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Abstract

We consider a family of two-point n − 1, 1 conjugate boundary value prob-
lems for nth order nonlinear finite forward difference equations. We first obtain
conditions in terms of uniqueness of solutions implies existence of solutions, em-
ploying shooting methods. Then we assume appropriate monotonicity properties
on the nonlinear terms in the finite difference equation that imply the uniqueness
of solutions.
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1 Introduction
In a seminal paper, [28], Lasota and Opial proved that for second order ordinary differ-
ential equations, global existence and uniqueness of solutions of initial value problems
and uniqueness of solutions of two-point conjugate (Dirichlet) boundary value problems
imply the existence of solutions of two-point conjugate boundary value problems. La-
sota and Opial [28] initiated a vast study of problems referred to as uniqueness implies
existence for nonlinear problems. In the case of boundary value problems for ordinary
differential equations, we refer the reader to [3, 4, 8, 10, 16, 18, 24, 26, 27, 29].

Henderson [12] initiated the study of related results for finite difference equations
and again, a significant literature, led by Henderson (see, [13–15, 17] for example), has
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developed. Chyan, Henderson and Yin, and others also initiated analogous studies on
time scales; we refer the reader to [1, 2, 19–23], for example.

Recently, these types of results were gathered in the monograph [5].
Lasota and Opial [28] consider a low order equation with two Dirichlet or conjugate

type boundary conditions. Due to the low order and to the nature of the boundary con-
ditions, they can assume unique solvability and continuous dependence on parameters
of initial value problems, unique solvability of the two-point boundary value problems
and then employ a shooting method to solve the two-point boundary value problem. In
the literature cited above, the order of the equation is typically high and the boundary
conditions are complicated. It is standard in these types of results to assume a universal
nonlinear disconjugacy condition that n-point conjugate boundary value problems are
uniquely solvable. For authoritative accounts related to the unique solvability of n-point
conjugate boundary value problems, we refer the reader to [8, 27]. Recently, Eloe and
Henderson [6] returned to the original arguments produced by Lasota and Opial [28]
and obtained uniqueness implies existence results for two-point problems in which they
assumed the unique solvability of only the initial value problem and the two-point prob-
lems.

In this paper, we shall carry the recent work of [6] over to finite difference equations.
There are two primary objectives in this paper. First, in contrast to the foundational work
in [12–14] where it is assumed that the large family of n-point conjugate boundary value
problems are uniquely solvable, we shall assume the initial value problems and the class
of two-point problems are uniquely solvable. Second, a monotonicity assumption will
be imposed on the nonlinear term which implies the unique solvability of the family of
two-point boundary value problems.

In what follows, we shall state the specific nth order two-point problem we consider
and introduce the notation and preliminary results related to finite difference equations
in Section 2. In Section 3, we extend the original Lasota and Opial [28] argument to
apply to the nth order two point problem and employ a shooting method to obtain an ab-
stract uniqueness implies existence result. Then in Section 4, we assume an appropriate
monotonicity property on the nonlinear term and prove the uniqueness of solutions.

We point out that assuming the unique solvability of a family of boundary value
problems realistically implies a local type uniqueness implies existence result. The
introduction of the monotonicity property implies that the main result given in Section
4, Corollary 4.2, is a global uniqueness implies existence result.

2 Preliminaries
Let n ≥ 2 denote an integer, let a ∈ R and let Na := {a, a+ 1, . . . }. Let M1,M2 ∈ Na

such that a ≤ M1 < M2. We shall employ an interval notation, [M1,M2]a to denote
[M1,M2] ∩ Na. For y : Na → R define the usual forward finite differences by

∆0y(m) = y(m), ∆1y(m) = ∆y(m) = y(m+ 1)− y(m),
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∆iy(m) = ∆(∆i−1y)(m), i = 2, 3, ....

We shall study the family of two-point n− 1, 1 conjugate boundary value problems
of the type

∆ny(m) = f(t, y(m), y(m+ 1), . . . , y(m+ n− 1)), m ∈ Na, (2.1)

with the boundary conditions

∆i−1y(M1) = ai, i = 1, . . . , n− 1, y(M2 + n) = an, (2.2)

for any M1 < M2 ∈ Na, ai ∈ R, i = 1, . . . , n, where f : Na × Rn → R. In particular,
we shall show that under suitable conditions on f , and for any M1 < M2 ∈ Na, ai ∈ R,
i = 1, . . . , n, the uniqueness of solutions of (2.1), (2.2) implies the existence of solutions
of (2.1), (2.2).

Remark 2.1. Since ∆ly(m) =
l∑

j=0

(−1)l−j

(
l

j

)
y(m + j), initial value problems are

commonly expressed in the form

y(m+ n) = g(m, y(m), . . . , y(m+ n− 1)), y(m0 + j) = bj, j = 0, . . . , n− 1.

We work with the delta difference notation because algebraically this will better serve
our purposes in Section 4.

For arguments related to uniqueness implies existence results, it is common to as-
sume that solutions of initial value problems exist, are continuous with respect to initial
conditions, and extend to all of Na. The following assumption, assumed throughout,
provides the existence and continuity we shall require from initial value problems.

(A) f(m, y1, . . . , yn) : Na × Rn → R is continuous, and the equation

rn = f(m, r0, . . . , rn−1)−
n−1∑
j=0

(−1)n−j

(
n

j

)
rj

can be solved for explicitly r0 as a continuous function of r1, . . . , rn for each
m ∈ Na.

Given m0 ∈ Na, a1, . . . , an ∈ R, an initial value problem for (2.1) consists of the
equation (2.1) on Na along with the initial conditions

∆i−1y(m0) = ai, i = 1, . . . , n. (2.3)

Since one can solve (2.1) explicitly for y(m+n), then one can calculate y(m0 +n) and
proceed inductively to the right; with the assumption that one can solve (2.1) explicitly
for y(m), one can solve (2.1) explicitly for y(m0), and then proceed inductively to the
left. We shall state the following immediate consequence of Condition (A) as a lemma.
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Lemma 2.2. Assume that with respect to (2.1), Condition (A) is satisfied. Then solutions
of initial value problems for (2.1) exist and are unique on Na, and solutions of initial
value problems depend continuously on the initial conditions.

We introduce the concept of generalized zero of a map y : Na → R as defined by
Hartman [9]. The point m0 = a is a generalized zero of y if y(a) = 0, and m0 > a is a
generalized zero of y if y(m0) = 0 or there is an integer j ≥ 1 such that (−1)jy(m0 −
j)y(m0) > 0 and if j > 1, y(m0 − j + 1) = · · · = y(m0 − 1) = 0. Hartman [9] also
proved the following discrete version of Rolle’s theorem.

Lemma 2.3. Assume y : Na → R and assume y has generalized zeros at m1 < m2,
m1,m2 ∈ Na. Then ∆y : Na → R has a generalized zero in [m1,m2 − 1]a.

The uniqueness assumption that is assumed through Section 3 takes the following
form.

(B) Solutions of the two-point boundary value problems (2.1), (2.2) are unique if they
exist.

This uniqueness assumption is in contrast to the uniqueness assumption employed by
Henderson [12], for example. There it is assumed that solutions of n-point conjugate
problems are uniquely solvable if they exist and takes the following form.

(B̄) Given
m1 < m2 < · · · < mn, m1,m2, . . . ,mn ∈ Na,

if y and z are solutions of (2.1) such that y(m1) = z(m1), and y − z has a
generalized zero at mi, i = 2, . . . , n, then y(m) = z(m) on [m1,mn]a.

Note that if one assumes Condition (A) and Condition (B̄) then the conclusion of (B̄) is
that y(m) = z(m) on Na.

3 Uniqueness of Solutions implies Existence of Solutions
Recently, Eloe and Henderson [6] extended the original arguments due to Lasota and
Opial [28] to apply to two-point boundary value problems for higher order ordinary
differential equations. In this section, we develop a discrete analogue of that method
produced in [6]. The compactness arguments for boundary value problems for finite
difference equation are far more simple than the corresponding arguments for boundary
value problems for ordinary differential equations due to the finiteness of the domain of
the independent variable.

We state the first lemma without proof. It follows immediately from Condition (A)
and finite induction. See [12].
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Lemma 3.1. Assume that with respect to (2.1), Condition (A) is satisfied. If there exists
m0 ∈ Na, a sequence of solutions {yk(m)} of (2.1), andM > 0 such that |yk(m)| ≤M
for all m ∈ [m0,m0 + n− 1]a for all k, then there exists a subsequence {ykj(m)} that
converges pointwise to a solution of (2.1) on Na.

For the sake of self-containment, we shall also state the Brouwer invariance of do-
main theorem.

Theorem 3.2. If U ⊂ Rk is open, φ : U → Rk is one-to-one and continuous on U , then
φ is a homeomorphism and φ(U) is open in Rk.

We now provide sufficient conditions such that solutions of (2.1), (2.2) depend con-
tinuously on boundary points and boundary conditions. The application of the Brouwer
invariance of domain theorem is standard and for applications to discrete problems we
refer the reader to [7].

Theorem 3.3. Assume that with respect to (2.1), Conditions (A) and (B) are satisfied.

(i) Given any a ≤ M1 < M2, M1,M2 ∈ Na and any solution y of (2.1), there exists
ε > 0 such that if

|∆i−1y(M1)− yi1| < ε, i = 1, . . . , n− 1, and |y(M2 + n)− yn1| < ε,

then there exists a solution z of (2.1) such that

∆i−1z(M1) = yl1, i = 1, . . . , n− 1, z(M2 + n) = yn1.

(ii) If yik → yi, i = 1, . . . , n and zk is a sequence of solutions of (2.1) satisfying
∆i−1zk(M1) = yik, i = 1, . . . , n − 1, ∆z(M2 + n) = ynk, then zk converges
pointwise to y on Na.

Proof. Define U ⊂ Rn to be the open set

U = {(c1, . . . , cn) : ci ∈ R, i = 1, . . . , n}.

Let m0 ∈ Na. Define φ : U → Rn by

φ(c1, . . . , cn) = (y(M1),∆y(M1), . . . ,∆
(n−2)y(M1), y(M2 + n)),

where y is the unique solution of (2.1) satisfying the initial conditions ∆(i−1)y(m0) = ci,
i = 1, . . . , n. Then by Lemma 3.1, φ is continuous on U .

To see that φ is a 1− 1 map on U let

(c1, . . . , cn), (d1, . . . , dn) ∈ U

and assume
φ(c1, . . . , cn) = φ(d1, . . . , dn).
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It follows by Condition (B) that ci = di, i = 1, . . . , n, since if y, z are solutions of (2.1)
and ∆(i−1)y(M1) = ∆(i−1)z(m1), i = 1, . . . , n−1, y(M2) = z(M2), then y ≡ z on Na;
in particular, ci = ∆(i−1)y(m0) = ∆(i−1)z(m0) = di, i = 1, . . . , n. Apply Brouwer’s
invariance of domain theorem to obtain that φ(U) is open in Rn which proves (i), and to
obtain that φ−1 is continuous on U which proves (ii).

With the continuous dependence of solutions of (2.1) on the boundary conditions
(2.2), we can state the analogue of Lemma 3.1.

Lemma 3.4. Assume that with respect to (2.1), Conditions (A) and (B) are satisfied.
If there exist m1,m2 ∈ Na, m1 < m2, a sequence of solutions {yk(m)} of (2.1), and
M > 0 such that |yk(m)| ≤M for all m ∈ [m1,m1 +n−2]a∪{m2 +n} for all k, then
there exists a subsequence {ykj(m)} that converges pointwise to a solution of (2.1) on
Na.

We only outline the proof of Lemma 3.4 since the domain [m1, . . .m2 +n]a is finite.
Obtain the convergence of a sequence on the finite set {m1, . . .m2 +n}∩Na; then there
is a solution of an initial value problem with initial value m1. Apply Condition (A) or
apply Lemma 3.1.

We are now in a position to adapt the method of Lasota and Opial [28] and show
that the uniqueness of solutions of the boundary value problem (2.1), (2.2) implies the
existence of solutions of the boundary value problem (2.1), (2.2).

Theorem 3.5. Assume that with respect to (2.1), Conditions (A) and (B) are satisfied.
Then for each M1 < M2 ∈ Na, ai ∈ R, i = 1, . . . , n, the two point boundary value
problem (2.1), (2.2) has a unique solution.

Proof. Let α ∈ R and denote by y(m;α) the solution of the initial value problem (2.1),
with initial conditions

∆i−1y(M1) = ai, i = 1, . . . , n− 1, ∆n−1y(M1) = α.

Let
Ω = {p ∈ R : there exists α ∈ R with y(M2 + n;α) = p}.

The theorem is proved by showing Ω = R. By Lemma 2.2, Ω 6= ∅, so the theorem is
proved by showing Ω is opened and closed. Theorem 3.3 implies that Ω is open.

To show Ω is closed, let p0 denote a limit point of Ω and let pk denote a sequence of
reals in Ω converging to p0. Assume y(M2 + n;αk) = pk for each k ∈ N1. Set

M = max

{
|a1|, max

1=1,...n−2
(|ai+1|+

i−1∑
l=0

(
i

l

)
|al+i|, |p0|+ 1

}
.

Then |y(m;αk)| ≤ M for all m ∈ [M1,M1 + n − 2]a ∪ {M2 + n} for all k and by
Lemma 3.4 there exists a subsequence of {y(m;αk)} converging pointwise to a solution
y of (2.1) on Na. In particular, y(M2) = p0 and p0 ∈ Ω. The theorem is proved.
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Remark 3.6. It is interesting to note, see [12] for example, that in the literature cited
above, it is standard that {pk} converges monotonically to p0 and then the sequences
y(m,αk) are monotone as well due to Condition (B) (or Condition (B̄)). Then the
proof that Ω is closed is commonly obtained by obtained contradiction. Here, as in [28]
or [6], the proof that Ω is closed is direct, and unlike [28] or [6]; however, the proof is
independent of monotonic behavior due to the finiteness of the interval.

4 Global Uniqueness of Solutions implies Existence of
Solutions

In this section we continue to assume Condition (A). We now assume f(m, y1, . . . , yn)
is monotone nondecreasing in each yj , and strictly increasing in at least one yj . We
show that this monotonicity condition implies that Condition (B) holds. In particular,
the monotonicity condition coupled with Condition (A) implies first, the uniqueness of
solutions of (2.1), (2.2), and then the existence of solutions of (2.1), (2.2).

Theorem 4.1. Assume that with respect to (2.1), Condition (A) is satisfied. Assume in
addition, that for each j ∈ {1, . . . , n},

∂f

∂yj
(m, y1, . . . , yn) = fyj(m, y1, . . . , yn)

exists and assume fyj ≥ 0 on Na × Rn. Assume that for at least one j the inequality
fyj > 0 is strict. Then solutions of the boundary value problem (2.1), (2.2) are unique
if they exist.

Proof. Assume that y and z are distinct solutions of the boundary value problem (2.1),
(2.2). We first argue that there exists M3 ∈ [M1 + n − 1, . . . ,M2 + n − 1]a such that
y− z has a generalized zero at M3. So, for the sake of contradiction, assume y− z is of
constant sign on [M1 + n− 1, . . . ,M2 + n− 1]a and without loss of generality assume
(y − z))(m) > 0 for m ∈ [M1 + n− 1,M2 + n− 1]a. Set u(m) = (y − z)(m). Then

∆nu(m) = f(m, y(m), . . . , y(m+n−1))−f(m, z(m), . . . , z(m+n−1)) > 0, (4.1)

m ∈ [M1+n−1,M2]a. This implies ∆n−1u(m) is increasing on [M1,M2+1]a.Repeated
applications of Rolle’s theorem (Lemma 2.3) implies ∆n−1u(m) has a generalized zero
in [M1,M2 + 1]a and (4.1) implies there is at most one generalized zero of ∆n−1u(m)
in [M1,M2 + 1]a. Thus, ∆n−1u(M1) ≤ 0. We assume y and z are distinct, and so it
follows that ∆n−1u(M1) < 0 since if ∆n−1u(M1) = 0, y and z would then satisfy the
same initial conditions at M1. Conclude that u satisfies

∆i−1u(M1) = 0, i = 1, 1, . . . , n− 2, un−1(M1) < 0,
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which implies u(M1 + n − 1) = ∆n−1u(M1) < 0. This contradicts that u(m) =
(y− z)(m) > 0 on [M1 + n− 1, . . . ,M2 + n− 1]a. Thus, there exists M3 ∈ [M1 + n−
1, . . . ,M2 + n− 1]a such that y − z has a generalized zero at M3.

Let

µ = inf{m ∈ [M1 + n− 1, . . . ,M2 + n− 1]a : (y − z) has a generalized zero at m}.

If µ > M1 + n− 1, apply the argument in the preceding paragraph employing repeated
applications of Rolle’s theorem and show there exists M3 ∈ [M1 + n − 1, . . . , µ − 1]a
such that y − z has a generalized zero at M3. This contradicts the definition of µ so
µ = M1 + n− 1.

Note that ∆i−1u(M1) = 0, i = 1, . . . , n − 1 and u has a generalized zero at M1 +
n− 1. This implies that u(M1 +n− 1) = 0 and now, ∆i−1u(M1) = 0, i = 1, . . . , n. So
y and z, solutions of (2.1), satisfy the same initial conditions at M1; Lemma 2.2 implies
y ≡ z on Na contradicting the original assumption that y and z are distinct solutions of
(2.1) on Na.

We close the article with two corollaries. The first corollary is the main result of the
article.

Corollary 4.2. Assume that with respect to (2.1), Condition (A) is satisfied. Assume in
addition that for each j ∈ {1, . . . , n},

∂f

∂yj
(m, y1, . . . , yn) = fyj(m, y1, . . . , yn)

exists and assume fyj ≥ 0 on Na × Rn. Assume that for at least one j the inequality
fyj > 0 is strict. Then for each M1 < M2 ∈ Na, ai ∈ R, i = 1, . . . , n, the two point
boundary value problem (2.1), (2.2) has a unique solution.

Proof. Apply Theorem 4.1 and Condition B is satisfied. Now apply Theorem 3.5.

In general, uniqueness assumptions such as Condition (B) or Condition (B̄) are
strong conditions. In the case of ordinary differential equations, the analogues of Con-
dition (B) or Condition (B̄) can be verified in the case of Lipschitz equations on small
enough intervals; hence, for ordinary differential equations, uniqueness conditions such
as Condition (B) or Condition (B̄) tend to imply local uniqueness implies existence
results [11]. In the case of finite difference equations with step size 1, the local flavor
of the analogous results would be contained in controlling the size of Lipschitz coeffi-
cients. So it is important to note the Corollary 4.2 is truly a global uniqueness implies
existence type result.

To state the second corollary, define the eigenvalue problem

∆ny(m) = λ
n−1∑
j=0

cjy(m+ j − 1), m ∈ [M1,M2]a, (4.2)
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∆i−1y(M1) = 0, i = 1, . . . , n− 1, y(M2 + n) = 0, (4.3)

where
M1 < M2 ∈ Na.

Corollary 4.3. Assume cj ≥ 0, j = 0, . . . , n − 1, and assume that for some j ∈
{0, . . . , n− 1}, cj > 0. If λ is an eigenvalue of (4.2), (4.3) then λ < 0.
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