0, 0 ≤ k ≤ n− 2, (2.3)

Ln−1C(σ(s), s) =
1

ϕn+1(s)
. (2.4)

Our first theorem shows how to use Wronskians to construct C(t, s), given a funda-
mental set of solutions of (2.1).
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Theorem 2.1. Let y1, y2, . . . , yn, be n linearly independent solutions of equation (2.1).
Then the Cauchy function for (2.1) is given by

C(t, s) =
W
(
σ(s), t

)
ϕn+1(s)W

(
σ(s)

) ,
where

W (s, t) =

∣∣∣∣∣∣∣∣∣∣∣

L0y1(s) L0y2(s) · · · L0yn(s)
L1y1(s) L1y2(s) · · · L1yn(s)

...
...

...
Ln−2y1(s) Ln−2y2(s) · · · Ln−2yn(s)
y1(t) y2(t) · · · yn(t)

∣∣∣∣∣∣∣∣∣∣∣
and

W
(
σ(s)

)
=

∣∣∣∣∣∣∣∣∣
L0y1(σ(s)

)
L0y2(σ(s)

)
· · · L0yn(σ(s)

)
L1y1(σ(s)

)
L1y2(σ(s)

)
· · · L1yn(σ(s)

)
...

...
...

Ln−1y1(σ(s)
)

Ln−1y2(σ(s)
)
· · · Ln−1yn(σ(s)

)
∣∣∣∣∣∣∣∣∣ .

Proof. By expanding the determinant along the last row, we see that W (s, t) is a linear
combination of y1, y2, . . . , yn, and hence satisfies (2.1). Furthermore, since

LkW
(
σ(s), t

)
=

∣∣∣∣∣∣∣∣∣∣∣

L0y1

(
σ(s)

)
L0y2

(
σ(s)

)
· · · L0yn

(
σ(s)

)
L1y1

(
σ(s)

)
L1y2

(
σ(s)

)
· · · L1yn

(
σ(s)

)
...

...
...

Ln−2y1

(
σ(s)

)
Ln−2y2

(
σ(s)

)
· · · Ln−2yn

(
σ(s)

)
Lky1(t) Lky2(t) · · · Lkyn(t)

∣∣∣∣∣∣∣∣∣∣∣
,

for 0 ≤ k ≤ n− 1, then LkW
(
σ(s), σ(s)

)
= 0, 0 ≤ k ≤ n− 2. Furthermore, we have

Ln−1W
(
σ(s), σ(s)

)
= W

(
σ(s)

)
. Hence Ln−1C

(
σ(s), s

)
= 1/ϕn+1(s), and so C(t, s)

satisfies (2.2)–(2.4).

The Cauchy function is fundamental to the variation of constants formula for solu-
tions of initial value problems.

Theorem 2.2 (Variation of Constants). Suppose that f is a rd-continuous function and
t0 ∈ T. Then, the solution of the initial value problem

Lny(t) = f(t), t ∈ T,
Lky(t0) = 0, 0 ≤ k ≤ n− 1,

is

y(t) =

∫ t

t0

C(t, s)f(s) ∆s,

where C(t, s) is the Cauchy function for (2.1).
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Proof. Let y(t) =

∫ t

t0

C(t, s)f(s) ∆s. Then,

L0y(t0) = ϕ1(t0)

∫ t0

t0

C
(
t0, s

)
f(s) ∆s = 0.

For 1 ≤ k ≤ n− 1,

Lky(t) =

∫ t

t0

ϕk+1(t)LkC(t, s)f(s) ∆s+ ϕk+1(t)Lk−1C
(
σ(t), t

)
f(t)

=

∫ t

t0

ϕk+1(t)LkC(t, s)f(s) ∆s.

Hence, Lky(t0) = 0, 0 ≤ k ≤ n− 1.

Since Ln−1C(t, s) =
1

ϕn+1(s)
, we have

Lny(t) =

∫ t

t0

LnC(t, s)f(s) ∆s+ ϕn+1(t)Ln−1C
(
σ(t), t

)
f(t)

= 0 + f(t) = f(t),

and the proof is complete.

3 Derivatives and Integrals of Cauchy Functions
It is well-known that the Cauchy function for y∆n

(t) = 0 is hn−1(t, s), and the Cauchy
function for y∆n−1

(t) = 0 is hn−2(t, s). We know that hn−2(t, ·) =
(
hn−1(t, ·)

)∆. In
this section we show that quasi-delta derivatives of the Cauchy function for Lny = 0 are
Cauchy functions for related quasi-linear dynamic equations. In particular, we define
D0y(t) = (ϕ2y)(t) and, for 1 ≤ k ≤ n − 1, let Dky(t) = ϕk+2(t)

(
Dk−1y

)∆
(t).

Our next theorem states the relation between the Cauchy functions for Lny = 0 and
Dn−1y(t) = 0.

Theorem 3.1. Let C(t, s) be the Cauchy function for Lny(t) = 0. Then, K(t, s) =(
1/ϕ2(t)

)
L1C(t, s) is the Cauchy function for Dn−1y(t) = 0.

Proof. For 2 ≤ k ≤ n, the quasi-delta differential operator Lky(t) = ϕk+1

(
Lk−1y

)∆
(t)

can be written as

Lky(t) = ϕk+1(t)

(
ϕk(t)

(
· · ·
(
ϕ3(t)

(
ϕ2(t)(ϕ1(t)y(t))∆

)∆
)∆

· · ·
)∆
)∆

.
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Since ϕ3(t)
(
ϕ2(t)(ϕ1(t)y)∆

)∆
= ϕ3(t)

(
ϕ2(t)

( 1

ϕ2(t)
(L1y)(t)

))∆

, then we see that

Lky(t) = Dk−1

(
1/ϕ2(t)(L1y)(t)

)
. Hence, if K(t, s) =

(
1/ϕ2(t)

)
L1C(t, s), then

Dn−1K(t, s) = LnC(t, s) = 0,

Dk−1K(σ(s), s) = LkC(σ(s), s) = 0, 1 ≤ k ≤ n− 3, and

Dn−2K(σ(s), s) = Ln−1C(σ(s), s) =
1

ϕ(s)
.

That is, K(t, s) is the Cauchy function for Dn−1y = 0 and the proof is complete.

We can generalize Theorem 3.1. Let j ∈ {1, 2, . . . , n} be given. Define D0y(t) =

(ϕj+1y)(t), and let Dky(t) = ϕk+j+1(t)
(
Dk−1y

)∆
(t) for 1 ≤ k ≤ n − j. The proof

of the following corollary is essentially the same as in Theorem 3.1, with the notable
exception that Lny(t) = Dn−j

(
1/ϕj+1(t)

)
Ljy(t).

Corollary 3.2. Let C(t, s) be the Cauchy function for Lny = 0. Then, K(t, s) =(
1/ϕj+1(t))LjC(t, s) is the Cauchy function for Dn−jy(t) = 0.

Again, let j ∈ {1, 2, . . . , n} be given. We can write Lny(t) as

Lny(t) = Dn−j
(
1/ϕj+1(t)

)
Ljy(t).

We denote Cj(t, s) to be the Cauchy function associated with Lj , Kn−j(t, s) to be the
Cauchy function associated with Dn−j , and Cn(t, s) to be the Cauchy function associ-
ated with Ln.

Suppose f is rd-continuous, and consider the initial value problem

Lny(t) = Dn−j
(
1/ϕj+1(t)

)
Ljy(t) = f(t) (3.1)

Lky(t0) = 0, 0 ≤ k ≤ n− 1. (3.2)

Let y be the solution of (3.1), (3.2), and let u(t) =
(
1/ϕj+1(t)

)
Ljy(t). Then, u(t) is the

solution of the initial value problem

Dn−ju(t) = 0,

Lku(t0) = 0, j ≤ k ≤ n− 1.

By Theorem 2.2,

u(t) =

∫ t

t0

Kn−j(t, s)f(s) ∆s.

Since Ljy(t) = ϕj+1(t)u(t), then y is the solution of

Ljy(t) = ϕj+1(t)u(t),

Lky(t0) = 0, 0 ≤ k ≤ j − 1.



Cauchy Functions 459

Thus,

y(t) =

∫ t

t0

Cj(t, τ)ϕj+1(τ)u(τ) ∆τ.

We see that

y(t) =

∫ t

t0

Cj(t, τ)ϕj+1(τ)

∫ τ

t0

Kn−j(τ, s)f(s) ∆s∆τ

=

∫ t

t0

∫ τ

t0

ϕj+1(τ)Cj(t, τ)Kn−j(τ, s)f(s) ∆s∆τ.

Using [1, Theorem 10],∫ b

a

∫ τ

a

F (τ, s) ∆s∆τ =

∫ b

a

∫ b

σ(s)

F (τ, s) ∆τ∆s,

we have

y(t) =

∫ t

t0

∫ t

σ(s)

ϕj+1(τ)Cj(t, τ)Kn−j(τ, s) ∆τ f(s) ∆s.

Appealing to Theorem 2.2, again we have

y(t) =

∫ t

t0

Cn(t, s)f(s) ∆s.

Thus,

Cn(t, s) =

∫ t

σ(s)

ϕj+1(τ)Cj(t, τ)Kn−j(τ, s) ∆τ.

We have the following theorem.

Theorem 3.3. Fix j ∈ {1, 2, . . . , n}, and suppose that Lny(t) can be factored as

Lny(t) = Dn−j
(
1/ϕj+1(t)

)
Ljy(t).

Suppose that Cj(t, s) is the Cauchy function associated with Lj , that Kn−j(t, s) is the
Cauchy function associated with Dn−j , and that Cn(t, s) is the Cauchy function associ-
ated with Ln. Then,

Cn(t, s) =

∫ t

σ(s)

ϕj+1(τ)Cj(t, τ)Kn−j(τ, s) ∆τ.
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