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Abstract

This paper is concerned with the eigenvalue problem for the complex sym-
metric tridiagonal quadratic matrix polynomial (quadratic pencil) and investigates
reconstruction of the quadratic pencil from some of its spectral data. It is shown
that two appropriately defined (finite) sequences of eigenvalues determine the co-
efficient matrices in the quadratic matrix polynomial uniquely. In the case of two
dimensional matrix coefficients the full solution of the inverse spectral problem is
presented including necessary and sufficient conditions for solvability of the in-
verse problem and a reconstruction procedure.
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1 Introduction
In many applications the underlying equation is a linear second order differential equa-
tion with constant coefficients

d2u(t)

dt2
+G

du(t)

dt
+ Ju(t) = 0, (1.1)

where G and J are N ×N complex constant matrices, u(t) is an N × 1 vector-function
(the desired solution). In the mechanical vibration case the matrices G and J are known
as the damping and stiffness matrices, respectively.
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We can look for particular solutions of (1.1) of the form u(t) = eλty, where λ is a
complex constant and y is a nonzero constant (independent of t) column vector in CN .
If we substitute u(t) = eλty into (1.1), then we get the quadratic eigenvalue problem
(QEP)

Q(λ)y = 0, (1.2)

where
Q(λ) = λ2I + λG+ J (1.3)

in which I is a unit N ×N matrix.
A complex number λ0 is said to be an eigenvalue of (1.2) (or of the quadratic pencil

Q(λ)) if there exists a nonzero vector y(0) ∈ CN such that Q(λ0)y
(0) = 0. This vector

y(0) is called an eigenvector of Q(λ), corresponding to the eigenvalue λ0.
Obviously, a complex number λ0 is an eigenvalue ofQ(λ) if and only if detQ(λ0) =

0. Note that detQ(λ) is a monic (leading coefficient unity) polynomial in λ of degree
2N .

The general theory of differential equations of the type (1.1) is based on the theory
of matrix pencils Q(λ) = λ2I + λG+ J , see [1, 5, 10, 11, 13].

Quantities related to the eigenvalues and eigenvectors of the pencil Q(λ) are called
the spectral characteristics (spectral data) of this pencil. The inverse spectral problem
for Q(λ) is to reconstruct Q(λ) (that is, its coefficient matrices J and G) given some of
its spectral data.

In the present paper, we consider the following version of the inverse spectral prob-
lem (the so-called inverse problem from two spectra) for Q(λ). Suppose that the coef-
ficient matrix J in the quadratic pencil (1.3) is a Jacobi matrix (tridiagonal symmetric
matrix), while the coefficient matrix G is a diagonal matrix, of the form

J =



b0 a0 0 · · · 0 0 0
a0 b1 a1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . bN−3 aN−3 0
0 0 0 · · · aN−3 bN−2 aN−2
0 0 0 · · · 0 aN−2 bN−1


, (1.4)

G =



d0 0 0 · · · 0 0 0
0 d1 0 · · · 0 0 0
0 0 d2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . dN−3 0 0
0 0 0 · · · 0 dN−2 0
0 0 0 · · · 0 0 dN−1


, (1.5)
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in which for each n, an, bn, and dn are arbitrary complex numbers such that an is
different from zero:

an, bn, dn ∈ C, an 6= 0. (1.6)

Let I1, G1, and J1 be the truncated matrices obtained by deleting the last row and last
column of the matrices I , G, and J , respectively. The quadratic pencil

Q1(λ) = λ2I1 + λG1 + J1 (1.7)

is called the truncated pencil (with respect to the pencil Q(λ)).
Denote by {λj}2Nj=1 and {µk}2N−2k=1 the (finite) sequences of all the eigenvalues of

the quadratic pencils Q(λ) and Q1(λ), respectively. Each eigenvalue λj is counted
according to its multiplicity as the root of the polynomial detQ(λ) and each eigenvalue
µk is counted according to its multiplicity as the root of the polynomial detQ1(λ). We
have

detQ(λ) =
2N∏
j=1

(λ− λj), detQ1(λ) =
2N−2∏
k=1

(λ− µk).

The sequences
{λj}2Nj=1 and {µk}2N−2k=1 (1.8)

are called the two spectra of the pencil Q(λ).
The inverse problem for two spectra consists in determination of pencil Q(λ) (that

is, its coefficient matrices J and G) from its two spectra. The following three questions
should be answered to get a full solution of the inverse problem:

(a) (Uniqueness of the solution) Are the matrices J and G determined uniquely by the
two spectra given in (1.8)?

(b) (Existence of the solution) To find necessary and sufficient conditions for two given
sequences of complex numbers {λj}2Nj=1 and {µk}2N−2k=1 to be the two spectra for
a quadratic pencil of the form (1.3) with the coefficient matrices J and G of the
form (1.4), (1.5) with entries from class (1.6).

(c) (Construction procedure) To indicate an algorithm for the construction of the ma-
trices J and G from the two spectra.

The inverse spectral problem about two spectra for a linear pencil of the form J−λI
with a real Jacobi matrix J (with nonzero first subdiagonal and superdiagonal elements)
was studied earlier by Hochstadt [8] and developed further in [2–4, 6, 7, 9].

In our study, we essentially use the property that the eigenvalue problem (1.2) for a
column vector y = {yn}N−1n=0 is equivalent to the second-order linear difference equation

an−1yn−1 + (λ2 + λdn + bn)yn + anyn+1 = 0, (1.9)

n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,
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for {yn}Nn=−1, with the boundary conditions

y−1 = yN = 0. (1.10)

This allows, using techniques from the theory of linear second-order difference equa-
tions [12], to develop a thorough analysis of the eigenvalue problem (1.2).

The paper is organized as follows. In Section 2, on the base of difference equa-
tion (1.9), two auxiliary lemmas are proved which are used in subsequent Section 3. In
Section 3, two uniqueness theorems are established. The settings of these theorems are
analogous to those of two theorems of Hochstadt’s paper [8] where G = 0, but the real-
valued Jacobi matrix J with nonzero first subdiagonal and superdiagonal elements is to
be constructed. In the first theorem of Section 3, the uniqueness problem in the recon-
struction of quadratic pencil (1.3) from two sets of prescribed eigenvalues is considered,
where G is a diagonal complex-valued matrix and J is a complex-valued, tridiagonal,
symmetric matrix with fixed nonzero first subdiagonal and superdiagonal entries. The
theorem claims that the diagonal entries of G and J are uniquely determined from two
spectra of Q(λ). The second theorem of Section 3 tells us that if the eigenvalues of
Q(λ) are identical with those of Q0(λ) being a quadratic pencil obtained from Q(λ) by
putting G = 0, then necessarily the matrix G in Q(λ) is zero provided that the diagonal
elements ofG are real or are pure imaginary. In Section 4, the full solution of the inverse
spectral problem is presented in the case N = 2 of the N ×N matrix pencils Q(λ). The
aim of this section is to give an illustration for the difficult problem in general case of
arbitrary N . Finally, in Section 5, we make some conclusions.

As it is seen, in the present paper, we deal with a special class of quadratic ma-
trix polynomials: the coefficient matrices J and G are not arbitrary N × N complex
matrices; the matrix J is a tridiagonal symmetric matrix with first subdiagonal and su-
perdiagonal elements different from zero and G is a diagonal matrix (see (1.4), (1.5),
and (1.6)). Often in applications, it is important to identify conditions on the spectral
data which ensure the existence of solutions of the inverse problem belonging to the
class of physically realizable solutions, that may form a rather narrow class.

2 Some Auxiliary Facts
Denote by {Pn(λ)}Nn=−1 the unique solution of (1.9) satisfying the initial conditions

P−1(λ) = 0, P0(λ) = 1. (2.1)

For each n ≥ 0, Pn(λ) is a polynomial of degree 2n. These polynomials can be found
recurrently from (1.9) using initial conditions in (2.1). The leading term of the polyno-
mial Pn(λ) has the form

Pn(λ) =
(−1)n

a0a1 · · · an−1
λ2n + . . . .
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The solution {Pn(λ)}Nn=−1 satisfies the boundary condition y−1 = 0 given in (1.10).
Therefore from the boundary condition yN = 0 given also in (1.10), we get that the
roots of the polynomial PN(λ) are eigenvalues of the pencilQ(λ). The following lemma
states a stronger result.

Lemma 2.1. The equalities

detQ(λ) = (−1)Na0a1 · · · aN−2PN(λ), (2.2)

detQ1(λ) = (−1)N−1a0a1 · · · aN−2PN−1(λ) (2.3)

hold, so that the eigenvalues and their multiplicities of the pencils Q(λ) and Q1(λ)
coincide with the roots and their multiplicities of the polynomials PN(λ) and PN−1(λ),
respectively.

Proof. To prove (2.2) and (2.3), let us set, for each n ∈ {1, 2, . . . , N},

Xn(λ) =



x0(λ) a0 0 · · · 0 0 0
a0 x1(λ) a1 · · · 0 0 0
0 a1 x2(λ) · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . xn−3(λ) an−3 0
0 0 0 · · · an−3 xn−2(λ) an−2
0 0 0 · · · 0 an−2 xn−1(λ)


, (2.4)

where
xk(λ) = λ2 + λdk + bk (k = 0, 1, . . . , N − 1), (2.5)

and put
∆n(λ) = detXn(λ). (2.6)

By expanding the determinant ∆n+1(λ) by the elements of the last row, it is not difficult
to show that

∆n+1(λ) = (λ2 + λdn + bn)∆n(λ)− a2n−1∆n−1(λ), n = 0, 1, 2, . . . , (2.7)

∆−1(λ) = 0, ∆0(λ) = 1. (2.8)

Dividing (2.7) by the product a0 · · · an−1, we find that the sequence

z−1 = 0, z0 = 1, zn = (−1)n(a0 · · · an−1)−1∆n(λ), n = 1, 2, . . . ,

satisfies (1.9) and initial conditions (2.1). Then zn = Pn(λ), n = 0, 1, . . ., by uniqueness
of the solution, and hence we have (2.2), (2.3) because XN(λ) = Q(λ), XN−1(λ) =
Q1(λ), and aN−1 = 1.
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Lemma 2.2. Under the conditions that the coefficient matrices J and G are of the form
(1.4), (1.5) with (1.6), the pencils Q(λ) and Q1(λ) have no common eigenvalues, that
is, λj 6= µk for all values of j and k.

Proof. Together with the solution {Pn(λ)}Nn=−1, we introduce by {Rn(λ)}Nn=−1 the sec-
ond solution of (1.9) satisfying the initial conditions

R−1(λ) = −1, R0(λ) = 0. (2.9)

For each n ≥ 1, Rn(λ) is a polynomial of degree 2n− 2.
Multiply the first of the equations

an−1Pn−1(λ) + (λ2 + λdn + bn)Pn(λ) + anPn+1(λ) = 0,

an−1Rn−1(λ) + (λ2 + λdn + bn)Rn(λ) + anRn+1(λ) = 0,

n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,

by Rn(λ) and the second by Pn(λ) and subtract the second result from the first one to
get

an−1[Pn−1(λ)Rn(λ)− Pn(λ)Rn−1(λ)]

= an[Pn(λ)Rn+1(λ)− Pn+1(λ)Rn(λ)], n ∈ {0, 1, . . . , N − 1}.

This means that the expression (Casoratian or Wronskian of the solutions Pn(λ) and
Rn(λ))

an[Pn(λ)Rn+1(λ)− Pn+1(λ)Rn(λ)]

does not depend on n ∈ {−1, 0, 1, . . . , N − 1}. On the other hand, the value of this
expression at n = −1 is equal to 1 by (2.1), (2.9), and a−1 = 1. Therefore

an[Pn(λ)Rn+1(λ)− Pn+1(λ)Rn(λ)] = 1 for all n ∈ {−1, 0, 1, . . . , N − 1}.

Putting, in particular, n = N − 1 and using aN−1 = 1, we get

PN−1(λ)RN(λ)− PN(λ)RN−1(λ) = 1. (2.10)

Suppose now that λ0 is a common eigenvalue of the pencils Q(λ) and Q1(λ). Then
by (2.2) and (2.3), we have PN(λ0) = PN−1(λ0) = 0. But this is impossible by (2.10).
This contradiction proves the lemma.

3 Uniqueness Theorems
In this section, we will establish two uniqueness theorems for the inverse spectral prob-
lem.
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Theorem 3.1. If the off-diagonal elements a0, a1, . . . , aN−2 of the matrix J are fixed,
then the two spectra of Q(λ) given in (1.8) uniquely determine the diagonal elements
b0, b1, . . . , bN−1 of the matrix J and the diagonal elements d0, d1, . . . , dN−1 of G.

Proof. Suppose that along with the quadratic pencil Q(λ) given in (1.3), we have an-
other pencil

Q̃(λ) = λ2I + λG̃+ J̃ ,

where I is a unit N × N matrix, G̃ = diag(d̃0, d̃1, . . . , d̃N−1) is a diagonal N × N

matrix with the diagonal elements d̃0, d̃1, . . . , d̃N−1 in C, and J̃ is a complex N × N
Jacobi matrix of the form (1.4) in which all an are the same as in J but bn are replaced
by b̃n. Let Q̃1(λ) be the truncated pencil with respect to Q̃(λ).

Assume that Q(λ) and Q̃(λ) have the same eigenvalues with the same multiplicities
and Q1(λ) and Q̃1(λ) have the same eigenvalues with the same multiplicities so that we
have

detQ(λ) = det Q̃(λ) and detQ1(λ) = det Q̃1(λ). (3.1)

We have to prove that then

bn = b̃n, dn = d̃n (n = 0, 1, . . . , N − 1).

Along with the solution {Pn(λ)}Nn=−1 introduced above in Section 2 for the pencilQ(λ),
consider also the analogous solution {P̃n(λ)}Nn=−1 for the pencil Q̃(λ). Thus we have

an−1Pn−1(λ) + (λ2 + λdn + bn)Pn(λ) + anPn+1(λ) = 0, (3.2)

an−1P̃n−1(λ) + (λ2 + λd̃n + b̃n)P̃n(λ) + anP̃n+1(λ) = 0, (3.3)

n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,

P−1(λ) = P̃−1(λ) = 0, P0(λ) = P̃0(λ) = 1. (3.4)

By Lemma 2.1 and (3.1), we have

PN(λ) = P̃N(λ) and PN−1(λ) = P̃N−1(λ). (3.5)

Now we multiply (3.2) by P̃n(λ) and (3.3) by Pn(λ) and subtract the second result from
the first one to get

an−1

[
Pn−1(λ)P̃n(λ)− Pn(λ)P̃n−1(λ)

]
− an

[
Pn(λ)P̃n+1(λ)− Pn+1(λ)P̃n(λ)

]
+
[
λ(dn − d̃n) + bn − b̃n

]
Pn(λ)P̃n(λ) = 0, n ∈ {0, 1, . . . , N − 1}.

Summing the last equation for the values n = 0, 1, . . . , N − 1 and taking into account
that a−1 = aN−1 = 1, we obtain[

P−1(λ)P̃0(λ)− P0(λ)P̃−1(λ)
]
−
[
PN−1(λ)P̃N(λ)− PN(λ)P̃N−1(λ)

]
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+λ
N−1∑
n=0

(dn − d̃n)Pn(λ)P̃n(λ) +
N−1∑
n=0

(bn − b̃n)Pn(λ)P̃n(λ) = 0. (3.6)

Using (3.4) and (3.5), we get that the expressions inside the square brackets in (3.6)
vanish and therefore

N−1∑
n=0

(dn − d̃n)λPn(λ)P̃n(λ) +
N−1∑
n=0

(bn − b̃n)Pn(λ)P̃n(λ) = 0. (3.7)

The polynomial λPn(λ)P̃n(λ) is of degree 4n+1, and the polynomial Pn(λ)P̃n(λ) is of
degree 4n. Therefore these polynomials all together obtained for n = 0, 1, . . . , N − 1
are linearly independent (because they are of distinct degrees). Then dn − d̃n = 0 and
bn − b̃n = 0 for all n. The proof is complete.

Theorem 3.2. Consider the quadratic pencil Q(λ) of Theorem 3.1 and assume that
the matrix G = diag(d0, d1, . . . , dN−1) is real or pure imaginary. Further, let Q0(λ)
be the quadratic pencil obtained from Q(λ) by putting G = 0. Suppose Q(λ) and
Q0(λ) have the same eigenvalues (with the same multiplicities). Then dn = 0 for all
n = 0, 1, . . . , N − 1.

Proof. We use the relationship (2.7) for n = N − 1 which gives

∆N(λ) = (λ2 + λdN−1 + bN−1)∆N−1(λ)− a2N−2∆N−2(λ).

Hence we can show inductively that

∆N(λ) = λ2N + ANλ
2N−1 +BNλ

2N−2 + . . . ,

where

AN =
N−1∑
k=0

dk, BN =
N−1∑

k,l=0,k>l

dkdl +
N−1∑
k=0

bk.

In order for Q(λ) and Q0(λ) to have the same eigenvalues it is clearly necessary that

N−1∑
k=0

dk = 0,
N−1∑

k,l=0,k>l

dkdl = 0,

and by squaring the first of these and using the second, we find that

N−1∑
k=0

d2k = 0.

Since dk have to be all real or all pure imaginary, we conclude that all dk must vanish.
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4 The Inverse Spectral Problem at N = 2

In the case N = 2, we have the quadratic pencil

Q(λ) =

[
λ2 + λd0 + b0 a0

a0 λ2 + λd1 + b1

]
(4.1)

with the coefficient numbers

a0, b0, b1, d0, d1 ∈ C, a0 6= 0. (4.2)

The truncated pencil is
Q1(λ) = λ2 + λd0 + b0. (4.3)

Let λ1, λ2, λ3, λ4 be all the eigenvalues (taking into account their multiplicity) of Q(λ)
and µ1, µ2 all the eigenvalues (roots) of Q1(λ).

The inverse problem consists in finding the coefficient numbers of Q(λ) indicated
in (4.2) from the two (finite) eigenvalue sequences

{λ1, λ2, λ3, λ4} and {µ1, µ2}. (4.4)

From (4.1), we have, by (4.3),

detQ(λ) = (λ2 + λd1 + b1)Q1(λ)− a20. (4.5)

On the other hand, we have

detQ(λ) =
4∏
j=1

(λ− λj) = λ4 + Λ1λ
3 + Λ2λ

2 + Λ3λ+ Λ4, (4.6)

Q1(λ) =
2∏

k=1

(λ− µk) = λ2 +M1λ+M2, (4.7)

where
Λ1 = −(λ1 + λ2 + λ3 + λ4), (4.8)

Λ2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4, (4.9)

Λ3 = −(λ1λ2λ3 + λ1λ2λ4 + λ2λ3λ4), Λ4 = λ1λ2λ3λ4, (4.10)

M1 = −(µ1 + µ2), M2 = µ1µ2. (4.11)

Substituting (4.6) and (4.7) in (4.5), we get

4∏
j=1

(λ− λj) = (λ2 + λd1 + b1)
2∏

k=1

(λ− µk)− a20 (4.12)
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or
λ4 + Λ1λ

3 + Λ2λ
2 + Λ3λ+ Λ4

= (λ2 + λd1 + b1)(λ
2 +M1λ+M2)− a20. (4.13)

Equation (4.13) can be written as

λ4 + Λ1λ
3 + Λ2λ

2 + Λ3λ+ Λ4

= λ4 + (M1 + d1)λ
3 + (M2 + d1M1 + b1)λ

2

+(d1M2 + b1M1)λ+ b1M2 − a20. (4.14)

Therefore, by equating coefficients of the same powers of λ on both sides of (4.14), we
get

M1 + d1 = Λ1, (4.15)

M2 + d1M1 + b1 = Λ2, (4.16)

d1M2 + b1M1 = Λ3, (4.17)

b1M2 − a20 = Λ4. (4.18)

Hence
d1 = Λ1 −M1, (4.19)

b1 = Λ2 −M2 − (Λ1 −M1)M1, (4.20)

(Λ1 −M1)M2 + [Λ2 −M2 − (Λ1 −M1)M1]M1 = Λ3, (4.21)

a20 = [Λ2 −M2 − (Λ1 −M1)M1]M2 − Λ4. (4.22)

Next, substituting (4.7) in (4.3), we find that

d0 = M1 = −(µ1 + µ2), b0 = M2 = µ1µ2. (4.23)

The following theorem gives a full solution of the inverse spectral problem atN = 2.

Theorem 4.1. Let two (finite) sequences of complex numbers in (4.4) be given. In order
for these sequences to be the two spectra for a quadratic pencil Q(λ) of the form (4.1)
with coefficient numbers belonging to the class (4.2), it is necessary and sufficient that
the following conditions are satisfied:

(i) The two sequences in (4.4) have no common terms, that is, λj 6= µk for all possible
values of j and k.
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(ii) It holds true that
4∏
j=1

(µ1 − λj) =
4∏
j=1

(µ2 − λj) (4.24)

and if µ1 = µ2 then
f ′(µ1) = 0, (4.25)

where

f(λ) :=
4∏
j=1

(λ− λj). (4.26)

Under the conditions (i) and (ii) the coefficient numbers d0, b0, d1, b1, and a0 of the
pencil Q(λ) for which the sequences in (4.4) are two spectra, are recovered by the
formulas

d0 = −(µ1 + µ2), b0 = µ1µ2, (4.27)

d1 = −(λ1 + λ2 + λ3 + λ4) + µ1 + µ2, (4.28)

b1 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

−(µ1 + µ2)(λ1 + λ2 + λ3 + λ4) + µ2
1 + µ2

2 + µ1µ2, (4.29)

a20 = −
4∏
j=1

(µ1 − λj). (4.30)

Proof. The necessity of the conditions (i) and (ii) of Theorem 4.1 follows immedi-
ately from (4.12). To prove sufficiency suppose that two sequences of complex num-
bers in (4.4) are given which satisfy the conditions of Theorem 4.1. We construct the
numbers d0, b0, d1, b1, and a0 by (4.27)–(4.30) and using these numbers, we construct
the quadratic pencil Q(λ) by (4.1) and its truncation Q1(λ) by (4.3). It follows from
(4.27) that µ1, µ2 are roots of the quadratic polynomial Q1(λ). It remains to show that
λ1, λ2, λ3, λ4 are roots of the polynomial detQ(λ). For this purpose, we will show that

detQ(λ) = f(λ), (4.31)

where f(λ) is defined by (4.26).
Dividing with a remainder the polynomial f(λ) by the polynomial Q1(λ) = (λ −

µ1)(λ− µ2), we can write

f(λ) = (λ2 + λd̃1 + b̃1)
2∏

k=1

(λ− µk) + λα + β, (4.32)

where d̃1, b̃1, α, β are some complex numbers. Comparing coefficients of λ3 and λ2 on
both sides of (4.32), and taking into account (4.28), (4.29), we find that

d̃1 = d1, b̃1 = b1.
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Therefore (4.32) takes the form

f(λ) = (λ2 + λd1 + b1)
2∏

k=1

(λ− µk) + λα + β. (4.33)

Let us show that α = 0 in (4.33). Consider two possible cases.
Case 1: µ1 6= µ2. In this case, we get, from (4.33),

f(µ1) = µ1α + β, f(µ2) = µ2α + β. (4.34)

Next, we have f(µ1) = f(µ2) by the condition (4.24). Therefore (4.34) gives (µ1 −
µ2)α = 0 and hence α = 0.

Case 2: µ1 = µ2. In this case, (4.33) can be written as

f(λ) = (λ2 + λd1 + b1)(λ− µ1)
2 + λα + β.

Hence
f ′(λ) = (2λ+ d1)(λ− µ1)

2 + 2(λ2 + λd1 + b1)(λ− µ1) + α.

Therefore f ′(µ1) = α and by the condition (4.25) we get α = 0.
Thus, (4.33) takes the form

f(λ) = (λ2 + λd1 + b1)
2∏

k=1

(λ− µk) + β.

Hence, taking into account (4.24) and (4.30),

f(µ1) = f(µ2) = β = −a20,

and, finally, we get
f(λ) = (λ2 + λd1 + b1)Q1(λ)− a20.

Comparing this with (4.1), we arrive at (4.31).

It follows that the pencil (4.1) is not uniquely restored from the two spectra. This is
connected with the fact that the a0 is determined from (4.30) up to a sign. Therefore,
we get precisely two distinct quadratic pencils possessing the same two spectra. Thus,
we can say that the inverse problem with respect to the two spectra is solved uniquely
up to sign of the off-diagonal element of the recovered matrix pencil.

Remark 4.2. If we define the numbers Λ1,Λ2,Λ3,Λ4 by (4.8)–(4.10), then

f(λ) = λ4 + Λ1λ
3 + Λ2λ

2 + Λ3λ+ Λ4,

f ′(λ) = 4λ3 + 3Λ1λ
2 + 2Λ2λ+ Λ3
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and, therefore, the condition (4.24) stating that f(µ1) = f(µ2) is equivalent to the
condition

µ3
1 + µ2

1µ2 + µ1µ
2
2 + µ3

2

+Λ1(µ
2
1 + µ1µ2 + µ2

2) + Λ2(µ1 + µ2) + Λ3 = 0, (4.35)

whereas the condition (4.25) is equivalent to

4µ1
3 + 3Λ1µ1

2 + 2Λ2µ1 + Λ3 = 0. (4.36)

Next, defining the numbers M1,M2 by (4.11), it is not difficult to show directly that
(4.35), (4.36) are equivalent to (4.21), and the formula (4.30) is equivalent to (4.22).

5 Conclusions
This work deals with the two spectra inverse problem for a class of quadratic matrix
pencils.

The quadratic pencil under consideration is the N × N matrix-valued polynomial
given by

Q(λ) = λ2I + λG+ J,

where I is the identity matrix in CN , G is anN×N diagonal matrix, and J is anN×N
Jacobi matrix.

The first main result establishes that the spectrum of Q(λ) and the spectrum of
the truncated pencil Q1(λ) (obtained from Q(λ) by deleting the last column and row)
uniquely determine the matrices G and J when the off-diagonal elements of the Jacobi
matrix J are fixed. The second main result asserts that if the sequence of eigenvalues
(taking into account multiplicities) of Q(λ) coincides with the sequence of eigenvalues
of Q0(λ) obtained from Q(λ) by putting G = 0, then Q(λ) = Q0(λ) provided that
the coefficient matrix G in Q(λ) is real or pure imaginary. Finally, the paper provides
necessary and sufficient conditions for two finite sequences to be the spectra of Q(λ)
and Q1(λ) in the particular case of N = 2. In this case a procedure for reconstruction
is given.
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