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Abstract

We investigate the local and global character of the unique equilibrium point,
the existence and the local stability of the period-two solutions of certain homoge-
neous fractional difference equation with quadratic terms. The local stability and
global attractivity results of the minimal period-two solution in one special case are
given. Also, we investigate the bifurcation of a fixed point of the map associated
to the equation in the special case where the eigenvalues are complex conjugate
numbers on the unit circle.
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1 Introduction and Preliminaries
In this paper, we investigate the local and global character of the equilibrium point and
the existence of period-two solutions of the difference equation

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1
ax2n + bxnxn−1 + cx2n−1

, n = 0, 1, . . . (1.1)
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where the parameters A, B, C, a, b, c are positive numbers and where the initial condi-
tions x−1 and x0 are arbitrary nonnegative real numbers such that x−1 + x0 > 0. Also,
we investigate the special case of (1.1) when A = C = 0.

Equation (1.1) is the special case of a general second order quadratic fractional equa-
tion of the form

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1 +Dxn + Exn−1 + F

ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f
, n = 0, 1, . . . (1.2)

with nonnegative parameters and A+B +C > 0, a+ b+ c+ d+ e+ f > 0 and initial
conditions such that ax2n+bxnxn−1+cx2n−1+dxn+exn−1+f > 0, n = 0, 1, . . .. Several
global asymptotic results for some special cases of (1.2) were obtained in [14–16,28,31].

One interesting special case of (1.1) is the following difference equation studied
in [4, 18, 19], when c = C = 0:

xn+1 =
Dxn + Exn−1
dxn + exn−1

, n = 0, 1, . . . (1.3)

which represents discretization of the differential equation model in biochemical net-
works, see [8]. Also, the special case of (1.1) when a = A = B = 0 is the linear
fractional difference equation whose global dynamics is described in [18]. Notice that
(1.3) is also the special case of the linear fractional difference equation

xn+1 =
Dxn + Exn−1 + F

dxn + exn−1 + f
, n = 0, 1, . . . (1.4)

(which was investigated in great detail in [18]) with well-known but very complicated
dynamics, such as Lyness’ equation (see [20]).

Equation (1.1) can be written in the form

xn+1 =
A (xn/xn−1)

2 +B (xn/xn−1) + C

a (xn/xn−1)
2 + b (xn/xn−1) + c

, n = 0, 1, . . .

and one can take the advantage of this auxiliary equation to describe the dynamics of
(1.1) (see [5, 6, 15, 16, 31]).

The first systematic study of global dynamics of (1.2) in a special case where A =
C = D = a = c = d = 0 was performed in [1, 2].

In [9] and [10], we gave more precisely the dynamics in two special cases of (1.1)
where the right-hand side of (1.1) is decreasing in xn and increasing in xn−1 and where
we could have applied the theory of monotone maps to give global dynamics. Also,
see [11, 12, 21–23, 25–27, 29] for an application of the monotone maps techniques to
some competitive systems of linear fractional difference equations.

The special case of (1.1) when A = B = 0, C = 1, i.e.,

xn+1 =
x2n−1

ax2n + bxnxn−1 + cx2n−1
, n = 0, 1, . . . (1.5)
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was investigated in [9]. It was shown that equation (1.5) exhibits three types of global
behavior characterized by the existence of a unique positive equilibrium point and one
or two minimal period-two solutions, one of which is locally stable and the other is a
saddle point. The unique feature of the equation is the coexistence of an equilibrium
point and the minimal period-two solutions both being locally asymptotically stable.
This new phenomenon is caused by the presence of quadratic terms and did not exist in
the case of (1.4).

The special case of (1.1) when B = C = 0, i.e.,

xn+1 =
Ax2n + Cx2n−1
ax2n + bxnxn−1

, n = 0, 1, . . . (1.6)

was studied in [10]. It was shown that (1.6) exhibits three types of global behavior
characterized by the existence of a unique equilibrium point and a minimal period-two
solution, which stable manifold serves the boundary of the basins of attraction of locally
stable equilibrium and points at infinity (0,∞) and (∞, 0). In fact, the equation exhibits
period-two bifurcation studied in great details in [22].

Following the approach from [18], we can divide (1.1) into 49 cases of types (k,m),
where type (k,m) means that special case has k terms in the numerator and m terms
in the denominator. Notice the following fact: if we use substitution xn = 1

un
, then

each of the equations of the type (3,1) transforms into an equation of the type (1,3),
each of the equations of the type (2,1) transforms into an equation of the type (1,2), and
three of seven equations of the type (2,2) transform into the other equations of the type
(2,2). In this paper we present the local and global character of the unique equilibrium
point, the existence and the local stability of the period-two solutions of (1.1), with
positive parameters, i.e., of the equation of the type (3,3). The local stability analysis
indicates some possible scenarios for (1.1): global attractivity of the unique equilibrium
point, Neimark–Sacker bifurcation and period-doubling bifurcation, see [13, 17, 24].
This means that the techniques used in [3, 14, 18, 20, 22, 23, 30] can be applied here.

The global attractivity results obtained specifically for complicated cases of (1.2)
are the following theorems (see [7]).

Theorem 1.1. Assume that (1.2) has the unique equilibrium x̄. If the following condition
holds

(|A− ax̄|+ |B − bx̄|+ |C − cx̄|)(U + x̄) + |D − dx̄|+ |E − ex̄|
(a+ b+ c)L2 + (d+ e)L+ f

< 1 (1.7)

where L and U are lower and upper bounds of all solutions of (1.2), then x̄ is globally
asymptotically stable.

Theorem 1.2. Assume that (1.2) has the unique equilibrium x̄. If the following condition
holds

(|A−ax̄|+|B−bx̄|+|C−cx̄|)(M+x̄)+|D−dx̄|+|E−ex̄| < (a+b+c)m2+(d+e)m+f
(1.8)
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where m = min{x̄, x−1, x0} and M = max{x̄, x−1, x0} are lower and upper bounds of
specific solution of (1.2), then x̄ is globally asymptotically stable on the interval [m,M ].

Theorem 1.1 and Theorem 1.2 can be used efficiently to obtain global stability re-
sults for the special cases of (1.1), in particular, for some equations of types (2,2), (3,3)
(see Section 2) and (1,3) (see Subsection 3.1).

The paper is organized as follows. Section 2 gives the local stability analysis of the
unique positive equilibrium point of (1.1) and some global attractivity results in some
special cases. In Section 3, we investigate the existence of the minimal period-two
solutions of (1.1) and of the some special cases of (1.1). Subsection 3.1 gives the local
stability and the global attractivity results of the minimal period-two solution of (1.1) in
special case when A = C = 0, B = 1. In Section 4, we consider the bifurcation of a
fixed point of the map associated to (1.1), when B = C = 0, A = 1, in the case where
the eigenvalues are complex conjugate numbers on the unit circle.

2 Stability of the Positive Equilibrium Point of (1.1)

In this section, we investigate the local and global stability analysis of the positive equi-
librium point of (1.1) (with some special cases of (1.1)).

It is clear that (1.1) has a unique equilibrium point x = A+B+C
a+b+c

. If we denote

f(u, v) =
Au2 +Buv + Cv2

au2 + buv + cv2
,

then the linearized equation associated with (1.1) about the equilibrium point x is of the
form

yn+1 = syn + tyn−1,

where

s = −t =
∂f

∂u
(x, x) =

Ab−Ba+ 2 (Ac− Ca) +Bc− Cb
(A+B + C) (a+ b+ c)

.

Theorem 2.1. Equation (1.1) has a unique positive equilibrium point x = A+B+C
a+b+c

.

i) If
A (a+ 3b+ 5c) +B (−a+ b+ 3c) > C (3a+ b− c)

and
A (c− a) < (2a+ b)B + (3a+ 2b+ c)C,

then the equilibrium point x is locally asymptotically stable.

ii) If A (a+ 3b+ 5c) + B (−a+ b+ 3c) < C (3a+ b− c), then the equilibrium
point x is a saddle point.
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iii) If A (c− a) > (2a+ b)B + (3a+ 2b+ c)C, then the equilibrium point x is a
repeller.

iv) If A (a+ 3b+ 5c) + B (−a+ b+ 3c) = C (3a+ b− c), then the equilibrium
point x is nonhyperbolic with eigenvalues λ1,2 ∈

{
−1, 1

2

}
. If

A (c− a) = (2a+ b)B + (3a+ 2b+ c)C,

then the equilibrium point x is nonhyperbolic with eigenvalues λ1,2 = 1±i
√
3

2
.

Proof. The characteristic equation at the equilibrium point is of the form

λ2 − sλ− t = 0. (2.1)

i) Equilibrium point x is locally asymptotically stable if

|s| < 1− t < 2⇔ |s| < 1 + s < 2⇔ −1

2
< s < 1

⇔


A (a+ 3b+ 5c) +B (−a+ b+ 3c) > C (3a+ b− c)

∧
A (c− a) < (2a+ b)B + (3a+ 2b+ c)C

 .

ii) Equilibrium point x is a saddle point if{
|s| > |1− t| ∧ s2 + 4t > 0

}
⇔
{
s2 > (1 + s)2 ∧ s (s− 4) > 0

}
⇔
{
s < −1

2
∧ s (s− 4) > 0

}
,

i.e.,

s < −1

2
⇔ A (a+ 3b+ 5c) +B (−a+ b+ 3c) < C (3a+ b− c) .

iii) Equilibrium point x is a repeller if

{|s| < |1− t| ∧ |t| > 1} ⇔
{
s2 < (1 + s)2 ∧ |s| > 1

}
⇔
{
s > −1

2
∧ |s| > 1

}
⇔ s > 1⇔ A (c− a) > (2a+ b)B + (3a+ 2b+ c)C.

iv) Equilibrium point x is nonhyperbolic if

{|s| = |1− t| ∨ (t = −1 ∧ |s| ≤ 2)} ⇔
(
s = −1

2
∨ s = 1

)

⇔


A (a+ 3b+ 5c) +B (−a+ b+ 3c) = C (3a+ b− c)

∨
A (c− a) = (2a+ b)B + (3a+ 2b+ c)C

 .
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If s = 1, i.e.,A (c− a) = (2a+ b)B+(3a+ 2b+ c)C, then the characteristic equation
(2.1) becomes

λ2 − λ+ 1 = 0,

with eigenvalues λ1,2 = 1±i
√
3

2
.

If s = −1
2
, i.e., A (a+ 3b+ 5c) + B (−a+ b+ 3c) = C (3a+ b− c), then the

characteristic equation (2.1) is of the form

2λ2 + λ− 1 = 0,

with eigenvalues λ1 = −1 and λ2 = 1
2
.

This leads to the following global attractivity result for (1.1), and for some its special
cases.

Theorem 2.2. (i) Consider (1.1), where all coefficients are positive, subject to the con-
dition

Λ (U (a+ b+ c) + A+B + C) < (a+ b+ c)3 L2,

where

Λ = |A (b+ c)− a (B + C)|+ |B (a+ c)− b (A+ C)| + |C (a+ b)− c (A+B)| ,

and L = min{A,B,C}
max{a,b,c} , U = max{A,B,C}

min{a,b,c} . Then x̄ = A+B+C
a+b+c

is globally asymptotically
stable.

(ii) Consider (1.1), where C = c = 0, and all other coefficients are positive, subject
to the condition

2|Ab−Ba| (U (a+ b) + A+B) < (a+ b)3 L2,

where L = min{A,B}
max{a,b} , U = max{A,B}

min{a,b} . Then x̄ = A+B
a+b

is globally asymptotically stable.
(iii) Consider (1.1), whereB = b = 0, and all other coefficients are positive, subject

to the condition

2|Ac− Ca| (U (a+ c) + A+ C) < (a+ c)3L2,

where L = min{A,C}
max{a,c} , U = max{A,C}

min{a,c} . Then x̄ = A+C
a+c

is globally asymptotically stable.
(iv) Consider (1.1), where A = a = 0, and all other coefficients are positive, subject

to the condition

2|Bc− Cb| (U (b+ c) +B + C) < (b+ c)3L2,

where L = min{B,C}
max{b,c} , U = max{B,C}

min{b,c} . Then x̄ = B+C
b+c

is globally asymptotically stable.
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Proof. In view of Theorem 1.1, we need to find the lower and upper bounds for all
solutions of (1.1) for n ≥ 1.

(i) In this case the lower and upper bounds for all solutions of (1.1) for n ≥ 1 are
derived as:

xn+1 ≥
min{A,B,C}
max{a, b, c}

x2n + xnxn−1 + x2n−1
x2n + xnxn−1 + x2n−1

≥ min{A,B,C}
max{a, b, c}

= L > 0,

and

xn+1 ≤
max{A,B,C}

min{a, b, c}
x2n + xnxn−1 + x2n−1
x2n + xnxn−1 + x2n−1

≤ max{A,B,C}
min{a, b, c}

= U.

The condition (1.7) is of the form

Λ (U (a+ b+ c) + A+B + C) < (a+ b+ c)3 L2,

where

Λ = |A (b+ c)− a (B + C)|+ |B (a+ c)− b (A+ C)|+ |C (a+ b)− c (A+B)| .

The proof of the other cases is analogous.

3 The Existence of the Period-two Solutions
In this section, we investigate the existence of the minimal period-two solutions of (1.1)
and of the some special cases of (1.1).

First, consider the existence of the minimal period-two solutions of (1.1), where all
the parameters A, B, C, a, b, c are positive. Assume that (φ, ψ) is a minimal period-two
solution of (1.1) with φ, ψ ∈ [0,+∞) and φ 6= ψ. Then

φ =
Aψ2 +Bφψ + Cφ2

aψ2 + bφψ + cφ2
, ψ =

Aφ2 +Bφψ + Cψ2

aφ2 + bφψ + cψ2
,

from which
φ
(
aψ2 + bφψ + cφ2

)
= Aψ2 +Bφψ + Cφ2 (3.1)

and
ψ
(
aφ2 + bφψ + cψ2

)
= Aφ2 +Bφψ + Cψ2. (3.2)

Subtracting (3.1) and (3.2), we obtain

(b− a− c)φψ + c (φ+ ψ)2 = (C − A) (φ+ ψ) . (3.3)

Lemma 3.1. Equation (1.1) has a minimal period-two solution (φ, ψ), with φψ = 0, if
and only if A = 0, and then (φ, ψ) =

(
0, C

c

)
.
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Proof. If φ = 0, then equations (3.1) and (3.2) implies

A = 0 and ψ =
C

c
.

Now, suppose that φ, ψ ∈ (0,+∞), φ 6= ψ and b− a− c 6= 0. Then (3.3) implies

φψ =
1

(b− a− c)
(φ+ ψ) [(C − A)− c (φ+ ψ)] . (3.4)

Dividing (3.1) by φ and (3.2) by ψ and subtracting them, we have

(a− c) (φ+ ψ) = A
(φ+ ψ)2

φψ
− A+B − C. (3.5)

If we set
φψ = x and φ+ ψ = y,

where x > 0 and y > 0, then φ and ψ are positive and different solutions of the quadratic
equation

t2 − yt+ x = 0. (3.6)

In addition to the conditions x, y > 0, it is necessary that y2 − 4x > 0. From (3.4) and
(3.5), we obtain the system

(b− a− c)x = y (C − A− cy)
x [(a− c) y + A−B + C] = Ay2,

(3.7)

from which

x =
Ay2

(a− c) y + A−B + C
.

Since x > 0, we have

(a− c) y + A−B + C > 0⇔ (a− c) y > B − A− C.

The condition y2 − 4x > 0 is equivalent to

y2
(a− c) y − 3A−B + C

(a− c) y + A−B + C
> 0,

which implies

(a− c) y − 3A−B + C > 0⇔ (a− c) y > 3A+B − C.

Since 3A+B − C > B − A− C, we have x > 0 and y2 − 4x > 0 reduce to

(a− c) y > 3A+B − C. (3.8)
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From (3.7), since y > 0, we have

y (C − A− cy)

b− a− c
[(a− c) y + A−B + C] = Ay2,

i.e.,{
c (a− c) y2 + [A (b− a− c) + c (A−B + C)− (C − A) (a− c)] y

− (C − A) (A−B + C) = 0

}
. (3.9)

Under the assumption a 6= c, the roots of the (3.9) are of the form

y± =
1

2c (a− c)

[
−F ±

√
F 2 + 4c (a− c) (C − A) (A−B + C)

]
=

1

2c (a− c)

[
−F ±

√
D
]
,

where

F = A (b− a− c) + c (A−B + C)− (C − A) (a− c)
= bA− aC + c (−A−B + 2C) , (3.10)

and
D = F 2 + 4c (a− c) (C − A) (A−B + C) .

Notice that from (3.6), we have

t± =
y

2

(
1±

√
(a− c) y − 3A−B + C

(a− c) y + A−B + C

)
, (3.11)

i.e., (1.1) has one or two minimal period-two solutions of the form

φ1 = y+
2

(
1 +

√
(a−c)y+−3A−B+C
(a−c)y++A−B+C

)
, ψ1 = y+

2

(
1−

√
(a−c)y+−3A−B+C
(a−c)y++A−B+C

)
, (3.12)

or

φ2 = y−
2

(
1 +

√
(a−c)y−−3A−B+C
(a−c)y−+A−B+C

)
, ψ2 = y−

2

(
1−

√
(a−c)y−−3A−B+C
(a−c)y−+A−B+C

)
. (3.13)

Since y > 0, we have the following cases:

{a− c > 0, (C − A) (A−B + C) > 0} ⇒ y+ > 0 (y− < 0), (3.14)

{a− c > 0, (C − A) (A−B + C) < 0, D > 0, F < 0, } ⇒ y+ > y− > 0, (3.15)

{a− c < 0, F > 0, (C − A) (A−B + C) > 0, D > 0} ⇒ y− > y+ > 0, (3.16)
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{a− c < 0, (C − A) (A−B + C) < 0} ⇒ y− > 0 (y+ < 0), (3.17)

{D = 0 ∧ sgnF = − sgn (a− c)} ⇒ y+ = y− = −F
2c(a−c) , (3.18)

{(C − A) (A−B + C) = 0 ∧ sgnF = − sgn (a− c)} ⇒ y− = −F
c(a−c) , y+ = 0.

(3.19)
We have to check the condition (3.8) in all of this situations. To this end, consideration
will continue depending on the sign of the expression 3A+B − C assuming D > 0.

On the other hand, we can find the minimal period-two solutions for some special
cases of (1.1) (see cases 13–17 in Table 3.1).

In Table 3.1, we have all situations when (1.1), with positive parameters, has the
minimal period-two solutions. In other cases, (1.1) has no minimal period-two solutions.

3.1 Local Stability when A = C = 0, B = 1

Consider the equation

xn+1 =
Bxnxn−1

ax2n + bxnxn−1 + cx2n−1
, n = 0, 1, . . . , (3.20)

which is special case of (1.1) with A = C = 0. As we see in Table 3.1, case 17, (3.20)
has only one minimal period-two solution of the form

φ =
B

2 (a− c)

(
1 +

√
a− b− 3c

a− b+ c

)
, ψ =

B

2 (a− c)

(
1−

√
a− b− 3c

a− b+ c

)
, (3.21)

when a − b − 3c > 0. It is interesting because we can investigate the local stability of
the minimal period-two solution.

Assume that B = 1. By substitution{
xn−1 = un
xn = vn,

(3.20) becomes the system

un+1 = vn

vn+1 =
unvn

av2n + bunvn + cu2n

. (3.22)

The map T corresponding to (3.22) is of the form

T

(
u
v

)
=

(
v

g (u, v)

)
,
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1. 3A+B − C ≤ 0, a > c
2. 3A+B − C < 0, a < c,

D > 0, M < 0, N 6= 0
3. 3A+B − C < 0, Only one P2 solution

a < c, D > 0, N = 0

4.
3A+B − C > 0, a > c,

(C − A) (A−B + C) > 0,
N > 0, M < 0

5. 3A+B − C > 0, a > c, of the form (3.12).
(C − A) (A−B + C) > 0, N ≤ 0

6.
3A+B − C > 0, a > c,

(C − A) (A−B + C) < 0,
D > 0, F < 0, M < 0

7. C = A, a− b− 3c > 0 Only one P2 solution
8. B = A+ C, C (a− c) > A (b+ 2c) generated by y− = − F

c(a−c)

9.
D = 0, a > c,

aC > c (5A+B) + bA,
aC > c (−A−B + 2C) + bA

Only one P2 solution
generated by

10.
D = 0, a < c,

c (−A−B + 2C) + bA > aC
aC > c (5A+B) + bA

y+ = y− = − F
2c(a−c)

11. 3A+B − C < 0, a < c, Two P2 solutions
D > 0, N < 0, M > 0 of the form

12.
3A+B − C > 0, a > c,

(C − A) (A−B + C) < 0,
F < 0, D > 0, N < 0, M > 0

(3.12) and (3.13)

13. b = a+ c, a (C − A) > c (2A+ b)

Only one P2 solution:

φ = C−A
2c

(
1 + K̃

)
,

ψ = C−A
2c

(
1− K̃

)
,

K̃ =
√

1− 4cA
(a−c)(C−A)+c(A−B+C)

14. a = c, 3A+B − C < 0

Only one P2 solution:

φ = P̃
(

1 + P̃1

)
,

ψ = P̃
(

1− P̃1

)
,

P̃ = 1
2
(C−A)(A−B+C)
Ab+a(C−A−B)

,

P̃1 =
√
−3A−B+C
A−B+C

.
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15.
a (B − a) + b (C −B) > 3 (Ab− aC) > 0,

c = 0, (C − A) (A−B + C) > 0.

Only one P2 solution:

φ =
y

2

(
1 + S̃

)
,

16.
a (B − a) + b (C −B) < 3 (Ab− aC) < 0,

c = 0, (C − A) (A−B + C) < 0.

ψ =
y

2

(
1− S̃

)
,

y = (C−A)(A−B+C)
Ab−aC ,

S̃ =
√

ay−3A−B+C
ay+A−B+C

.

17. A = C = 0, a− b− 3c > 0

Only one P2 solution:

φ = B
2(a−c)

(
1 + S̃1

)
,

ψ = B
2(a−c)

(
1− S̃1

)
,

S̃1 =
√

a−b−3c
a−b+c .

Table 3.1: Existence of the minimal period-two solutions.

where g (u, v) =
uv

av2 + buv + cu2
. The second iteration of the map T is

T 2

(
u
v

)
= T

(
v

g (u, v)

)
=

(
g (u, v)

g (v, g (u, v))

)
=

(
F (u, v)
G (u, v)

)
,

where

F (u, v) = g (u, v) and G (u, v) =
vF (u, v)

aF 2 (u, v) + bvF (u, v) + cv2
.

The Jacobian matrix of the map T 2 is

JT 2

(
u
v

)
=

(
∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

)
,

where

∂F

∂u
=
∂g

∂u
=
v (av2 + buv + cu2)− uv (bv + 2cu)

(av2 + buv + cu2)2
=

av3 − cu2v
(av2 + buv + cu2)2

,

∂F

∂v
=
∂g

∂v
=
u (av2 + buv + cu2)− uv (bu+ 2av)

(av2 + buv + cu2)2
=

cu3 − auv2

(av2 + buv + cu2)2
,

∂G

∂u
=

v (cv2 − aF 2 (u, v)) ∂F
∂u

(aF 2 (u, v) + bvF (u, v) + cv2)2
,

∂G

∂v
=
aF 3 (u, v) + cv3 ∂F

∂v
− avF 2 (u, v) ∂F

∂v
− cv2F (u, v)

(aF 2 (u, v) + bvF (u, v) + cv2)2
.
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Theorem 3.2. Assume that a− b− 3c > 0, B = 1 and that {φ, ψ} is a unique periodic
solution of minimal period-two of (3.20), given by (3.21).

(i) If Λ = 4a2b+7a2c+ac2 + b2c+ c3−4abc−3ab2−a3 > 0, then {φ, ψ} is locally
asymptotically stable solution.

(ii) If Λ = 4a2b + 7a2c + ac2 + b2c + c3 − 4abc − 3ab2 − a3 < 0, then {φ, ψ} is a
saddle.

(iii) If Λ = 4a2b + 7a2c + ac2 + b2c + c3 − 4abc − 3ab2 − a3 = 0, then {φ, ψ} is
nonhyperbolic.

Proof. We have that

1 =
ψ

aψ2 + bφψ + cφ2
, (3.23)

1 =
φ

aφ2 + bφψ + cψ2
, (3.24)

F (φ, ψ) = φ,

and

∂F

∂u

(
φ

ψ

)
=

ψ (aψ2 − cφ2)

(aψ2 + bφψ + cφ2)2
((3.23))

=
aψ2 − cφ2

aψ2 + bφψ + cφ2
= ψ

(
a− cφ

2

ψ2

)
,

∂F

∂v

(
φ

ψ

)
=

φ (cφ2 − aψ2)

(aψ2 + bφψ + cφ2)2
((3.23))

=
φ (cφ2 − aψ2)

ψ2
= −φ

(
a− cφ

2

ψ2

)
.

Similarly, by (3.23) and (3.24), we obtain

∂G

∂u

(
φ

ψ

)
= −ψ2

(
a− cψ

2

φ2

)(
a− cφ

2

ψ2

)
,

∂G

∂v

(
φ

ψ

)
=
ψ (2aφ+ bψ)φ− (2aφ+ bψ)ψ2 ∂F

∂v

(
φ
ψ

)
(aφ2 + bψφ+ cψ2)2

= φ

(
a− cψ

2

φ2

)
+

(
a− cφ

2

ψ2

)(
a− cψ

2

φ2

)
φψ.

The Jacobian matrix of the map T 2 at the point (φ, ψ) is of the form

JT 2

(
φ
ψ

)
=

(
∂F
∂u

(
φ
ψ

)
∂F
∂v

(
φ
ψ

)
∂G
∂u

(
φ
ψ

)
∂G
∂v

(
φ
ψ

) ) .
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The corresponding characteristic equation is λ2 − pλ+ q = 0, where

p =
∂F

∂u

(
φ

ψ

)
+
∂G

∂v

(
φ

ψ

)
= ψ

(
a− cφ

2

ψ2

)
+ φ

(
a− cψ

2

φ2

)
+

(
a− cφ

2

ψ2

)(
a− cψ

2

φ2

)
φψ

= α + β + αβ,

with

α = ψ

(
a− cφ

2

ψ2

)
, β = φ

(
a− cψ

2

φ2

)
, (3.25)

and

q = det JT 2

(
φ

ψ

)
= αβ (1 + α)− α2β = αβ,

because
∂F

∂u

(
φ

ψ

)
= α,

∂F

∂v

(
φ

ψ

)
= −φ

ψ
α,

∂G

∂u

(
φ

ψ

)
= −ψ

φ
αβ,

∂G

∂v

(
φ

ψ

)
= (1 + α) β.

Notice that

α = ψ

(
a− cφ

2

ψ2

)
= aψ − cφ

2

ψ
(3.23)
= aψ − 1

ψ

(
ψ − aψ2 − bφψ

)
= 2aψ + bφ− 1,

β = φ

(
a− cψ

2

φ2

)
= aφ− cψ

2

φ
(3.24)
= aφ− 1

φ

(
φ− aφ2 − bφψ

)
= 2aφ+ bψ − 1.

(i) We need show that
|p| < 1 + q and q < 1.

First, we will show that q + 1 > 0. Indeed,

q + 1 = αβ + 1 = (2aψ + bφ− 1) (2aφ+ bψ − 1) + 1

=
(
4a2 + b2

)
φψ + 2ab

(
φ2 + ψ2

)
− (2a+ b) (φ+ ψ) + 2

= (2a− b)2 φψ + 2ab (φ+ ψ)2 − (2a+ b) (φ+ ψ) + 2

(3.21)
=

c (2a− b)2

(a− b+ c) (a− c)2
+

2ab

(a− c)2
− 2a+ b

a− c
+ 2

=
ab (a− b) + c (2a2 − bc) + 2c3

(a− b+ c) (a− c)2
> 0,

because a− b− 3c > 0⇒ (a > b ∧ a > c).
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Using (3.25), we have that

q < 1⇔ αβ < 1⇔ φψ

(
a2 + c2 − ac

(
φ2

ψ2
+
ψ2

φ2

))
< 1

⇔ a2 + c2 − ac
(
φ2

ψ2
+
ψ2

φ2

)
<

1

φψ
⇔ a2 + c2 − 1

φψ
< ac

(
φ2

ψ2
+
ψ2

φ2

)
.

Since
2ac < ac

(
φ2

ψ2 + ψ2

φ2

)
,

we need to show that
a2 + c2 − 1

φψ
< 2ac.

Namely,

a2 + c2 − 1

φψ
< 2ac⇔ 1

φψ
> a2 + c2 − 2ac⇔ (a− c)2 (a+ c− b)

c
> (a− c)2

⇔ a+ c− b > c⇔ a− b > 0,

which is satisfied because a− b− 3c > 0.
Similarly,

p<1 + q ⇔ α + β < 1⇔ 2a (φ+ ψ) + b (φ+ ψ)− 2 < 1⇔ (φ+ ψ) (2a+ b) < 3

⇔ 2a+ 3b < 3 (a− c)⇔ a− b− 3c > 0.

On the other hand, we have

p+ q + 1 > 0⇔ α + β + 2αβ + 1 > 0

⇔ 1 +
(
8a2 + 2b2

)
φψ + 4ab

(
φ2 + ψ2

)
− (2a+ b) (φ+ ψ) > 0

⇔ 1 + 2 (2a− b)2 φψ + 4ab (φ+ ψ)2 − (2a+ b) (φ+ ψ) > 0

⇔ 1 +
2c (2a− b)2

(a− b+ c) (a− c)2
+

4ab

(a− c)2
− 2a+ b

a− c
⇔ 4a2b+ 7a2c+ ac2 + b2c+ c3 − 4abc− 3ab2 − a3 > 0.

(ii) The minimal period-two solution is a saddle if

|p| > |1 + q| ⇔ (p− q − 1) (p+ q + 1) > 0.

Since p− q − 1 < 0, we have that p+ q + 1 < 0, i.e.,

4a2b+ 7a2c+ ac2 + b2c+ c3 − 4abc− 3ab2 − a3 < 0.

(iii) Analogously, the minimal period-two solution is nonhyperbolic if

|p| = |1 + q| ⇔ (p− q − 1) (p+ q + 1) = 0⇔ p+ q + 1 = 0

⇔ 4a2b+ 7a2c+ ac2 + b2c+ c3 − 4abc− 3ab2 − a3 = 0.
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Remark 3.3. We see that (3.20) has very complicated dynamics, particularly in the case
c), where the equilibrium point is unstable, but minimal period-two solution {φ, ψ}
can be stable, nonhyperbolic or unstable (a saddle), see Figures 3.1–3.5. The plots are
produced by Dynamica 3 [20].

Remark 3.4. Notice that for the unique equilibrium point of (3.20), under the assumption
B = 1, the following statements hold (see Theorem 2.1):

a) If a− b− 3c < 0, then the unique equilibrium point x = 1
a+b+c

is locally asymp-
totically stable.

b) If a− b− 3c = 0, then the unique equilibrium point x = 1
a+b+c

is nonhyperbolic
with eigenvalues λ1,2 ∈

{
−1, 1

2

}
.

c) If a− b− 3c > 0, then the unique equilibrium point x = 1
a+b+c

is a saddle (i.e., x
is unstable).

This leads to the following global asymptotic stability result for (3.20) (see Theorem
1.2).

a = 15, b = 1, c = 1

x = 0.0588235
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a = 15, b = 1, c = 1

Φ = 0.06298 , Ψ = 0.0051304
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Figure 3.1: a) For x−1 = 0.0599 and x0 = 0.0582, x = 1
17

is unstable. b) The minimal
period-two solution {φ, ψ} is unstable when x−1 = 0.065 and x0 = 0.0045 (here is
Λ < 0).

Theorem 3.5. Consider (3.20) with B = 1 and a− b− 3c < 0, subject to the condition

2 (a+ c) (1 +M (a+ b+ c)) < (a+ b+ c)3m2,

where m = min {x, x−1, x0} and M = max {x, x−1, x0} are lower and upper bounds
of specific solution of (3.20). Then, the unique equilibrium point x = 1

a+b+c
is globally

asymptotically stable on the interval [m,M ].
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Figure 3.2: The minimal period-four solution {ϕ1, ϕ2, ϕ3, ϕ4} where ϕ1 = 0.0046861,
ϕ2 = 0.034535, ϕ3 = 0.11087, ϕ4 = 0.0078329, is stable, when a = 15, b = 1, c = 1,
x−1 = x0 = 0.06.
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Figure 3.3: The minimal period-four solution on the bifurcation diagram for b = 1,
c = 1 and a ∈ (0, 16).

4 Neimark–Sacker Bifurcation
Consider (1.1) when B = C = 0 and assume that A = 1, that is consider the equation

xn+1=
x2n

ax2n + bxnxn−1 + cx2n−1
. (4.1)

This equation has a unique equilibrium point x= 1
a+b+c

.

Lemma 4.1. If a > c, then equilibrium point x is locally asymptotically stable. If a = c,
then equilibrium point x is nonhyperbolic with eigenvalues λ± = 1±i

√
3

2
. If a < c, then

equilibrium point x is a repeller.

Proof. See Lemma 2.1.

Unfortunately, in a global sense, we can give only the following result.
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a = 5, b = 1, c = 1

x = 0.142857
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Figure 3.4: a) x = 1
7

is unstable when x−1 = 0.142 and x0 = 0.143; b) the minimal
period-two solution {φ, ψ} is stable, when x−1 = 0.18 and x0 = 0.063 (here is Λ > 0).
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Figure 3.5: Two bifurcation diagrams of a typical solution of (3.20): a) for a ∈
(0.0, 30.0), b = 0.2, c = 0.1; b) for b ∈ (1.0, 1.8), a = 13, c = 1.

Theorem 4.2. If

A (b+ c) (M (a+ b+ c) + A) < (a+ b+ c)2m2,

where m = min {x, x−1, x0} and M = max {x, x−1, x0} are lower and upper bounds
of specific solution of (4.1), then the unique equilibrium x is globally asymptotically
stable on the interval [m,M ] .

Proof. See Theorem 1.2.

Now, we consider bifurcation of a fixed point of map associated to (4.1) in the case
where the eigenvalues are complex conjugate numbers on the unit circle. For this, we
need the following result.

Theorem 4.3 (Poincaré–Andronov–Hopf Bifurcation for Maps). Let

F : R× R2 → R2; (λ, x)→ F (λ, x)
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be a C4 map depending on real parameter λ satisfying the following conditions:

(i) F (λ, 0) = 0 for λ near some fixed λ0;

(ii) DF (λ, 0) has two nonreal eigenvalues µ(λ) and µ(λ) for λ near λ0, |µ(λ0)| = 1;

(iii)
d

dλ
|µ(λ)| = d(λ0) 6= 0 at λ = λ0;

(iv) µk(λ0) 6= 1 for k = 1, 2, 3, 4.

Then there is a smooth λ-dependent change of coordinate bringing f into the form

F (λ, x) = F(λ, x) +O(||x||5)

and there are smooth function a(λ), b(λ) and ω(λ) so that in polar coordinates the
function F(λ, x) is given by(

r

θ

)
=

(
|µ(λ)|r − a(λ)r3

θ + ω(λ) + b(λ)r2

)
. (4.2)

If a(λ0) > 0 and d (λ0) > 0 (d (λ0) < 0), then there is a neighborhood U of the origin
and a δ > 0 such that for |λ− λ0| < δ and x0 ∈ U , then ω-limit set of x0 is the origin if
λ < λ0 (λ > λ0) and belongs to a closed invariant C1 curve Γ(λ) encircling the origin
if λ < λ0 (λ > λ0). Furthermore, Γ(λ0) = 0.
If a(λ0) < 0 and d (λ0) > 0 (d (λ0) < 0), then there is a neighborhood U of the origin
and a δ > 0 such that for |λ− λ0| < δ and x0 ∈ U , then α-limit set of x0 is the origin if
λ > λ0 (λ < λ0) and belongs to a closed invariant C1 curve Γ(λ) encircling the origin
if λ > λ0 (λ < λ0). Furthermore, Γ(λ0) = 0.

Consider a general map F (λ, x) that has a fixed point at the origin with complex
eigenvalues µ(λ) = α(λ) + iβ(λ) and µ(λ) = α(λ) − iβ(λ) satisfying (α(λ))2 +
(β(λ))2 = 1 and β(λ) 6= 0. By putting the linear part of such a map into Jordan
canonical form, we may assume F to have the following form near the origin

F (λ, x) =

(
α(λ) −β(λ)
β(λ) α(λ)

)(
x1
x2

)
+

(
g1 (λ, x1, x2)
g2 (λ, x1, x2)

)
. (4.3)

Then the coefficient a(λ0) of the cubic term in (4.2) in polar coordinate is equal to

a (λ0) = Re
(

(1−2µ(λ0))µ(λ0)
2

1−µ(λ0) ξ11ξ20

)
+ 1

2
|ξ11|2 + |ξ02|2 − Re

(
µ (λ0)ξ21

)
, (4.4)

where

ξ20 = 1
8

(
∂2g1(0,0)

∂x21
− ∂2g1(0,0)

∂x22
+ 2∂

2g2(0,0)
∂x1∂x2

+ i
(
∂2g2(0,0)

∂x21
− ∂2g2(0,0)

∂x22
− 2∂

2g1(0,0)
∂x1∂x2

))
,

(4.5)
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ξ11 = 1
4

(
∂2g1(0,0)

∂x21
+ ∂2g1(0,0)

∂x22
+ i
(
∂2g2(0,0)

∂x21
+ ∂2g2(0,0)

∂x22

))
, (4.6)

ξ02 = 1
8

(
∂2g1(0,0)

∂x21
− ∂2g1(0,0)

∂x22
− 2∂

2g2(0,0)
∂x1∂x2

+ i
(
∂2g2(0,0)

∂x21
− ∂2g2(0,0)

∂x22
+ 2∂

2g1(0,0)
∂x1∂x2

))
,

(4.7)
and

ξ21 = 1
16

(
∂3g1
∂x31

+ ∂3g1
∂x1∂x22

+ ∂3g2
∂x21∂x2

+ ∂3g2
∂x32

+ i
(
∂3g2
∂x31

+ ∂3g2
∂x1∂x22

− ∂3g1
∂x21∂x2

− ∂3g1
∂x32

))
.

(4.8)

Theorem 4.4. Let
a0 = c and x =

1

a+ b+ c
.

Then there is a neighborhood U of the equilibrium point x and a ρ > 0 such that for
|a− a0| < ρ and x0, x−1 ∈ U , the ω-limit set of a solution of (4.1), with initial condition
x0, x−1, is the equilibrium point x if a > a0 and belongs to a closed invariant C1 curve
Γ (a) encircling x if a < a0. Furthermore, Γ (a0) = 0.

Visual illustrations of Theorem 4.4 are given in Figures 4.1–4.3.
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Figure 4.1: a) Phase portrait when a = 0.055, b = 0.3, c = 0.05 and x−1 = 16.1,
x0 = 16.1. b) Phase portraits when a = 0.25, b = 0.25, c = 0.25, x−1 = 0.4, x0 = 0.4
(red) and x−1 = 1.1, x0 = 0.1 (green).

Proof. In order to apply Theorem 4.3, we make a change of variable yn = xn−x. Then,
the new equation is given by

yn+1 =
(yn + x)2

a (yn + x)2 + b (yn + x) (yn−1 + x) + c (yn−1 + x)2
− x.
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Figure 4.2: a) Phase portrait when a = 0.05, b = 0.25, c = 0.06, x−1 = 15.1, x0 = 2.1.
b) Phase portrait when a = 0.05, b = 0.25, c = 0.06, x−1 = 2.8, x0 = 2.8.
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Figure 4.3: Bifurcation diagram in (c, x) plane for A = 1, a = 1, b = 1.

Set un = yn−1 and vn = yn for n = 0, 1, . . . . The previous equation is equivalent with
the system

un+1 = vn

vn+1 = (vn+x)
2

a(vn+x)
2+b(un+x)(vn+x)+c(un+x)

2 − x.
(4.9)

Let F be the function defined by

F (u, v) =

(
v

(v+x)2

a(v+x)2+b(v+x)(u+x)+c(u+x)2
− x

)
.

Then F (u, v) has the unique fixed point (0, 0) and the Jacobian matrix of F (u, v) is
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given by

JF (u, v) =

(
0 1
R S

)
,

where

R =
− (bv + 2cu+ bx+ 2cx) (v + x)2

(buv + 2avx+ bux+ bvx+ 2cux+ av2 + cu2 + ax2 + bx2 + cx2)
2 ,

S =
(bv + 2cu+ bx+ 2cx) (v + x) (u+ x)

(buv + 2avx+ bux+ bvx+ 2cux+ av2 + cu2 + ax2 + bx2 + cx2)
2 ,

and

JF (0, 0) =

(
0 1

−(b+2c)
a+b+c

b+2c
a+b+c

)
.

The eigenvalues of JF (0, 0) are µ (a) and µ (a):

µ± (a) =
b+2c±i

√
(b+2c)(4a+3b+2c)

2(a+b+c)
.

Since µ (a) = α (a) + iβ (a) and µ (a) = α (a)− iβ (a), we have that

α (a) = b+2c
2(a+b+c)

and β (a) =

√
(b+2c)(4a+3b+2c)

2(a+b+c)
.

Assume that F has the following form near the origin

F (a, u, v) =

(
0 1

−(b+2c)
a+b+c

b+2c
a+b+c

)(
u
v

)
+

(
f1 (a, u, v)
f2 (a, u, v)

)
.

Then (
v

(v+x)2

a(v+x)2+b(v+x)(u+x)+c(u+x)2
− x

)
= F (a, u, v) , (4.10)

from which

f1 (a, u, v) = 0,

f2 (a, u, v) = (v+x)2

a(v+x)2+b(v+x)(u+x)+c(u+x)2
− x+ b+2c

a+b+c
u− b+2c

a+b+c
v.

Let a0 = c. For a = a0, we obtain

x =
1

b+ 2c
and J0 =

(
0 1
−1 1

)
.

The eigenvalues of JF (0, 0) are µ± (a0) = 1±i
√
3

2
, and the eigenvectors corresponding

to µ (a) i µ (a) are v (a0) i v (a0) , where

v (a0) =

(
1− i

√
3

2
, 1

)
.



Stability, Periodicity and Neimark–Sacker Bifurcation 49

Note that

|µ (a0)| = 1, µ (a0) =
1

2
+ i

√
3

2
, µ2 (a0) = −1

2
+ i

√
3

2
,

µ3 (a0) = −1, µ4 (a0) = −1

2
− i
√

3

2
.

For a = a0 and x = 1
b+2c

, (4.10) has the form

F (u, v) =

(
0 1
−1 1

)(
u
v

)
+

(
h1 (u, v)
h2 (u, v)

)
,

where
h1 (u, v) = f1 (a0, u, v) = 0

and

h2 (u, v) = f2 (a0, u, v)

=
(bu+ cu+ cv + 2bcuv + bcu2 + bcv2 + b2uv + 2c2u2 + 2c2v2) (u− v)

bu+ bv + 2cu+ 2cv + 2bcuv + bcu2 + bcv2 + b2uv + 2c2u2 + 2c2v2 + 1
.

Hence (for a = a0), (4.9) is equivalent to(
un+1

vn+1

)
=

(
0 1
−1 1

)(
un
vn

)
+

(
h1 (un, vn)
h2 (un, vn)

)
.

Let (
un
vn

)
= P

(
ξn
ηn

)
,

where

P =

(
1
2

√
3
2

1 0

)
and P−1 =

(
0 1

2
√
3

3
−
√
3
3

)
.

Then (4.9) is equivalent to(
ξn+1

ηn+1

)
=

(
1
2
−
√
3
2√

3
2

1
2

)(
ξn
ηn

)
+ P−1H

(
P

(
ξn
ηn

))
,

where

H

(
u
v

)
:=

(
h1 (u, v)
h2 (u, v)

)
.

Let

G

(
u
v

)
=

(
g1 (u, v)
g2 (u, v)

)
= P−1H

(
P

(
u
v

))
.
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Now, if we set u1 = u(b+ 2c) + 1, v1 = (b+ 2c)
(

1
2
u+ 1

2
v
√

3
)

, then

g1 (u, v) =
1

2
v
√

3− 1

b+ 2c
− 1

2
u+

u21
cu21 + cv21 + bu1v1

,

g2 (u, v) = −
√
3
3
g1 (u, v) .

By straightforward calculation, we obtain

(g1)uu = −b+ 3c

2
, (g1)uv =

√
3
2
c, (g1)vv = 3

2
(b+ c) ,

(g1)uuu = 3
4

(b+ 4c) (b+ 2c) , (g1)uuv =
√
3
4
b (b+ 2c) ,

(g1)uvv = −3
4

(b+ 4c) (b+ 2c) , (g1)vvv = −9
√
3

4
b (b+ 2c) ,

(g2)uu =

√
3 (b+ 3c)

6
, (g2)uv = −1

2
c, (g2)vv = −

√
3
2

(b+ c) ,

(g2)uuu = −
√
3
4

(b+ 4c) (b+ 2c) , (g2)uuv = −1
4
b (b+ 2c) ,

(g2)uvv =
√
3
4

(b+ 4c) (b+ 2c) , (g2)vvv = 9
4
b (b+ 2c) ,

and furthermore

ξ20 = −1
4

(
b+ 2c− i

√
3
3
b
)
, ξ11 = b

(
1− i

√
3
3

)
,

ξ02 = 1
4

(
− (b+ c) + i

√
3
3

(b+ 3c)
)
,

ξ21 =
(b+ 2c) b

8

(
1 + i

√
3
)
,

a (λ0) = Re
[(
i
√
3
2

+ 3
2

)(
1− i

√
3
3

)
b
4

(
b+ 2c− i

√
3
3
b
)]

+ 2
3
b2

+ 1
12

(
b2 + 3bc+ 3c2

)
− Re

(
(b+ 2c) b

4

)
= b

4
(b+ 2c) + 2

3
b2 + 1

12

(
b2 + 3bc+ 3c2

)
= 1

4

(
3bc+ 4b2 + c2

)
> 0.

We can see that

|µ (a)| = α2 (a) + β2 (a) =
(b+ 2c)2

4 (a+ b+ c)2
+

(b+ 2c) (4a+ 3b+ 2c)

4 (a+ b+ c)2
=

b+ 2c

a+ b+ c
,

and so that(
d

da
|µ (a)|

)
a=a0

=

(
d

da

(
b+ 2c

a+ b+ c

))
a=a0

=

(
− (b+ 2c)

(a+ b+ c)2

)
a=a0

=
−1

b+ 2c
< 0.

Based on our simulations, we pose the following conjecture.
Conjecture 4.5. In all considered equations the equilibrium is globally asymptotically
stable whenever is locally stable.
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[20] M. R. S. Kulenović and O. Merino, Discrete Dynamical Systems and Differ-
ence Equations with Mathematica, Chapman and Hall/CRC, Boca Raton, London,
2002.
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