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Abstract

We consider the ν-th order Caputo nabla fractional equation

∇νa∗x(t) = c(t)x(t), t ∈ Na+1 (0.1)

and establish theorems in which we compare the solutions x of (0.1) with the solu-
tions of ∇νa∗x(t) = bx(t), where b is a constant. We obtain the following asymp-
totic results.

Theorem A. Assume 0 < ν < 1 and there exists a constant b2 such that 0 < b2 ≤
c(t) < 1. Then the solutions of the equation (0.1) with x(a) > 0 satisfy

lim
t→∞

x(t) = +∞.

Theorem B. Assume 0 < ν < 1 and there exists a constant b1 such that c(t) ≤
b1 < 0. Then the solutions of the equation (0.1) with x(a) > 0 satisfy

lim
t→∞

x(t) = 0.
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This shows that the solutions of the Caputo nabla fractional equation∇νa∗x(t) =
cx(t), 0 < ν < 1, have similar asymptotic behavior to the solutions of the first or-
der nabla difference equation∇x(t) = cx(t), |c| < 1.

AMS Subject Classifications: 39A12, 39A70.
Keywords: Caputo nabla fractional difference, Power rule, Rising function.

1 Introduction
Discrete fractional calculus has generated much interest in recent years. Some of the
work has employed the forward or delta difference. We refer the readers to the papers [1]
and [5], for example, and more recently [6,7]. Probably more work has been developed
for the backward or nabla difference and we refer the readers to the manuscript [9] and
the paper [8]. There has been some work to develop relations between the forward and
backward fractional operators, ∆ν and∇ν [2] and fractional calculus on time scales [5].

In [12], the authors consider the comparison theorems and asymptotic behavior of
solutions of nabla and delta fractional equations. In this paper, we continue our study of
comparison theorems and asymptotic behavior of solutions of certain discrete Caputo
nabla fractional equations.

We note that there is a substantial difference between the proofs of Theorem B and
the main results in [12] (see Theorem B and Theorem D in [12]).

We are concerned with the following so-called ν-th order Caputo nabla fractional
difference equation.

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1. (1.1)

Our Theorems A and B, show that the solutions of the Caputo nabla fractional differ-
ence equation∇ν

a∗x(t) = c(t)x(t), 0 < ν < 1, t ∈ Na have similar asymptotic behavior
to the solutions of the first order nabla difference equation∇x(t) = bx(t), |b| < 1.

2 Asymptotic Behavior, 1 > c(t) ≥ b1 > 0

Let Γ(x) denote the gamma function. Then we define the rising function (see [10]) by

tr :=
Γ(t+ r)

Γ(t)
,

for those values of t and r such that the right hand side of this equation is well defined.
We also use the standard extensions of the domain of this rising function by defining it
to be zero when the numerator is well defined, but the denominator is not defined. We
will be interested in functions defined on sets of the form

Na := {a, a+ 1, a+ 2, · · · },
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where a ∈ R. The nabla fractional Taylor monomials of degree ν based at a (see [6])
are defined by

Hν(t, a) :=
(t− a)ν

Γ(ν + 1)
.

First we define the nabla fractional sum (see [6]) as follows.

Definition 2.1. (Nabla Fractional Sum) Let f : Na+1 → R be given and µ > 0. Then
we define

∇−µa f(t) :=

∫ t

a

Hµ−1(t, ρ(s))f(s)∇s,

for t ∈ Na+1, where by convention∇−µa f(a) = 0.

Next we define the Caputo nabla fractional difference in terms of the nabla fractional
sum as follows:

Definition 2.2. Assume f : Na → R and N − 1 < µ ≤ N , where N ∈ N1. Then the
µ-th Caputo nabla fractional difference of f is defined by

∇µ
a∗f(t) := ∇−(N−µ)a ∇Nf(t)

for t ∈ Na+1.

Lemma 2.3. Assume that c(t) < 1, 0 < ν < 1. Then any solution of

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1 (2.1)

satisfying x(a) > 0 is positive on Na.

Proof. Using integration by parts (see [6]) and

∇sH−ν(t, s) = −H−ν−1(t, ρ(s)),

we have

∇ν
a∗x(t) = ∇−(1−ν)a ∇x(t)

=

∫ t

a

H−ν(t, ρ(s))∇x(s)∇s

= H−ν(t, s)x(s)|ts=a +

∫ t

a

H−ν−1(t, ρ(s))x(s)∇s

= −H−ν(t, a)x(a) +
t∑

s=a+1

H−ν−1(t, ρ(s))x(s).
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Taking t = a+ k, we have

∇ν
a∗x(t) = ∇ν

a∗x(a+ k)

= x(a+ k)− νx(a+ k − 1)− ν(−ν + 1)

2!
x(a+ k − 2)− · · ·

− ν(−ν + 1) · · · (−ν + k − 2)

(k − 1)!
x(a+ 1)− (−ν + 1) · · · (−ν + k − 1)

(k − 1)!
x(a).

Using (2.1), we get

x(a+ k)

=
1

1− c(a+ k)

[
νx(a+ k − 1) +

ν(−ν + 1)

2!
x(a+ k − 2) + · · ·

+
ν(−ν + 1) · · · (−ν + k − 2)

(k − 1)!
x(a+ 1) +

(−ν + 1) · · · (−ν + k − 1)

(k − 1)!
x(a)

]
.

Using the strong induction principle, 0 < ν < 1 and x(a) > 0, it is easy to see that
x(a+ k) > 0, for k ∈ N0.

The following comparison theorem plays an important role in proving our main
results.

Theorem 2.4. Assume c2(t) ≤ c1(t) < 1, 0 < ν < 1, and x(t), y(t) are the solutions of
the equations

∇ν
a∗x(t) = c1(t)x(t), (2.2)

and
∇ν
a∗y(t) = c2(t)y(t), (2.3)

respectively, for t ∈ Na+1 satisfying x(a) ≥ y(a) > 0. Then

x(t) ≥ y(t),

for t ∈ Na.

Proof. Similar to the proof of Lemma 2.3, taking t = a+ k, we have

x(a+ k) (2.4)

=
1

1− c1(a+ k)

[
νx(a+ k − 1) +

ν(−ν + 1)

2!
x(a+ k − 2) + · · ·

+
ν(−ν + 1) · · · (−ν + k − 2)

(k − 1)!
x(a+ 1) +

(−ν + 1) · · · (−ν + k − 1)

(k − 1)!
x(a)

]
.

y(a+ k) (2.5)

=
1

1− c2(a+ k)

[
νy(a+ k − 1) +

ν(−ν + 1)

2!
y(a+ k − 2) + · · ·

+
ν(−ν + 1) · · · (−ν + k − 2)

(k − 1)!
y(a+ 1) +

(−ν + 1) · · · (−ν + k − 1)

(k − 1)!
y(a)

]
.
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We will prove x(a+ k) ≥ y(a+ k) > 0 for k ∈ N0 by using the principle of strong
induction. By assumption x(a) ≥ y(a) > 0 so the base case holds. Now assume that
x(a+ i) ≥ y(a+ i) > 0, for i = 0, 1, , · · · , k − 1.

Since c2(t) ≤ c1(t) < 1, and

ν(−ν + 1) · · · (−ν + i− 1)

i!
> 0,

the base case k = 1 for i = 2, 3, · · · k − 1, and

(−ν + 1)(−ν + 2) · · · (−ν + k − 1)

(k − 1)!
> 0,

from (2.4), (2.5) we have
x(a+ k) ≥ y(a+ k) > 0.

This completes the proof.

The following definition of the nabla Mittag–Leffler function (see [6] and [3]) is
given as follows.

Definition 2.5. For |p| < 1, 0 < ν < 1, we define the nabla Mittag–Leffler function by

Ep,ν,0(t, a) :=
∞∑
k=0

pkHνk(t, a), t ∈ Na.

Remark 2.6. Since H0(t, a) = 1, we have that E0,ν,0(t, a) = 1 and Ep,ν,0(a, a) = 1.

The following lemma is taken from [6, Chapter 3].

Lemma 2.7. Assume f : Na → R and 0 < ν < 1. Then

∇ν
af(t) =

∫ t

a

H−ν−1(t, ρ(s))f(s)∇s,

for t ∈ Na+1.

Lemma 2.8. Assume that 0 < ν < 1, |b| < 1. Then

∇ν
a∗Eb,ν,0(t, a) = bEb,ν,0(t, a)

for t ∈ Na+1.
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Proof. From Definition 2.1 and 2.2, using integration by parts, we have

∇ν
a∗Eb,ν,0(t, a)

=

∫ t

a

H−ν(t, ρ(s))∇Eb,ν,0(s, a)∇s

= [H−ν(t, s)Eb,ν,0(s, a)]ts=a +

∫ t

a

H−ν−1(t, ρ(s))Eb,ν,0(s, a)∇s

= −H−ν(t, a) +

∫ t

a

H−ν−1(t, ρ(s))
∞∑
k=0

bkHνk(s, a)∇s, (2.6)

where we use H−ν(t, t) = 0 and Eb,ν,0(a, a) = 1. In the following, we first prove that
the infinite series

H−ν−1(t, ρ(s))
∞∑
k=0

bkHνk(s, a), (2.7)

for each fixed t, is uniformly convergent for s ∈ [a, t].
We will first show that

|H−ν−1(t, ρ(s))| =
∣∣∣∣ Γ(−ν + t− s)
Γ(t− s+ 1)Γ(−ν)

∣∣∣∣ ≤ 1

for a ≤ s ≤ t. For s = t we have that

|H−ν−1(t, ρ(t))| = 1.

Now assume that a ≤ s < t, then∣∣∣∣ Γ(−ν + t− s)
Γ(t− s+ 1)Γ(−ν)

∣∣∣∣ =

∣∣∣∣(t− s− ν − 1)(t− s− ν − 2) · · · (−ν)

(t− s)!

∣∣∣∣
=

∣∣∣∣t− s− (ν + 1)

t− s

∣∣∣∣ ∣∣∣∣t− s− 1− (ν + 1)

t− s− 1

∣∣∣∣ · · · ∣∣∣∣−ν1
∣∣∣∣

≤ 1.

Also consider

Hνk(s, a) =
Γ(νk + s− a)

Γ(s− a)Γ(νk + 1)

=
(νk + s− a− 1) · · · (νk + 1)

(s− a− 1)!
.

Note that for large k it follows that

Hνk(s, a) ≤ (νk + s− a− 1)s−a−1

≤ (νk + t− a− 1)t−a−1
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for a ≤ s ≤ t. Applying the root test to the infinite series in (2.7) we get that for each
fixed t

lim
k→∞

k
√
bk(νk + t− a− 1)t−a−1 = |b| < 1.

Hence for each fixed t the infinite series in (2.7) is uniformly convergent for s ∈ [a, t].
So from (2.6), integrating term by term, we get, (using Lemma 2.7 and∇ν

aHνk(s, a)) =
Hνk−ν(s, a)), that

∇ν
a∗Eb,ν,0(t, a) = −H−ν(t, a) +

∞∑
k=0

bk
∫ t

a

H−ν−1(t, ρ(s))Hνk(s, a)∇s

= −H−ν(t, a) +
∞∑
k=0

bk∇ν
aHνk(t, a)

= −H−ν(t, a) +
∞∑
k=0

bkHνk−ν(t, a)

=
∞∑
k=1

bkHνk−ν(t, a)

= bEb,ν,0(t, a),

where we also use H0(t, a) = 1. This completes the proof.

With the aid of Lemma 2.8, we may now give a rigorous proof of the following
result.

Lemma 2.9. Assume that 0 < ν < 1, |b| < 1. Then Eb,ν,0(t, a) is the unique solution of
the Caputo nabla fractional IVP

∇ν
a∗x(t) = bx(t), t ∈ Na+1 (2.8)

x(a) = 1.

Proof. If b = 0, then
E0,ν,0(t, a) = 1.

From [6, Chapter 3], for any constant C, we have ∇ν
a∗C = 0. So

∇ν
a∗E0,ν,0(t, a) = 0.

Now assume b 6= 0. From Lemma 2.8, we have

∇ν
a∗Eb,ν,0(t, a) = bEb,ν,0(t, a).

The proof of the uniqueness is straightforward (see [6]). This completes the proof.
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Note next that the following lemma, given in Podlubny [13], is useful in proving
asymptotic properties of certain fractional Taylor monomials and certain nabla Mittag–
Leffler functions.

Lemma 2.10. Assume <(z) > 0. Then

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
.

The following lemma gives an asymptotic property for certain nabla fractional Tay-
lor monomials.

Lemma 2.11. Assume that 0 < ν < 1. Then we have

lim
t→∞

Hνk(t, a) =∞, for k ≥ 1,

lim
t→∞

Hνk(t, a) = 1, for k = 0.

Proof. Taking t = a+ n, n ≥ 0, we have

lim
t→∞

Hνk(t, a) = lim
n→∞

Hνk(a+ n, a) = lim
n→∞

nνk

Γ(νk + 1)
(2.9)

= lim
n→∞

Γ(νk + n)

Γ(n)Γ(νk + 1)

= lim
n→∞

(νk + n− 1)(νk + n− 2) · · · (νk + 1)

(n− 2)!(n− 2)νk+1
· (n− 2)νk+1

n− 1
.

Using Lemma 2.10 with z = νk + 1 and n replaced by n− 2, we have

lim
n→∞

(νk + 1 + n− 2)(νk + 1 + n− 3) · · · (νk + 1)

(n− 2)!(n− 2)νk+1
=

1

Γ(νk + 1)
,

and

lim
n→∞

(n− 2)νk+1

n− 1
=∞, for k ≥ 1,

lim
n→∞

(n− 2)νk+1

n− 1
= 1, for k = 0.

Using (2.9), we complete the proof.

Theorem 2.12. Assume 0 < b2 ≤ c(t) < 1, t ∈ Na+1, 0 < ν < 1. Further assume x(t)
is a solution of the Caputo nabla fractional difference equation

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1 (2.10)

satisfying x(a) > 0. Then

x(t) ≥ x(a)

2
Eb2,ν,0(t, a),

for t ∈ Na+1.
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Proof. From Lemma 2.9, we have

∇ν
a∗Eb2,ν,0(t, a) = b2Eb2,ν,0(t, a)

and Eb2,ν,0(a, a) = 1.
In Theorem 2.4, take c2(t) = b2 . Then x(t) and

y(t) =
x(a)

2
Eb2,ν,0(t, a)

satisfy
∇ν
a∗x(t) = c(t)x(t), (2.11)

and
∇ν
a∗y(t) = b2y(t), (2.12)

respectively, for t ∈ Na+1 and

x(a) >
x(a)

2
Eb2,ν,0(a, a) = y(a).

From Theorem 2.4, we get that

x(t) ≥ x(a)

2
Eb2,ν,0(t, a),

for t ∈ Na. This completes the proof.

From Lemma 2.11 and the definition of Eb2,ν,0(t, a), we get the following theorem.

Theorem 2.13. For 0 < b2 < 1, we have

lim
t→∞

Eb2,ν,0(t, a) = +∞.

From Theorem 2.12 and Theorem 2.13, we have that the following result holds.

Theorem A. Assume 0 < ν < 1 and there exists a constant b2 such that 0 < b2 ≤
c(t) < 1. Then the solutions of the equation (1.1) with x(a) > 0 satisfy

lim
t→∞

x(t) = +∞.

3 Asymptotic Behavior, c(t) ≤ b1 < 0,
Lemma 3.1. Assume f : Na → R, 0 < ν < 1. Then

∇−(1−ν)a ∇f(t) = ∇∇−(1−ν)a f(t)− f(a)H−ν(t, a). (3.1)
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Proof. Using integration by parts and H−ν(t, t) = 0, we see that

∇−(1−ν)a ∇f(t) =

∫ t

a

H−ν(t, ρ(s))∇f(s)∇s (3.2)

= H−ν(t, s)f(s)|ts=a +

∫ t

a

H−ν−1(t, ρ(s))f(s)∇s

= −H−ν(t, a)f(a) +

∫ t

a

H−ν−1(t, ρ(s))f(s)∇s.

Using the composition rule∇ν
a∇−µa f(t) = ∇ν−µ

a f(t), for ν, µ > 0, we have

∇∇−(1−ν)a f(t) = ∇ν
af(t) (3.3)

=

∫ t

a

H−ν−1(t, ρ(s))f(s)∇s.

From (3.2) and (3.3), it follows that (3.1) holds.

From Lemma 3.1, it is easy to get the following corollary which will be useful later.

Corollary 3.2. For 0 < ν < 1, the following equality holds:

∇−νa ∇f(t) = ∇∇−νa f(t)−Hν−1(t, a)f(a). (3.4)

for t ∈ Na.

Lemma 3.3. Assume that 0 < ν < 1 and x(t) is a solution of the fractional equation

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1 (3.5)

satisfying x(a) > 0, Then x(t) satisfies the integral equation

x(t) =

∫ t

a

Hν−1(t, ρ(s))c(s)x(s)∇s+ x(a)

=
t∑

s=a+1

(t− s+ 1)ν−1

Γ(ν)
c(s)x(s) + x(a).

Proof. Using Lemma 3.1 and the composition rule: ∇α
a∇−βa f(t) = ∇α−β

a f(t), for
α, β > 0 in [6, Chapter 3], we get

∇ν
a∗x(t) = ∇−(1−ν)a ∇x(t)

= ∇∇−(1−ν)a x(t)− x(a)H−ν(t, a)

= ∇ν
ax(t)− x(a)H−ν(t, a).
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From (3.5), we have
∇ν
ax(t) = c(t)x(t) + x(a)H−ν(t, a).

Applying the operator∇−νa to each side we obtain

∇−νa ∇ν
ax(t) = ∇−νa c(t)x(t) + x(a)∇−νa H−ν(t, a),

which can be written in the form

∇−νa ∇∇−(1−ν)a x(t) = ∇−νa c(t)x(t) + x(a)∇−νa H−ν(t, a).

Using Corollary 3.2, we get that

∇∇−νa ∇−(1−ν)a x(t)− (t− a)ν−1

Γ(ν)
∇−(1−ν)a x(t)|t=a

= ∇−νa c(t)x(t) + x(a)∇−νa H−ν(t, a).

Using

∇−(1−ν)a x(t)|t=a =

∫ a

a

H−ν(a, ρ(s))x(s)∇s = 0,

we see that

∇∇−νa ∇−(1−ν)a x(t) = ∇−νa c(t)x(t) + x(a)∇−νa H−ν(t, a).

Using the composition rule, [6, Chapter 3]

∇−νa ∇−(1−ν)a x(t) = ∇−1a x(t) and ∇∇−1a x(t) = x(t),

we get that
x(t) = ∇−νa c(t)x(t) + x(a)∇−νa H−ν(t, a).

Using the power rules∇−νa H−ν(t, a) = H0(t, a) = 1 (see [6, Chapter 3]), we have

x(t) = ∇−νa c(t)x(t) + x(a) (3.6)

=

∫ t

a

Hν−1(t, ρ(s))c(s)x(s)∇s+ x(a)

=
t∑

s=a+1

Hν−1(t, ρ(s))c(s)x(s) + x(a)

=
t∑

s=a+1

(t− s+ 1)ν−1

Γ(ν)
c(s)x(s) + x(a),

which completes the proof.

The following lemma is from [3].
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Lemma 3.4. Assume 1 < ν < 1, |b| < 1. Then the Mittag–Leffler function

Eb,ν,ν−1(t, ρ(a)) =
∞∑
k=0

bkHνk+ν−1(t, ρ(a))

is the unique solution of the IVP

∇ν
ρ(a)x(t) = bx(t), t ∈ Na+1 (3.7)

x(a) =
1

1− b
.

Lemma 3.5. Assume 0 < ν < 1, |b| < 1. Then any solution of the equation

∇ν
ρ(a)x(t) = bx(t), t ∈ Na+1 (3.8)

satisfying x(a) > 0 is positive on Na.

Proof. From Lemma 2.7, we have for t = a+ k

∇ν
ρ(a)x(t) =

∫ t

ρ(a)

H−ν−1(t, ρ(s))x(s)∇s

=
a+k∑
s=a

H−ν−1(a+ k, s− 1)x(s)

= x(a+ k)− νx(a+ k − 1)− ν(−ν + 1)

2
x(a+ k − 2)

− · · · − ν(−ν + 1) · · · (−ν + k − 1)

k!
x(a).

Using (3.8), we have that

(1− b)x(a+ k) (3.9)

= νx(a+ k − 1) +
ν(−ν + 1)

2
x(a+ k − 2)

+ · · ·+ ν(−ν + 1) · · · (−ν + k − 1)

k!
x(a).

We will prove x(a + k) > 0 for k ∈ N0 by using the principle of strong induction.
Since x(a) > 0 we have that the base case holds. Now assume that x(a + i) > 0, for
i = 0, 1, · · · , k − 1. Since

ν(−ν + 1) · · · (−ν + i− 1)

i!
> 0

for i = 2, 3, · · · k− 1, from (3.9), we have x(a+ k) > 0. This completes the proof.
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Lemma 3.6. Assume that 0 < ν < 1, −1 < b < 0. Then

lim
t→∞

Eb,ν,0(t, a) = 0

Proof. From Lemma 3.4 and Lemma 3.5, we have Eb,ν,ν−1(t, ρ(a)) > 0, for t ∈ Na+1.
So we have

∇Eb,ν,0(t, a) =
∞∑
k=0

bk∇Hνk(t, a)

=
∞∑
k=0

bkHνk−1(t, a) =
∞∑
k=1

bkHνk−1(t, a)

= b
∞∑
k=1

bk−1Hνk−1(t, a) = b
∞∑
j=0

bjHνj+ν−1(t, a)

= bEb,ν,ν−1(t, a) = bEb,ν,ν−1(t− 1, ρ(a)) < 0,

for t ∈ Na+1, where we use H−1(t, a) = 0. Therefore, Eb,ν,0(t, a) is decreasing for
t ∈ Na+1. From Lemma 2.3, we have Eb,ν,0(t, a) > 0 for t ∈ Na+1. Suppose that

lim
t→∞

Eb,ν,0(t, a) = A ≥ 0.

In the following, we will prove A = 0. If not, A > 0. Let x(t) := Eb,ν,0(t, a) > 0.
From Lemma 3.3, we have

x(t) =

∫ t

a

Hν−1(t, ρ(s))bx(s)∇s+ x(a)

= b[x(t) + νx(t− 1) +
ν(ν + 1)

2!
x(t− 2)

+ · · ·+Hν−1(t, a)x(a+ 1)] + x(a).

For fixed k0 > 0, for large t, we have (since b < 0)

x(t) ≤ b
[
x(t) + νx(t− 1) +

ν(ν + 1)

2!
x(t− 2)

+ · · ·+ ν(ν + 1) · · · (ν + k0 − 1)

k0!
x(t− k0)

]
+ x(a).

Letting t→∞, we get that

0 < A ≤ bA
[
1 + ν +

ν(ν + 1)

2!
+ · · ·+ ν(ν + 1) · · · (ν + k0 − 1)

k0!

]
+ x(a). (3.10)
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Since (using mathematical induction in the first step)

1 + ν +
ν(ν + 1)

2!
+ · · ·+ ν(ν + 1) · · · (ν + k0 − 1)

k0!

=
(ν + 1)(ν + 2) · · · (ν + k0)

k0!

=
(ν + 1)(ν + 2) · · · (ν + 1 + k0 − 1)

(k0 − 1)!(k0 − 1)ν+1

(k0 − 1)ν+1

k0

→ +∞,

as k0 →∞, where we used (see Lemma 2.10)

1

Γ(ν + 1)
= lim

k0→∞

(ν + 1)(ν + 2) · · · (ν + 1 + k0 − 1)

(k0 − 1)!(k0 − 1)ν+1
.

So in (3.10), for sufficiently large k0, the right side of (3.10) is negative, but the left side
of (3.10) is positive, which is a contradiction. So A = 0. This completes the proof.

Theorem 3.7. Assume c(t) ≤ b1 < 0, 0 < ν < 1, and x(t) is any solution of the Caputo
nabla fractional difference equation

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1 (3.11)

satisfying x(a) > 0. Then
x(t) ≤ 2x(a)Eb1,ν,0(t, a),

for t ∈ Na.

Proof. Assume that b1 > −1. Otherwise we can choose 0 > b′1 > −1, b′1 > b1 and
replace b1 by b′1. From Lemma 2.9, we have

∇ν
a∗Eb1,ν,0(t, a) = b1Eb1,ν,0(t, a)

and Eb1,ν,0(a, a) = H0(a, a) = 1.
In Theorem 2.4, take c2(t) = b1 . Then x(t) and y(t) = 2x(a)Eb1,ν,0(t, a) satisfy

∇ν
a∗x(t) = c(t)x(t), (3.12)

and
∇ν
a∗y(t) = b1y(t), (3.13)

respectively, for t ∈ Na+1 and

x(a) < 2x(a) = 2x(a)Eb1,ν,0(a, a) = y(a).

From Theorem 2.4, we get that

x(t) ≤ 2x(a)Eb1,ν,0(t, a),

for t ∈ Na. This completes the proof.
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From Theorem 3.7 and Lemma 3.6, we get the following result.

Theorem B. Assume 0 < ν < 1 and there exists a constant b1 such that c(t) ≤ b1 < 0.
Then the solutions of the equation (1.1) with x(a) > 0 satisfy

lim
t→∞

x(t) = 0.

4 Asymptotic Behavior with Initial Value, x(a) < 0

Consider solutions of the following ν-th order Caputo nabla fractional difference equa-
tion

∇ν
a∗x(t) = c(t)x(t), t ∈ Na+1, (4.1)

satisfying x(a) < 0.
By making the transformation x(t) = −y(t) and using Theorem A and Theorem B,

we get the following results.

Theorem C. Assume 0 < ν < 1 and there exists a constant b2 such that 0 < b2 ≤
c(t) < 1, t ∈ Na+1. Then the solutions of the equation (4.1) with x(a) < 0 satisfy

lim
t→∞

x(t) = −∞.

Theorem D. Assume 0 < ν < 1 and there exists a constant b1 such that c(t) ≤ b1 < 0,
t ∈ Na+1. Then the solutions of the equation (4.1) with x(a) < 0 satisfy

lim
t→∞

x(t) = 0.
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