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Abstract

This paper is concerned with the eigenvalue problem for the complex sym-
metric tridiagonal quadratic matrix polynomial (quadratic pencil) and investigates
reconstruction of the quadratic pencil from some of its spectral data. It is shown
that two appropriately defined (finite) sequences of eigenvalues determine the co-
efficient matrices in the quadratic matrix polynomial uniquely. In the case of two
dimensional matrix coefficients the full solution of the inverse spectral problem is
presented including necessary and sufficient conditions for solvability of the in-
verse problem and a reconstruction procedure.

AMS Subject Classifications: 15A22, 15A29.
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1 Introduction

In many applications the underlying equation is a linear second order differential equa-
tion with constant coefficients

d?ul(t) du(t)
TERT

+ Ju(t) =0, (1.1)

where GG and J are N x N complex constant matrices, u(t) is an NV x 1 vector-function
(the desired solution). In the mechanical vibration case the matrices G and .J are known
as the damping and stiffness matrices, respectively.
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We can look for particular solutions of (1.1) of the form u(t) = ey, where \ is a
complex constant and y is a nonzero constant (independent of ¢) column vector in C*.
If we substitute u(t) = ey into (1.1), then we get the quadratic eigenvalue problem

(QEP)
Q(Ny =0, (1.2)

where
Q) = T+ )N\G+J (1.3)

in which [ is a unit N X N matrix.

A complex number ) is said to be an eigenvalue of (1.2) (or of the quadratic pencil
Q(\)) if there exists a nonzero vector y® € CV such that Q(\o)y® = 0. This vector
y© is called an eigenvector of Q(X), corresponding to the eigenvalue \.

Obviously, a complex number )\ is an eigenvalue of Q(\) if and only if det Q(\g) =
0. Note that det Q()) is a monic (leading coefficient unity) polynomial in A of degree
2N.

The general theory of differential equations of the type (1.1) is based on the theory
of matrix pencils Q(\) = \*I + \G + J, see [1,5,10,11,13].

Quantities related to the eigenvalues and eigenvectors of the pencil Q()\) are called
the spectral characteristics (spectral data) of this pencil. The inverse spectral problem
for Q(\) is to reconstruct Q(\) (that is, its coefficient matrices J and () given some of
its spectral data.

In the present paper, we consider the following version of the inverse spectral prob-
lem (the so-called inverse problem from two spectra) for QQ(\). Suppose that the coef-
ficient matrix J in the quadratic pencil (1.3) is a Jacobi matrix (tridiagonal symmetric
matrix), while the coefficient matrix G is a diagonal matrix, of the form

[ by ag 0 -+ 0 0 0 |
Qo bl a; --- 0 0 0
0 aq b2 cee 0 0 0
J=1 o e : : ; (1.4)
0 0 0 . bN_g anN—s 0
0 0 0 an—3 by—2 an—2
0 0 o --- 0 anN—2 bN—l
[ dy 0 0O 0 0 0 |
0 dy 0 0 0 0
0 0 dy - 0 0 0
G=|: + = - : : : ; (1.5)
0 0 0 dy_3 0 0
0 0 O 0 dn_2 0
0 0 O 0 0 dy_1
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in which for each n, a,, b,, and d, are arbitrary complex numbers such that a,, is
different from zero:
ap, by, d, € C, a, # 0. (1.6)

Let [;, G1, and J; be the truncated matrices obtained by deleting the last row and last
column of the matrices I, GG, and J, respectively. The quadratic pencil

Qi(\) = NI, + MG + ] (1.7)

is called the truncated pencil (with respect to the pencil Q(\)).

Denote by {)\j}?fl and {p}3Y? the (finite) sequences of all the eigenvalues of
the quadratic pencils Q(X) and @Q1()), respectively. Each eigenvalue )\; is counted
according to its multiplicity as the root of the polynomial det ()(\) and each eigenvalue
(i is counted according to its multiplicity as the root of the polynomial det Q1 (\). We
have

2N 2N -2
det Q) = [J(A =), det @) = [T (A= mo).
j=1 k=1
The sequences
{12 and e}l (1.8)

are called the two spectra of the pencil Q ().

The inverse problem for two spectra consists in determination of pencil () (that
is, its coefficient matrices J and GG) from its two spectra. The following three questions
should be answered to get a full solution of the inverse problem:

(a) (Uniqueness of the solution) Are the matrices J and GG determined uniquely by the
two spectra given in (1.8)?

(b) (Existence of the solution) To find necessary and sufficient conditions for two given
sequences of complex numbers {); ?51 and {ux}3~ 2 to be the two spectra for
a quadratic pencil of the form (1.3) with the coefficient matrices .J and G of the

form (1.4), (1.5) with entries from class (1.6).

(¢) (Construction procedure) To indicate an algorithm for the construction of the ma-
trices J and G from the two spectra.

The inverse spectral problem about two spectra for a linear pencil of the form J — A/
with a real Jacobi matrix J (with nonzero first subdiagonal and superdiagonal elements)
was studied earlier by Hochstadt [8] and developed further in [2—4,6,7,9].

In our study, we essentially use the property that the eigenvalue problem (1.2) for a
column vector y = {y, nN;01 is equivalent to the second-order linear difference equation

Ap-1Yn—1 T <)\2 + >\dn + bn)yn + apYnt1 = Oa (19)

nG{O,l,...,N—l}, a_lzaN_lzl,
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for {y,}2__ |, with the boundary conditions
y-1=yn =0. (1.10)

This allows, using techniques from the theory of linear second-order difference equa-
tions [12], to develop a thorough analysis of the eigenvalue problem (1.2).

The paper is organized as follows. In Section 2, on the base of difference equa-
tion (1.9), two auxiliary lemmas are proved which are used in subsequent Section 3. In
Section 3, two uniqueness theorems are established. The settings of these theorems are
analogous to those of two theorems of Hochstadt’s paper [8] where G' = 0, but the real-
valued Jacobi matrix J with nonzero first subdiagonal and superdiagonal elements is to
be constructed. In the first theorem of Section 3, the uniqueness problem in the recon-
struction of quadratic pencil (1.3) from two sets of prescribed eigenvalues is considered,
where G is a diagonal complex-valued matrix and J is a complex-valued, tridiagonal,
symmetric matrix with fixed nonzero first subdiagonal and superdiagonal entries. The
theorem claims that the diagonal entries of GG and J are uniquely determined from two
spectra of (). The second theorem of Section 3 tells us that if the eigenvalues of
Q(\) are identical with those of ()o() being a quadratic pencil obtained from Q(\) by
putting G = 0, then necessarily the matrix G in Q)(\) is zero provided that the diagonal
elements of GG are real or are pure imaginary. In Section 4, the full solution of the inverse
spectral problem is presented in the case N = 2 of the NV x N matrix pencils QQ(\). The
aim of this section is to give an illustration for the difficult problem in general case of
arbitrary N. Finally, in Section 5, we make some conclusions.

As it is seen, in the present paper, we deal with a special class of quadratic ma-
trix polynomials: the coefficient matrices J and G are not arbitrary N x N complex
matrices; the matrix J is a tridiagonal symmetric matrix with first subdiagonal and su-
perdiagonal elements different from zero and G is a diagonal matrix (see (1.4), (1.5),
and (1.6)). Often in applications, it is important to identify conditions on the spectral
data which ensure the existence of solutions of the inverse problem belonging to the
class of physically realizable solutions, that may form a rather narrow class.

2 Some Auxiliary Facts

Denote by { P,(\)}.__, the unique solution of (1.9) satisfying the initial conditions
P1(A\) =0, B\ =1 (2.1)

For each n > 0, P,()) is a polynomial of degree 2n. These polynomials can be found

recurrently from (1.9) using initial conditions in (2.1). The leading term of the polyno-
mial P, (\) has the form

Py = —
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The solution { P,(\)}2__| satisfies the boundary condition y_; = 0 given in (1.10).

n=-—1
Therefore from the boundary condition yy = 0 given also in (1.10), we get that the

roots of the polynomial Py () are eigenvalues of the pencil Q(\). The following lemma
states a stronger result.

Lemma 2.1. The equalities
det Q) = (=1)"agay - - - an 2 Pn (M), (2.2)

det Q1(>\) = (—1)N_1a0a1 tee aN_gPN_l(/\) (23)

hold, so that the eigenvalues and their multiplicities of the pencils Q(\) and (QQ1(\)
coincide with the roots and their multiplicities of the polynomials Py (\) and Py_1()),
respectively.

Proof. To prove (2.2) and (2.3), let us set, foreachn € {1,2,..., N},

[ 20(\) g 0o - 0 0 0
Ao .T1<)\> aq s 0 0 0
0 aq (L’g(/\) tee 0 0 0
Xn(A) = : z P : : : , (24
0 0 0 l’n_g(/\) Ap—3 0
0 0 0 Ap—3 Jﬁn,Q()\) Ap—2
0 0 0 0 Ap—2 .Tnfl()\)
where
TN =N+ Adp +b, (k=0,1,...,N —1), (2.5)
and put
Ap(A) = det X, (). (2.6)

By expanding the determinant A, 1(\) by the elements of the last row, it is not difficult
to show that

Apii(N) = (N2 4+ Ady +b,)A0(N) — a2 A, 1(N), n=0,1,2,..., 2.7)
A_1(N) =0, Ay(N) =1. (2.8)
Dividing (2.7) by the product ay - - - a,,—1, we find that the sequence
z21=02=1, 2z, = (=1)"(ao - an_1) 'Ay(\), n=1,2,...,

satisfies (1.9) and initial conditions (2.1). Then z,, = P,,(\),n = 0, 1, ..., by uniqueness
of the solution, and hence we have (2.2), (2.3) because Xy (A) = Q(A), Xy_1(N) =
Q1<)\), and anN—1 = 1. ]
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Lemma 2.2. Under the conditions that the coefficient matrices J and G are of the form
(1.4), (1.5) with (1.6), the pencils Q(\) and Q1(\) have no common eigenvalues, that
is, \j # py for all values of j and k.

Proof. Together with the solution { P,(A\)}2__ |, we introduce by {R,,(\)}"__, the sec-

n=—1°
ond solution of (1.9) satisfying the initial conditions

R_1(\) = —1, Ry(\) =0. (2.9)

For each n > 1, R, () is a polynomial of degree 2n — 2.
Multiply the first of the equations

a,n—lpn—l()\) + ()\2 + )\dn + bn)Pn(/\) —|— anPn+1()\) = O’

a1 Ry 1(N) + (N 4+ Ay, + b)) R(N) + @Ry (\) = 0,
n e {O,l,...,N—l}, a_1 = anN-—-1 :1,

by R,(\) and the second by P,()) and subtract the second result from the first one to
get
an-1[Pr1(A)Rn(A) = Pu(A) Rn1(N)]

= [ Py(N) Ruia(N) — Put(MRa(N)], ne {0,1,..., N —1}.

This means that the expression (Casoratian or Wronskian of the solutions P, () and
R (A))
n[Pr(A) Rt (A) — Poga(A) Ra(N)]

does not depend on n € {—1,0,1,..., N — 1}. On the other hand, the value of this
expression at n = —1 is equal to 1 by (2.1), (2.9), and a_; = 1. Therefore

an[Py( AN Rps1(N) — Poya(MR,(A)] =1 forall ne{-1,0,1,...,N —1}.
Putting, in particular, n = N — 1 and using ay_; = 1, we get
Py_1(M)RN(A) = Py(A)Ry-1(A) = 1. (2.10)
Suppose now that ), is a common eigenvalue of the pencils () and Q;(A). Then
by (2.2) and (2.3), we have Py (o) = Py_1(A\o) = 0. But this is impossible by (2.10).
This contradiction proves the lemma. [

3 Uniqueness Theorems

In this section, we will establish two uniqueness theorems for the inverse spectral prob-
lem.
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Theorem 3.1. If the off-diagonal elements ag, ay, . ..,an_o of the matrix J are fixed,
then the two spectra of Q(\) given in (1.8) uniquely determine the diagonal elements
bo, b1, ...,bn_1 of the matrix J and the diagonal elements dy,d, ... ,dy_1 of G.

Proof. Suppose that along with the quadratic pencil Q()) given in (1.3), we have an-
other pencil B o
Q) = T+ )G+ J,
where 7 is a unit N x N matrix, G = dzag(dg,dl, . ,glvN,l) is a diagonal N x N
matrix with the diagonal elements do, dl, . dN 1 in C, and Jisa complex N x N
Jacobi matrix of the form (1.4) in which all a,, are the same as in .J but b, are replaced
by by,. Let Q; () be the truncated pencil with respect to Q(\).
Assume that Q(\) and Q( ) have the same eigenvalues with the same multiplicities

and ()1 () and @1 ()\) have the same eigenvalues with the same multiplicities so that we
have

det Q(\) = det Q(N\) and det Q;(\) = det Q1 (N). (3.1)
We have to prove that then

by =bn, dy=d, (n=0,1,...,N—1).

Along with the solution { P, (A)}"__, introduced above in Section 2 for the pencil Q()),

consider also the analogous solution {P (M)} for the pencil Q( ). Thus we have

n=—1
an-1Py 1(N) + (V> + Ay, + b,) Po(N) + an P (M) =0, (3.2)
tn-1 P 1(A) + (A2 + Ady + ) Pa(A) + an P 1 (N) = 0, (3.3)
nE{O,l,,N—l}, a,lzaN,lzl,
P_i(A) =P1(N) =0, B(\)=DRH) =1 (3.4)

By Lemma 2.1 and (3.1), we have
Py(\) = Py(A) and Py_i(A) = Py_i(\). (3.5)

Now we multiply (3.2) by ﬁn()\) and (3.3) by P,(\) and subtract the second result from
the first one to get

tnt [Pt VP ) = PA) P V)] = a0 [Pu) P () = Pra NP ()

+ [A(dn —d,) +b, —’z‘;n} P.NP,(\) =0, nef{01,. .. N—1}.

Summing the last equation for the values n = 0,1,..., N — 1 and taking into account
that a_; = ay_; = 1, we obtain

[PAOIBO) = RPN = [P Pa(d) = Py(3) Pya ()
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+A Z_(dn — d) P\ P,(N) + Z_(bn — b)) Pa(N) Pa(X) = 0. (3.6)

Using (3.4) and (3.5), we get that the expressions inside the square brackets in (3.6)
vanish and therefore

N-1 N-1

> (dn = di) AP (N Po(X) + ) (b — by) Pa(A) Po(A) = 0. (3.7)

The polynomial AP, (\)P,()\) is of degree 4n + 1, and the polynomial P, (\)P,()) is of
degree 4n. Therefore these polynomials all together obtained forn = 0,1,..., N — 1
are linearly independent (because they are of distinct degrees). Then d,, — d,, = 0 and
b, — b, = 0 for all n. The proof is complete. O

Theorem 3.2. Consider the quadratic pencil Q(\) of Theorem 3.1 and assume that
the matrix G = diag(dy,dy,...,dn_1) is real or pure imaginary. Further, let Qo()\)
be the quadratic pencil obtained from Q(\) by putting G = 0. Suppose Q(\) and
Qo(X) have the same eigenvalues (with the same multiplicities). Then d,, = 0 for all
n=01,...,N—1.

Proof. We use the relationship (2.7) for n = N — 1 which gives
An(A) = (AN + Mdy_1 +by_1)An_1(N) — a%_osAn_2(N).
Hence we can show inductively that
An(A) = NN L AL L By 2

where
N—

de, By = Z dkdl+zbk
k=

k,1=0,k>1

,_.

[e=]

In order for Q(\) and QQy(A) to have the same eigenvalues it is clearly necessary that

N—
dy, = 0, 2: =

and by squaring the first of these and using the second, we find that

N—

,_.

k=

[e=]

Since dj, have to be all real or all pure imaginary, we conclude that all dj;, must vanish.
]
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4 The Inverse Spectral Problem at N = 2

In the case NV = 2, we have the quadratic pencil

. )\2 + )\do + bo Qo
Q(A) o Qo )\2 + )\dl + b1

with the coefficient numbers
a07b07 b17d07d1 € Ca Qo 7é 0.

The truncated pencil is
Q1(\) = A\ + Adg + by.

21

4.1)

(4.2)

4.3)

Let A1, A2, A3, A4 be all the eigenvalues (taking into account their multiplicity) of Q(\)

and fi1, p2 all the eigenvalues (roots) of (1 ().

The inverse problem consists in finding the coefficient numbers of ()(\) indicated

in (4.2) from the two (finite) eigenvalue sequences
{1, A2, A3, A} and {pq, o}
From (4.1), we have, by (4.3),
det Q(A\) = (N + Ady + b1)Q1(\) — ap.

On the other hand, we have

4

det Q(A) = [N = Aj) = M+ ArA® + AoX® + Ash + Ay,

j=1

2
Qi1(A) = H(A — pk) = N+ My + My,
k=1
where
A= =M+ X+ A3+ N\y),
Ao = Mo + M3+ Mg+ Aods + Aoy + Ay,
As = — (A1 daAs + A Aodg + Ao dshy), Ay = A3y,
My = —( + p2), Mo = pyps.

Substituting (4.6) and (4.7) in (4.5), we get

4 2
T =2 =2+ xdi +00) [T = ) — ag
k=1

J=1

4.4)

4.5)

(4.6)

(4.7)

(4.8)
4.9)
(4.10)
4.11)

(4.12)
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or
A AN+ AN + A+ Ay

== ()\2+)\d1+b1)()\2+M1>\+M2) —CL%. (413)
Equation (4.13) can be written as

M AN+ Ao + Agh + Ay

= A+ (M + d)X® + (Mo + dy My + b))\
+(dy My + by M)A + by My — a?. (4.14)

Therefore, by equating coefficients of the same powers of A on both sides of (4.14), we
get

M +dy = Ay, (4.15)
My + di My + by = Ay, (4.16)
dy My + by My = As, (4.17)
biMy — al = Ay. (4.18)
Hence
dy = Ay — My, (4.19)
by = Ay — My — (Ay — M) My, (4.20)
(A — M) My + [Ag — My — (Ay — My) My M, = As, (4.21)
a2 =[Ny — My — (A — My) MMy — Ay, (4.22)

Next, substituting (4.7) in (4.3), we find that
do = My = —(py + p2), bo = My = p1pto. (4.23)
The following theorem gives a full solution of the inverse spectral problem at N = 2.

Theorem 4.1. Let two (finite) sequences of complex numbers in (4.4) be given. In order
for these sequences to be the two spectra for a quadratic pencil Q(\) of the form (4.1)
with coefficient numbers belonging to the class (4.2), it is necessary and sufficient that
the following conditions are satisfied:

(i) The two sequences in (4.4) have no common terms, that is, A; # 1, for all possible
values of j and k.



Inverse Problems 23

(ii) It holds true that

4 4
[T =) =[]k — 2 (4.24)
j=1 i=1
and if py = po then
f'(m) =0, (4.25)
where )
FO) =TI =) (4.26)
j=1

Under the conditions (i) and (ii) the coefficient numbers dy, by, dq, b;, and ag of the
pencil Q(\) for which the sequences in (4.4) are two spectra, are recovered by the
formulas

do = —(p1 + p2), by = pi1pie, 4.27)
di = =M+ A2+ A3+ Ag) + 1 + o, (4.28)
b = M2+ M Az + A + Ao s + Ao ds + A\
— (g1 + p2) A1+ Ao+ Ag + Ag) + 1F + 13 + g, (4.29)
4
ag = —[J(m —N). (4.30)
=1

Proof. The necessity of the conditions (i) and (ii) of Theorem 4.1 follows immedi-
ately from (4.12). To prove sufficiency suppose that two sequences of complex num-
bers in (4.4) are given which satisfy the conditions of Theorem 4.1. We construct the
numbers dy, by, d1, b1, and ag by (4.27)—(4.30) and using these numbers, we construct
the quadratic pencil Q)(\) by (4.1) and its truncation Q)1(\) by (4.3). It follows from
(4.27) that puy, po are roots of the quadratic polynomial Q1 (A). It remains to show that
A1, A2, Az, \g are roots of the polynomial det Q(\). For this purpose, we will show that

det Q(N\) = f(N), (4.31)

where f(\) is defined by (4.26).
Dividing with a remainder the polynomial f(\) by the polynomial Q;(\) = (A —
1) (A — pg), we can write

2
FO) = (A2 +Ady +by) [T = ) + A+ B, (4.32)
k=1

where ci,gl, «, [ are some complex numbers. Comparing coefficients of A3 and A% on
both sides of (4.32), and taking into account (4.28), (4.29), we find that

dy=dy, by =b.
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Therefore (4.32) takes the form
2
FO) = (W + My + ) [ [ = i) + A+ B. (4.33)
k=1

Let us show that a = 0 in (4.33). Consider two possible cases.
Case 1: j1y # jio. In this case, we get, from (4.33),

f(pa) = pa+ B, flu) = poa + B. (4.34)

Next, we have f(u1) = f(u2) by the condition (4.24). Therefore (4.34) gives (u1 —
p2)a = 0 and hence o = 0.
Case 2: 11 = ps. In this case, (4.33) can be written as

f()\) = ()\2 + /\d1 + bl)(/\ - ,Uq)2 + Ao + ﬁ

Hence
PO = X+ d)(A = )2+ 2002 + Ady + b)) (A — 1) +

Therefore f'(11) = « and by the condition (4.25) we get o = 0.
Thus, (4.33) takes the form

2
FO) =W+ My + 1) [T = )
k=1

Hence, taking into account (4.24) and (4.30),

f(u) = f(p2) = 8 = —ag,
and, finally, we get
FO) = (N + Ay +b1)Q1(N) — ag.
Comparing this with (4.1), we arrive at (4.31). ]
It follows that the pencil (4.1) is not uniquely restored from the two spectra. This is
connected with the fact that the ag is determined from (4.30) up to a sign. Therefore,
we get precisely two distinct quadratic pencils possessing the same two spectra. Thus,

we can say that the inverse problem with respect to the two spectra is solved uniquely
up to sign of the off-diagonal element of the recovered matrix pencil.

Remark 4.2. If we define the numbers Ay, Ay, A3, A4 by (4.8)-(4.10), then
FO) =AM+ AN + A% + A + Ay,

FA) = 4X% 4+ 3A007 4 2A0)\ + As
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and, therefore, the condition (4.24) stating that f(u;) = f(uz2) is equivalent to the
condition

13+ 13 + gl + i
FA(1F + g+ p3) + Ao(pn + o) + Ag =0, (4.35)

whereas the condition (4.25) is equivalent to
4,u13 -+ 3A1/L12 -+ 2A2[L1 -+ A3 =0. (436)

Next, defining the numbers M, M, by (4.11), it is not difficult to show directly that
(4.35), (4.36) are equivalent to (4.21), and the formula (4.30) is equivalent to (4.22).

5 Conclusions

This work deals with the two spectra inverse problem for a class of quadratic matrix
pencils.
The quadratic pencil under consideration is the N x N matrix-valued polynomial
given by
Q\) = N1+ MG + J,

where [ is the identity matrix in CN, Gisan Nx N diagonal matrix, and J isan N x N
Jacobi matrix.

The first main result establishes that the spectrum of () and the spectrum of
the truncated pencil ()1 (\) (obtained from () by deleting the last column and row)
uniquely determine the matrices GG and .J when the off-diagonal elements of the Jacobi
matrix ./ are fixed. The second main result asserts that if the sequence of eigenvalues
(taking into account multiplicities) of ()() coincides with the sequence of eigenvalues
of Qo(A) obtained from Q(\) by putting G = 0, then Q(\) = Qo(\) provided that
the coefficient matrix G in Q(\) is real or pure imaginary. Finally, the paper provides
necessary and sufficient conditions for two finite sequences to be the spectra of (QQ(\)
and ()1 () in the particular case of N = 2. In this case a procedure for reconstruction
is given.
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