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Abstract

In this paper, we define the Cauchy function, C'(¢, s), for an nth-order quasi-
linear dynamic equation, and show how it can be calculated given a fundamental
set of solutions of the quasi-linear dynamic equation. We also show that the quasi-
delta derivatives of C(t,s) are Cauchy functions for related lower order quasi-
linear dynamic equations.
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1 Introduction

We define the Cauchy function for a quasi-delta differential equation on a time scale as
well as study some of its properties. Partial motivation for this manuscript comes from
the work by Akin [1], in which the author studied Cauchy functions for the dynamic

equation on a time scale Pz(t) = Z pi(t)x(a'(t)) = 0, t € T. Other motivation stems

from the paper by Kaufmann [7], in 1which the author considered derivatives of Cauchy
functions for quasi-differential and quasi-difference equations. Still other motivation
comes from the papers by Bohner and Eloe [2], Eloe [5], Erbe, Mathsen, and Peterson
[6], and Peterson and Schneider [9]. For more information on Cauchy functions, see
[3,4,8]. In order for this paper to be self-contained, we present below some results
about time scales, most of which can be found in [3].

Received September 28, 2020; Accepted October 24, 2020
Communicated by Douglas R. Anderson



454 Eric R. Kaufmann

Let T be a nonempty closed subset of R, and let T have the subspace topology
inherited from the Euclidean topology on R. Then T is called a time scale. For t <
sup T and r > inf T, we define the forward jump operator, o, and the backward jump
operator p, respectively, by

o(t):=inf{r € T |7 > t},

p(r):=sup{r €T |7 <r},

forall t,r € T. If o(t) > t, then ¢t is said to be right scattered, and if o(t) = t, then ¢
is said to be right dense. If p(r) < r, then r is said to be left scattered, and if p(r) = r,
then r is said to be left dense. The graininess function, 4 : T — o0, is defined as
w(t) := o(t) — t. If T has a left-scattered maximum, then we define T" to be T — {m}.
Otherwise T" = T.

Let f : T — Randt € T. We define the delta derivative of f(t), f2(t), to
be the number (provided it exists), with the property that, for each ¢ > 0, there is a
neighborhood, U, of ¢ such that

flo®) = £(s)] = F2Blo(t) = s]| < efot) = s

Y

forall s € U. Higher order delta derivatives are through the recursive formula, 2" (t) =

(22 @).

If f: T— Riscontinuous att € T, ¢ < sup T, and ¢ is right scattered, then

_ Jlelt) - )
ot)—t

In particular, if T = Z, then f2(t) = Af(t) = f(t + 1) — f(t), whereas, if ¢ is right
dense, then f2(t) = f(t). If f is differentiable at ¢ € T, then

fla(t)) = f(t) + n(t) f2(1).
Also, if f and g are differentiable functions, then
(fg)® = f2()g(t) + f(o(t)g™(t).

We say that f : T — R is right-dense continuous (rd-continuous) provided f is
continuous at each right-dense point ¢ € T, and whenever ¢ € T is left-dense, lim f(s)
s—t—

()

exists as a finite number. A function F' : T® — R is called a delta-antiderivative of
f: T — R provided F2(t) = f(t) holds for all t € T*. The integral of f is defined by

[ 185 =F0) - Fa
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for ¢ € T. We will need the Leibniz rule for integration [3, Theorem 1.117, pg 46].
That is, if f : T x T® — R is continuous at (¢,t), f*(t,-) is rd-continuous, and if

o(t) = /t (1. 7) Ar. then

g () = /tth(t,T) A7+ f(olt). 1)

The polynomial functions on a time scale T are defined recursively. Let hy(t, s) =
t — s and define hy(t, s), k > 2, by

¢
hk(t,s):/hk_l(T, s) AT.

Note that % (t,-) = hi(t,-) forall t € T* k € N.

The remainder of this paper is organized as follows. We define the Cauchy func-
tion for the equation L,y = 0 in Section 2, as well as show how it can be calcu-
lated given a fundamental set of solutions for the quasi-delta derivative equation. In
Section 3, we prove that if C(t,s) is the Cauchy function for L,, then K(t,s) =
(1/9j+1(t)) L;C(t, s) is the Cauchy function for D,,_;, where Doy(t) = (p;411)(t),

A .
and Dyy(t) = @rjir () (Drry) (1), 1 <k <n—j.

2 The Cauchy Function

Let ¢, € C"%(T,R),1 < k < n + 1, be such that ¢, does not vanish on =",
Define the quasi-delta differential operators, Ly, by

Loy(t) = ¢i(t)y(t),
Liy(t) = een®)(Liay) (1), 1<k<n

The Cauchy function for the equation
Lay(t) =0 2.1)

is the unique function C(¢, s) defined on T x T*" that satisfies, for each s € T"",

L.C(t,s) =0, 2.2)

LiC(o(s),s) =0, 0<k<n-—2 (2.3)
1

Ln710<0(8)7 8) = Spn—l-l(s). (24)

Our first theorem shows how to use Wronskians to construct C'(¢, s), given a funda-
mental set of solutions of (2.1).
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Theorem 2.1. Let y1,1s, . .., yn, be n linearly independent solutions of equation (2.1).
Then the Cauchy function for (2.1) is given by

) — W(a(s),t)
) = W)
where
Loyi(s)  Loya(s) Loyn(s)
Lyyi(s) Liys(s) L1yn(s)
W(s,t) = : : :
Ln2y1(s)  Ln—2ya(s) Ly—oyn(s)
yl(t) y2(t) yn(t)
and
éo?ﬂ(g(s)) 5092(0(5)) éoyn(g(s))
W(a(s)) _ 1y1(.<7(5)) 1?J2(.<7(5)) 1yn(.0(5))

Looas(0(5) Lorys(o(s)

Ln_ly%(a(s))

Proof. By expanding the determinant along the last row, we see that W (s, t) is a linear

combination of y1, yo, . . .

LkW (O’(S), t) =

for0 <k <n—1,then L,W (o(s),0(s)) =0,0 <

Ln_1W(J(S), a(s)) =
satisfies (2.2)—(2.4).

, Un, and hence satisfies (2.1). Furthermore, since

Loy (0(5))
Ly (U(S))

Loyz (0(3))
Lyys (0(5))

Luotn(0(5)) Loosys(0(s))

Ly (1)

Ly (1)

<

LOyn (U(S))
Llyn (U(S))
Lu-syn(o(5))

k < n — 2. Furthermore, we have
W (o(s)). Hence L,_1C(0(s),s) = 1/pns1(s), and so C(t, s)

]

The Cauchy function is fundamental to the variation of constants formula for solu-

tions of initial value problems.

Theorem 2.2 (Variation of Constants). Suppose that f is a rd-continuous function and
to € T. Then, the solution of the initial value problem

Loy(t) = f(t), teT,

Is

y(t) = / O(t, 5)f(s) As,

to

where C(t, s) is the Cauchy function for (2.1).
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Proof. Lety(t) = /tC’(t, s)f(s) As. Then,

to

Loy(to) = (,01(750) / OC(to, S)f(S) As = 0.

to

Forl1<k<n-1,

Lyy(t) = /tt80k+1(t)Lk:C(ta $)f(8) As + ory1(t) L1 C(o(t), 1) f(1)

_ / o (D IC(t, 5) f(5) As.

to

Hence, Lyy(ty) =0,0 < k <n— 1.

1
Since L,,_1C(t,s) =
' ( ) 50n+1(5)

, we have

Lny(t) - /thC(t’ S)f(S) As + P+l (t)Lnflc(J(t% t)f(t)

to

= 0+ f(t) = (1),

and the proof is complete. ]

3 Derivatives and Integrals of Cauchy Functions

It is well-known that the Cauchy function for " (t) = 0 is h,_1(t, s), and the Cauchy
A

function for y" (¢) = 0 is hp_s(t, s). We know that h,_(t,-) = (hn-1(t,))". In
this section we show that quasi-delta derivatives of the Cauchy function for L,y = 0 are
Cauchy functions for related quasi-linear dynamic equations. In particular, we define

A
Doy(t) = (p2y)(t) and, for 1 < k < n — 1, let Dyy(t) = @pr2(t)(Di1y)” (t).
Our next theorem states the relation between the Cauchy functions for L,y = 0 and
anly(t) = 0.

Theorem 3.1. Let C(t,s) be the Cauchy function for L,y(t) = 0. Then, K(t,s) =
(1/2(t)) L1C(t, s) is the Cauchy function for D,,_1y(t) = 0.

Proof. For 2 < k < n, the quasi-delta differential operator Ly (t) = ¢x11 (Lk_ly)A(t)
can be written as

Ly(t) = pun ) (mw (- (P etorme)?)” )A> -
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A

&mwwmwmmwﬂww(mmjﬁmww,mmem

Liy(t) = Di—1(1/2(t)(L1y)(t)). Hence, if K (t,s) = (1/¢2(t)) L1C(t, s), then
D, 1K(t,s) = L,C(t,s) =0,
Dy_1K(o(s),s) = LyC(o(s),s) =0, 1 <k<n-—3, and

Dy 2K (0(5),8) = L 1C(o(s), ) = ﬁ.

That is, K (t, s) is the Cauchy function for D,, 1y = 0 and the proof is complete. U

We can generalize Theorem 3.1. Let j € {1,2,...,n} be given. Define Dyy(t) =
A .
(¢j41¥)(t), and let Dyy(t) = @rije1(t) (Dr_1y) ™ () for 1 < k < n — j. The proof
of the following corollary is essentially the same as in Theorem 3.1, with the notable
exception that L,y(t) = Dy (1/¢;41(t)) Liy(2).

Corollary 3.2. Let C(t,s) be the Cauchy function for L,y = 0. Then, K(t,s) =
(1/9j+1(t))L;C(t, s) is the Cauchy function for Dy_jy(t) = 0.

Again, let j € {1,2,...,n} be given. We can write L,y(t) as

Lny(t) = Duj(1/ 0541 (8)) Liy(t).

We denote C(t, s) to be the Cauchy function associated with L;, IC,,_;(¢, s) to be the
Cauchy function associated with D,,_;, and C,,(¢, s) to be the Cauchy function associ-
ated with L,,.

Suppose f is rd-continuous, and consider the initial value problem

Lay(t) = Doy (1/0541(t)) Liy(t) = f(2) (3.1)
Liy(te) =0, 0< k <n—1. (3.2)

Let y be the solution of (3.1), (3.2), and let u(t) = (1/¢;11(t)) L;y(t). Then, u(t) is the
solution of the initial value problem

Dn_ju(t) = 0,

Liu(ty) =0, <k<n-—1.

By Theorem 2.2,
t
ult) = [ Kos(t.5)5(5) s

to

Since L;y(t) = @;+1(t)u(t), then y is the solution of

Liy(t) = @i (t)u(t),
ka(tg):(), 0<k<j)—1.
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Thus, .
y(t) = / Oy(t, 7) 9o (r) ulr) At

to

We see that
yt) = /t Ci(t, 7) @jpa(T) /t Koj(7,5)f(s) As At
— /t/T(pj-f'l(T) Ci(t, )ICp—;(1,5) f(s) As AT.

Using [1, Theorem 10],
b pr b b
//F(T,S)ASAT:// F(r,s) ATAs,
a Ja a U(S)

= [ L £rmi() G, A7 1(5)

Appealing to Theorem 2.2, again we have

we have

t
) = [ Cult.s)7() s
to
Thus, .
Chu(t,s) = / 0ir1(7) C(t, T)ICp—j (1, 5) AT.
o(s)
We have the following theorem.

Theorem 3.3. Fix j € {1,2,...,n}, and suppose that L,y(t) can be factored as

Loy(t) = Du—j(1/041(t) Ly (t)-
Suppose that C;(t, s) is the Cauchy function associated with L;, that IC,,_;(t, s) is the

Cauchy function associated with D,,_;, and that C,,(t, s) is the Cauchy function associ-
ated with L,,. Then,

t
Colt, ) = / 111(7) Oy (1, 7)o (1, 5) AT,
o(s)
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