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Abstract

This paper introduces a more general result on existence, uniqueness and bound-
edness for solutions of nonlinear Volterra integral equation on time scales. We use
Lipschitz type function, which can be an unbounded, and the Banach fixed point
theorem at appropriate functional space. Furthermore it allows to get new sufficient
conditions for boundedness of solutions.
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1 Introduction
This paper introduces a more general result: existence, uniqueness, boundedness and
certain growth rates for solutions of nonlinear Volterra integral equation on time scales.
Kulik [8] restricted his research to the case when Lipschitz type function is constant.
We generalize the results of [8, 10–12] using Lipschitz type function, which can be
an unbounded, and the Banach’s fixed point theorem at appropriate functional space.
Furthermore it allows to get new sufficient conditions for boundedness of solutions [9].
In addition, we should note articles [1, 6] that are very important in this direction.

The field of dynamic equations on time scales is an emerging area that has more
potential created by Hilger in 1990 [5]. This new and compelling area of mathematics
is more general and versatile than the traditional theories of differential and difference
equations. The field of dynamic equations on time scales contains and extends the
classical theory of differential, difference, integral and summation equations as special
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cases. To understand the notation in this article some basic definitions are needed (for
details see [2, 3]).

A time scale T is an arbitrary non empty closed subset of the real numbers R. Since
a time scale may or may not be connected, the concept of jump operator is useful for
describing the structure of the time scale under consideration and is also used in defining
the delta derivative. The forward jump operator σ : T→ T is defined by the equality

σ(t) = inf{s ∈ T | s > t}

while the backward jump operator ρ : T→ T is defined by the equality

ρ(t) = sup{s ∈ T | s < t}.

The graininess function µ : T→ [0,+∞) is defined by

µ(t) = σ(t)− t.

The jump operators allow the classification of points in a time scale T. If σ(t) > t, then
the point t ∈ T is called right scattered while if ρ(t) < t, then the point t ∈ T is called
left scattered. If σ(t) = t then t ∈ T is called right dense while if ρ(t) = t then t ∈ T is
called left dense.

Assume g : T → R is a function and fix t ∈ T. The delta derivative (also Hilger
derivative) g∆(t) exists if for every ε > 0 there exists a neighbourhood U = (t− δ, t+
δ) ∩ T for some δ > 0 such that∣∣(g(σ(t))− g(s))− g∆(t)(σ(t)− s)

∣∣ ≤ ε |σ(t)− s| , for all s ∈ U.

Take T = R and g is differentiable in the ordinary sense at t ∈ T. Then g∆(t) = g′(t)
is the derivative used in standard calculus. Take T = Z. Then g∆(t) = ∆g(t) is the
forward difference operator used in difference equation.

A function g : T→ R is called rd-continuous provided it is continuous at right dense
points in T and its left sided limits exist at left dense points in T.

If F∆(t) = g(t) then define the (Cauchy) delta integral by∫ s

r

g(t) ∆t = F (s)− F (r), for all r, s ∈ T.

If T = R, then ∫ s

r

g(t) ∆t =

∫ s

r

g(t) dt

while T = Z, then ∫ s

r

g(t) ∆t =
s−1∑
t=r

g(t), if r, s ∈ T and r < s.
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This paper considers nonlinear Volterra integral equation on time scales

x(t) = f(t) +

∫ t

a

K(t, s, x(s)) ∆s, a, t ∈ IT = [a,+∞) ∩ T, (1.1)

where x : IT → Rn is the unknown function, f : IT → Rn and K : IT × IT × Rn → Rn

are nonlinear functions. Equation (1.1) is known as a Volterra integral equation on time
scales.

If T = R then (1.1) becomes the familiar Volterra integral equation

x(t) = f(t) +

∫ t

a

K(t, s, x(s)) ds, t ∈ [a,+∞).

If T = Z then (1.1) becomes the well-known Volterra summation equation

x(t) = f(t) +
t−1∑
s=a

K(t, s, x(s)), t ∈ {a, a+ 1, · · · }.

2 Existence and Uniqueness of Solutions on Unbounded
Time Scales

Consider the integral equation (1.1). We now construct the appropriate Banach space
for our analysis. Let β : IT → R be a regressive and rd-continuous scalar function. The
Cauchy initial value problem for scalar linear equation

x∆ = β(t)x, x(a) = 1

has the unique solution eβ(·, a) : IT → R [2]. More explicitly, using the cylinder trans-
formation the exponential function eβ(·, a) is given by

eβ(t, a) = exp

(∫ t

a

ξµ(s)(β(s)) ∆s

)
,

where

ξh(z) =

{
z, h = 0
1

h
log(1 + hz), h > 0.

Karpuz [7] gave the alternative definition for the time scales exponential function.
Observe that we have important estimate [4]

1 ≤ 1 +

∫ t

a

β(s) ∆s ≤ eβ(t, a) ≤ exp

(∫ t

a

β(s) ∆s

)
(2.1)

for all t ∈ IT.
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Let | · | denote the Euclidean norm on Rn. We will consider the linear space of
continuous functions C(IT;Rn) such that

sup
t∈IT

|x(t)|
eβ(t, a)

<∞

and denote this special space by Cβ(IT;Rn). The space Cβ(IT;Rn) can be endowed
with a suitable norm, expressly

‖x‖β = sup
t∈IT

|x(t)|
eβ(t, a)

.

We generalize and at the same time simplify the results [8, 10–12] assuming L can
be an unbounded rd-continuous function.

Theorem 2.1. Consider the integral equation (1.1). Let K : IT × IT × Rn → Rn

be jointly continuous in its first and third variables and rd-continuous in its second
variable, f : IT → Rn be continuous, L : IT → R be rd-continuous, γ > 1 and β(s) =
L(s)γ. If

|K(t, s, p)−K(t, s, q)| ≤ L(s)|p− q|, p, q ∈ Rn, s < t, (2.2)

m = sup
t∈IT

1

eβ(t, a)

∣∣∣∣f(t) +

∫ t

a

K(t, s, 0) ∆s

∣∣∣∣ <∞, (2.3)

then the integral equation (1.1) has a unique solution x ∈ Cβ(IT;Rn).

Proof. Consider the following equivalent formulation of (1.1), namely

x(t) =

(
f(t) +

∫ t

a

K(t, s, 0) ∆s

)
+

∫ t

a

(K(t, s, x(s))−K(t, s, 0)) ∆s. (2.4)

We will show that (2.4) has a unique solution and thus (1.1) must also have a unique
solution.

Let L : IT → R be the function defined in (2.2) and let β(s) = L(s)γ, where γ > 1.
Consider the Banach space Cβ(IT;Rn) and let the operator F be defined by

[Fx](t) =

(
f(t) +

∫ t

a

K(t, s, 0) ∆s

)
+

∫ t

a

(K(t, s, x(s))−K(t, s, 0)) ∆s.

Fixed point of F will be solution to (2.4). Thus we want to prove that there exists
a unique x such that Fx = x. We show that F : Cβ(IT;Rn) → Cβ(IT;Rn). Let
x ∈ Cβ(IT;Rn). Taking norms in (2.4), we obtain

‖Fx‖β = sup
t∈IT

1

eβ(t, a)

∣∣∣∣f(t) +

∫ t

a

K(t, s, 0) ∆s+

∫ t

a

(K(t, s, x(s))−K(t, s, 0)) ∆s

∣∣∣∣
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≤ m+ sup
t∈IT

1

eβ(t, a)

∫ t

a

L(s)|x(s)|∆s

= m+ sup
t∈IT

1

eβ(t, a)

∫ t

a

L(s)eβ(s, a)
|x(s)|
eβ(s, a)

∆s

≤ m+ ‖x‖β sup
t∈IT

1

eβ(t, a)

∫ t

a

L(s)eβ(s, a) ∆s

= m+
‖x‖β
γ

sup
t∈IT

1

eβ(t, a)

∫ t

a

γL(s)eβ(s, a) ∆s

= m+
‖x‖β
γ

sup
t∈IT

1

eβ(t, a)

∫ t

a

e∆
β (s, a) ∆s

= m+
‖x‖β
γ

sup
t∈IT

1

eβ(t, a)
[eβ(t, a)− 1]

= m+
‖x‖β
γ

sup
t∈IT

(
1− 1

eβ(t, a)

)
= m+

‖x‖β
γ

<∞.

Hence we see that F : Cβ(IT;Rn)→ Cβ(IT;Rn). We show that F is a contraction map
with contraction constant α = 1/γ < 1 and then Banach’s fixed point theorem will
apply. For any u, v ∈ Cβ(IT;Rn)

‖Fu− Fv‖β = sup
t∈IT

|[Fu](t)− [Fv](t)|
eβ(t, a)

≤ sup
t∈IT

1

eβ(t, a)

∫ t

a

|K(t, s, u(s))−K(t, s, v(s))|∆s

≤ sup
t∈IT

1

eβ(t, a)

∫ t

a

L(s)|u(s)− v(s)|∆s

= sup
t∈IT

1

eβ(t, a)

∫ t

a

L(s)eβ(s, a)
|u(s)− v(s)|
eβ(s, a)

∆s

≤ ‖u− v‖β sup
t∈IT

1

eβ(t, a)

∫ t

a

L(s)eβ(s, a) ∆s

=
‖u− v‖β

γ
sup
t∈IT

1

eβ(t, a)

∫ t

a

γL(s)eβ(s, a) ∆s

=
‖u− v‖β

γ
sup
t∈IT

1

eβ(t, a)

∫ t

a

e∆
β (s, a) ∆s

=
‖u− v‖β

γ
sup
t∈IT

[
1− 1

eβ(t, a)

]
≤ ‖u− v‖β

γ
= α‖u− v‖β.
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As α < 1, we see that F is a contraction map and so Banach’s fixed point theorem
applies, yielding the existence of a unique fixed point x of F .

Example 2.2. Consider the scalar integral equation

x(t) = t2 +

∫ t

a

(s+ σ(s))[x(s)2 + 1]
1
2 ∆s, a, t ∈ IT = [a,+∞) ∩ T, a ≥ 0.

We claim that this integral equation has a unique solution for arbitrary T.

Proof. We will use the above Theorem 2.1 and make use of the fact that K(t, s, p) =

(s+ σ(s))(p2 + 1)
1
2 has a bounded partial derivative with respect to p everywhere con-

sider

|K(t, s, p)−K(t, s, q)| = (s+ σ(s))
∣∣∣(p2 + 1)

1
2 − (q2 + 1)

1
2

∣∣∣
≤ (s+ σ(s)) sup

r∈R

∣∣∣∣∣ r

(r2 + 1)
1
2

∣∣∣∣∣ |p− q|
≤ (s+ σ(s)) |p− q|.

Here we used the mean value theorem. So (2.2) holds with L(s) = s + σ(s). For a
choice of, say, γ = 2 we then have β(s) = 2(s+ σ(s)) and considering that∫ t

a

(s+ σ(s)) ∆s = t2 − a2

and eβ(t, a) ≥ 1 + t2− a2 it is not difficult to verify (2.3) holds. The result now follows
from the Theorem 2.1.

3 Bounded Solutions
We now present results concerning boundedness of solutions of Volterra integral equa-
tions.

Theorem 3.1. Consider the Volterra integral equation (1.1) satisfying conditions of
Theorem 2.1. If in addition

sup
t∈IT

∫ t

a

L(s) ∆s = ν <∞ (3.1)

and

m1 = sup
t∈IT

∣∣∣∣f(t) +

∫ t

a

K(t, s, 0) ∆s

∣∣∣∣ <∞, (3.2)

then the unique solution of Volterra integral equation (1.1) on time scales that are un-
bounded above is bounded

sup
t∈IT
|x(t)| < +∞.
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Proof. In our case β(s) = γL(s). Using the estimate (2.1) and condition (3.1) we get
that

1 ≤ eβ(t, a) ≤ exp

(∫ t

a

β(s) ∆s

)
≤ exp(γν).

So norm ‖x‖β and supremum norm sup
t∈IT
|x(t)| are equivalent at space Cβ(IT;Rn). This

means that Volterra integral equation solution is bounded if additional conditions (3.1)
and (3.2) fulfilled and ν > 0.

Example 3.2. Consider the scalar integral equation

x(t) = 2 +

∫ t

a

(x(s)2 + 1)
1
2

sσ(s)
∆s, a, t ∈ IT = [a,+∞) ∩ T, a > 0.

We claim that this integral equation has a bounded solution for arbitrary T.

Proof. Let us note that ∫ t

a

∆s

sσ(s)
= a−1 − t−1 < a−1.

The result now follows from the Theorem 3.1.

Let us consider Volterra integral equation (1.1) with more general Lipschitz condi-
tions. This allows us to supplemented conditions of existence of bounded solution [9].

Theorem 3.3. Consider the integral equation (1.1) satisfying conditions of Theorem 2.1
and condition (3.2). Let L1 : IT × IT → R be continuous in its first and rd-continuous
in its second variable such that

|K(t, s, p)−K(t, s, q)| ≤ L1(t, s)|p− q|, p, q ∈ Rn, s < t,

and assume that there exists t1 ∈ IT such that

m2 = sup
t∈IT

∫ t1

a

L1(t, s) ∆s <∞,

sup
t∈[t1,+∞)∩T

∫ t

t1

L1(t, s) ∆s ≤ λ < 1.

Then the integral equation (1.1) has a unique bounded solution.

Proof. According to Theorem 2.1, Volterra integral equation (1.1) has a solution on
time scales that are unbounded above. Consider the following equivalent formulation of
(1.1)

x(t) =

(
f(t) +

∫ t

a

K(t, s, 0) ∆s

)
+

∫ t

a

(K(t, s, x(s))−K(t, s, 0)) ∆s.
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Let
M = m1 +m2 sup

s∈[a,t1]∩T
|x(s)|

and suppose that

sup
t∈IT
|x(t)| ≤ M

1− λ
.

Then

|F [x(t)]| ≤ sup
t∈IT

∣∣∣∣f(t) +

∫ t

a

K(t, s, 0) ∆s

∣∣∣∣
+

∫ t1

a

|K(t, s, x(s))−K(t, s, 0)|∆s

+

∫ t

t1

|K(t, s, x(s))−K(t, s, 0)|∆s

≤ m1 +

∫ t1

a

L1(t, s)|x(s)|∆s+

∫ t

t1

L1(t, s)|x(s)|∆s

≤ M +

∫ t

t1

L1(t, s)|x(s)|∆s ≤M + λ
M

1− λ
=

M

1− λ
.

So we have that
sup
t∈IT
|F [x(t)]| ≤ M

1− λ
.

It follows that for unique fixed point of operator F

sup
t∈IT
|x(t)| ≤ M

1− λ
.

This completes the proof.
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