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Abstract

In this paper, we discuss convexity on n-dimensional discrete time scales T =
T1 × T2 × · · · × Tn where Ti ⊂ R , i = 1, 2, . . . , n are discrete time scales
where the time points are not necessarily uniformly distributed on a time line.
We introduce the discrete analogues of the fundamental concepts of real convex
optimization such as convexity of a function, subgradients, and the Karush–Kuhn–
Tucker conditions. In the application section we illustrate our result in an example.

AMS Subject Classifications: 52A41, 39A12, 39A70, 26E70.
Keywords: Convex programs, discrete version of topics in analysis, time scales calcu-
lus.

1 Introduction
Convex optimization, a branch of mathematical optimization theory, has been developed
in two directions. The real convex optimization and the discrete (or combinatorial) con-
vex optimization. Recent developments such as interior point methods, semidefinite
programming and robust optimization in convex optimization theory have stimulated
new interest by mathematicians and other scientists. It is applied in areas such as auto-
matic control systems, mathematical economics, electronic circuit design and medical
imaging etc. [3, 6, 12]. Other applications can be found in combinatorial optimization
and global optimization where it has been used to find bounds on the optimal value or
to find approximate solutions [7].

On the other hand the discrete convex optimization combines ideas from real con-
vex optimization and combinatorial optimization to provide optimization techniques for
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discrete functions with the convexity property. It was first developed for integer valued
functions defined on integer lattice points. In [8,10] the discrete convexity concepts are
introduced for real valued functions defined on Zn. Mozyrska and Torres introduced the
convexity of a function defined on a time scale (a nonempty closed subset of R) in their
paper [9]. More recently, Adıvar and Fang defined convexity on the product of time
scales [1, 2].

Motivated by these pioneers’ work, we give a different definition of discrete convex-
ity for functions on domains which are in the product form T = T1 × T2 × · · · × Tn,
where Ti ⊂ R , i = 1, 2, . . . , n are discrete time scales where the time points are not
necessarily uniformly distributed on a time line (i.e., the graininess is not necessarily
constant). This definition and the one given in [1, 2] is compared in Remark 3.5.

There are some advantages of using our definition of discrete convexity. One of
the advantage occurs when the objective function and constraint functions are discrete
convex but not real convex. In this case one cannot apply real convex optimization
methods, but can apply discrete convex optimization instead.

The structure of the paper is as follows: In Section 2, we state the convex optimiza-
tion problem on various domains and define the Lagrangian function. Next, we state
the definition of real convex functions using subgradients. We then give the definitions
of partial nabla and partial delta derivatives in n-dimensional time scales. In Section 3,
we define discrete convex functions. In Section 4, we modify the Karush–Kuhn–Tucker
conditions for the discrete setting and we prove that a saddle point of the Lagrangian
gives a solution to the discrete optimization problem.

2 Preliminaries
An optimization problem, or mathematical programming problem, is minimizing the
objective function under the given constraints.

minimize f(x) subject to gi(x) ≤ 0, x ∈ X for i = 1, 2, . . . ,m. (2.1)

Here X could be any of the following sets; X = Rn, X = {x ∈ Rn|x ≥ 0}, X = Zn,
or X = T1 × T2 × · · · × Tn, where Ti ⊂ R , i = 1, 2, . . . , n are discrete time scales
where the time points are not necessarily uniformly distributed on a time line.

Definition 2.1. An optimization problem is called a convex optimization problem or a
convex programming problem if f and gi are real convex functions for i = 1, 2, . . . ,m
and X = Rn.

minimize f(x) subject to gi(x) ≤ 0, x ∈ X for i = 1, 2, . . . ,m. (2.2)

The Lagrangian function corresponding to the objective function f(x) is defined as

L(x, u) = f(x) + uTg(x),

where x ∈ Rn, u ∈ Rm and g(x) = (g1(x), g2(x), . . . , gm(x)).
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Definition 2.2. h is called a subgradient for f at x0 ∈ Rn if it satisfies the following
inequality

f(x) ≥ f(x0) + 〈x− x0, h〉 for all x ∈ Dom(f),

where 〈·, ·〉 is the dot product.

A function defined on Rn is called a real convex function if it has a subgradient
at each point of its domain. We define discrete convexity in the next section using an
analogue of the subgradient property of real convex functions and some techniques from
time scales calculus such as partial delta and partial nabla derivatives. Partial delta and
partial nabla derivatives are introduced in [4]. For further reading on time scales, we
refer the reader to an excellent book on the analysis of time scales [5]. Let µi, and νi
be the graininess functions on Ti and ei be the ith basis element of the n-dimensional
Euclidean space. The partial delta and nabla derivatives are defined as

∆if(x0) :=
f(x0 + eiµi(x

0))− f(x0)

µi(x0)
, ∇if(x0) :=

f(x0)− f(x0 − eiνi(x0))
νi(x0)

.

3 Discrete Convex Functions
Definition 3.1. Let T = T1 × T2 × · · · × Tn, where Ti ⊂ R is a discrete time scale. A
function f : T → R is called discrete convex if given any point a = (a1, a2, . . . , an) ∈
T, we have

f(x) ≥ f(a) + 〈x− a,∇Df(x, a)〉 for all x ∈ T,
∇Df(x, a) := (fx1(x, a), fx2(x, a), . . . , fxn(x, a)),

fxi
(x, a) :=

{
∆if(a), if xi ≥ ai

∇if(a), if xi ≤ ai.

Note that the discrete gradient vector of a function, (∇Df)(x, y), is a function of
two vectors, x and y. The definition depends on the difference of the components of
these two vectors.

Theorem 3.2. Any finite sum of discrete convex function is also discrete convex.

Remark 3.3. Note that discrete convexity is not necessarily a weaker structure than real
convexity. In other words real convexity does not imply discrete convexity. For instance,
f(x, y) = 25(2y − x)2 + 1/4(2− x)2 is real convex however one can show that it does
not satisfy the discrete convexity condition.

Remark 3.4. On the other hand, there is a discrete convex function which is not real
convex. To construct such a function we assume that the domain of the function is
bounded by an interval of length M > 0. From the definition of discrete and real
convexity one can obtain f(x, y) = (x + y)2 − kx2 is discrete convex if and only if
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k ≤ M2 +M + 1

M(M − 1)
, f(x, y) = (x+y)2−kx2 is real convex if and only if k ≤ (M + 1)2

M2
.

Therefore, for values of k ∈
(M2 +M + 1

M(M − 1)
,
(M + 1)2

M2

)
, f(x, y) is a discrete convex

function, but not real convex.

Remark 3.5. Adıvar and Fang [1, 2] defined the discrete convex function on T = T1 ×
T2 × · · · × Tn, where Ti ⊂ R , i = 1, 2, . . . , n are time scales, as a function whose
epigraph is convex. Therefore the discrete restriction f |Zn of a convex function f on
the real domain is convex on Zn. Conversely, every convex function on a discrete do-
main can be extended to a convex function on the real domain. However, the discrete
convexity in the sense of this paper is not weaker than convexity on the real domain
as pointed out in the two abovementioned remarks. Nonetheless, these two definitions
match in T ⊂ R, a special time scale where the time points are not necessarily uniformly
distributed on a time line.

4 Karush–Kuhn–Tucker Conditions on Discrete Time
Scales

Definition 4.1. A discrete convex programming problem is an optimization problem
with f and gi are discrete convex functions for i = 1, 2, . . . ,m and T = T1×T2×· · ·×
Tn.

minimize f(x) subject to gi(x) ≤ 0, x ∈ T for i = 1, 2, . . . ,m. (4.1)

The set S = {x ∈ T|gi(x) ≤ 0 for i = 1, 2, . . . ,m} is called the feasible set. The
Lagrangian associated with this programming problem is a function L : T × Rm → R
defined as

L(x, u) = f(x) + u1g1(x) + · · ·+ umgm(x). (4.2)

Definition 4.2. A point (x0, u0) ∈ T×Rm is called a saddle point of L if x0 ≥ 0, u0 ≥ 0
and L(x0, u) ≤ L(x0, u0) ≤ L(x, u0) for all x ≥ 0, u ≥ 0 and x ∈ T.

Theorem 4.3. Let (x0, u0) be a saddle point of the Lagrangian function L. Then x0 is
a solution to the convex programming problem and f(x0) = L(x0, u0).

Proof. The condition L(x0, u) ≤ L(x0, u0) yields

u1g1(x
0) + . . .+ umgm(x0) ≤ u01g1(x

0) + . . .+ u0mgm(x0).

By keeping u2, . . . , um fixed and taking the limit u1 → ∞, we infer that g1(x0) ≤ 0.
Similarly, one gets g2(x0) ≤ 0, . . . , gm(x0) ≤ 0. Thus x0 belongs to the feasible set
S. From L(x0, 0) ≤ L(x0, u0) and the definition of S we infer 0 ≤ u01g1(x

0) + . . . +
u0mgm(x0) ≤ 0, hence u01g1(x

0) + . . . + u0mgm(x0) = 0 and f(x0) = L(x0, u0). Since
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L(x0, u0) ≤ L(x, u0) for all x ≥ 0 this implies f(x0) ≤ f(x)+u01g1(x)+. . .+u0mgm(x).
We also have f(x) + u01g1(x) + . . .+ u0mgm(x) ≤ f(x) for all x ∈ S.

If we combine the last two inequalities we get f(x0) ≤ f(x) for all x in the feasible
set S. Therefore x0 is a solution to the convex programming problem (4.1).

Theorem 4.4. Suppose f, g1, . . . , gm−1, and gm are discrete convex functions on T =
T1 × T2 × · · · × Tn. Then (x0, u0) is a saddle point of the Lagrangian L if and only if

x0 ≥ 0

∆xi
L(x0, u0) ≥ 0 if x0i = 0

∆xi
L(x0, u0) ≥ 0, ∇xi

L(x0, u0) ≤ 0 if x0i > 0

and

u0 ≥ 0

∂L

∂uj
(x0, u0) = gj(x

0) ≤ 0 if u0j = 0

∂L

∂uj
(x0, u0) = gj(x

0) = 0 whenever u0j > 0.

Proof. If (x0, u0) is a saddle point of L, then clearly we have x0, u0 ≥ 0. If x0i = 0, then

∆xi
L(x0, u0) =

L(x0 + eiµi(x
0), u0)− L(x0, u0)

µi(x0)
≥ 0 since (x0, u0) is saddle point. If

x0 > 0, then ∆xi
L(x0, u0) ≥ 0 and ∇xi

L(x0, u0) ≤ 0 since L(x0, u0) ≤ L(x, u0)
for all x. If u0j = 0, then L(x0, u0 + tej) ≤ L(x0, u0) for all t ≥ −u0j . Therefore,
∂L

∂uj
(x0, u0) = lim

x→0+

L(x0, u0 + tej)− L(x0, u0)

t
≤ 0 If u0j > 0, then

∂L

∂uj
(x0, u0) = 0

since (x0, u0) is a saddle point. Suppose the conditions in the theorem are satisfied.
Since f and gi are discrete convex functions on T, for a fixed u0, L(x, u0) is a discrete
convex function too. By convexity of L(x, u0) we have

L(x, u0) ≥ L(x0, u0) + 〈(x− x0), (∇DL)(x, x0, u0)〉.

By the conditions on x and using the definition of discrete gradient we obtain

〈(x− x0), (∇DL)(x, x0, u0)〉 ≥ 0.

Therefore, we have L(x, u0) ≥ L(x0, u0) for all x.
To show the other side of the inequality, we consider L(x0, u) as a linear function in
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Rm on variables u1, . . . , um. Since it is a linear function on u-coordinates, we have

L(x0, u) = L(x0, u0) +
m∑
j=1

(uj − u0j)
∂L

∂uj
(x0, u0)

≤ L(x0, u0) +
m∑
j=1

uj
∂L

∂uj
(x0, u0)

≤ L(x0, u0).

Hence we have L(x0, u) ≤ L(x0, u0) ≤ L(x, u0) for all x, u ≥ 0. This concludes that
(x0, u0) is a saddle point.

5 Application
In this section, we demonstrate our theory on the nonlinear programming problem

z∗ = min
x,y

f(x1, x2) = 6(x1 − 10)2 + 4(x2 − 12.5)2

subject to x21 + (x2 − 5)2 ≤ 50

x21 + 3x22 ≤ 200

(x1 − 6)2 + x22 ≤ 37

xi ∈ Z≥0 for i = 1, 2.

Since both 6(x1−10)2 and 4(x2−12.5)2 are discrete convex, f(x, y) is discrete convex
too. For this problem, the Lagrangian is

L(x1, x2, u1, u2) =6(x1 − 10)2 + 4(x2 − 12.5)2 + u1(x
2
1 + (x2 − 5)2 − 50)

+ u2(x
2
1 + 3x22 − 200) + u3((x1 − 6)2 + x22 − 37).

By KKT conditions, we have u1(x21 + (x2 − 5)2 − 50) = 0,

u2(x
2
1 + 3x22 − 200) = 0 and u3((x1 − 6)2 + x22 − 37) = 0.

Clearly, we have x1 ≥ 0 and x2 ≥ 0. From Theorem 4.4, we deduce ∆xi
L ≥ 0 and

∇xi
L ≤ 0 for i = 1, 2. If we combine all these conditions one can reach the optimal

solution (x∗1, x
∗
2) = (7, 6). Note that here (u1, u2, u3) are not necessarily unique since

the KKT conditions in Theorem 4.4 involves inequalities. Yet, one can choose u2 = 0
and u1 = 2, u3 = 14 values to justify the above inequalities.
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(2001).

[6] S. Boyd, C. Crusius, and A. Hansson, Control applications of nonlinear convex
programming, Journal of Process Control, 8, (5–6), (1998), 313–324.

[7] J. Cochrane and J. Saa–Requejo, Beyond Arbitrage: Good–Deal Asset Price Bounds
in Incomplete Markets, Journal of Political Economy, 108, (1), (2000), 79–119.

[8] B.L. Miller, On minimizing nonseparable functions defined on the integers with an
inventory application, SIAM J. Appl. Math., 21, (1971), 166–185.

[9] D. Mozyrska and D. F. M. Torres, The Natural Logarithm on Time Scales, J. Dyn.
Syst. Geom. Theor., 7, (2009), 41–48.

[10] K. Murota , Discrete Convex Analysis, SIAM Monographs on Discrete Mathemat-
ics and Applications, 10, Philadelphia (2003).

[11] C. Niculescu, L.E. Persson ,Convex Functions and Their Applications, Springer–
Verlag, New York (2006).

[12] A. Tamura, Applications of Discrete Convex Analysis to Mathematical Economics,
Publ. RIMS, Kyoto Univ., 40, (2004), 1015–1037.


