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Abstract

In this paper, we discretize a continuous time predator–prey model that consid-
ers the effect of habitat complexity following nonstandard finite difference (NSFD)
method as well as the standard forward Euler method. We study the positivity of
the solutions, stability and instability of different fixed points of both systems. It
is shown that the model formulated by NSFD method shows complete dynamic
consistency with its continuous counterpart, but the standard discrete model does
not. In fact, the latter system shows spurious dynamic behavior. Moreover, the
qualitative behavior of the NSFD system is independent of the step size, whereas
the behavior of the Euler system depends on the step size. Extensive numerical
experiments have also been performed in support of our analytical results.
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1 Introduction
The general predator–prey model in its classical form is represented by

ẋ = xf(x)− yg(x),

ẏ = θyg(x)− dy, (1.1)

where x(t) and y(t) are the densities of prey and predator populations at time t, re-
spectively. f(x) is the per capita growth rate of prey in absence of predator and d is
the food-independent predator mortality rate. g(x) is the functional response of preda-
tor, which is defined as the number of prey caught per predator per unit of time. The
term θg(x) is known as the numerical response, measuring the number of newly born
predators for each captured prey and θ (0 < θ < 1) is the conversion efficiency.

It has been demonstrated that physical or structural complexity of habitat plays sig-
nificant role in local population communities [3, 7, 17, 18, 27, 28, 43]. Habitat structure
is defined as any biotic and abiotic physical structure in space, whereas habitat struc-
tural complexity refers to the morphological characteristics within a structure itself or
the heterogeneity in the arrangement of objects in space [6, 30]. Habitat complexity is
found in almost all ecological systems, whether it is terrestrial or aquatic. Marine habi-
tat, in particular, becomes complex in presence of oyster and coral reefs, mangroves,
sea grass beds and salt marshes [23]. Empirical and experimental results suggest that
habitat complexity plays a significant role in the predator–prey dynamics. It has been
demonstrated that structural complexity of the habitat stabilizes the predator–prey in-
teraction between piscivorous perch (predator) and juvenile perch and roach (prey) by
reducing predator foraging efficiency [37–39]. Luckinbill [31] and Veilleux [44] pro-
longed the coexistence of Paramecium aurelia (prey) and Didinium nasutum (predator)
in laboratory system by using Methyl Cellulose in the Cerophyl medium (nutrient).
However, both paramecium and didinium go to extinction in absence of Methyl Cellu-
lose [14, 16, 22]. The general hypothesis is that there exists an inverse relationship be-
tween predation rate and the degree of habitat complexity [9, 15, 17, 23, 41]. Therefore,
effect of habitat complexity should be incorporated in predator’s response function when
theoretical models are used to study predator–prey interaction. However, the traditional
mathematical models have understated the role of habitat complexity in understanding
predator–prey dynamics.

The most commonly used functional response in a predator–prey model is Holling
Type II and is mathematically represented by g(x) =

αx

1 + αhx
, where α is the attack

coefficient, h is the handling time. This response function does not incorporate the ef-
fect of habitat complexity. So the formula cannot be used directly as predation formula
when complexity is present in the habitat. To incorporate the effect of habitat complex-

ity, the Type II functional response was modified as g(x) =
α(1− c)x

1 + α(1− c)hx
, where the

dimensionless parameter c (0 < c < 1) measures the degree or strength of habitat com-
plexity [4, 5, 24, 25]. If the prey population follows density-dependent logistic growth
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with intrinsic growth rate r, carrying capacity k, and predation process obeys modified
Type II response function, then the system (1.1) in presence of habitat complexity reads
as [5]

dx

dt
= rx

(
1− x

k

)
− α(1− c)xy

1 + αh(1− c)x
, (1.2)

dy

dt
=

θα(1− c)xy
1 + αh(1− c)x

− dy.

Conventional discretized models generally exhibit richer and more complicated dynam-
ical behaviors than its corresponding continuous models [13]. The reason is that such
discretized models are formulated by traditional schemes like forward and backward
Euler, Runge–Kutta, Adams methods. Euler forward method is most popularly used to
study the discrete version of a continuous model [20, 21, 26]. Such discretized models
produce spurious behaviors like oscillations, bifurcations and chaos [29]. However, the
corresponding continuous system may not show such complex dynamics. One alterna-
tive to prevent this dynamical inconsistency is the construction of discrete models using
nonstandard finite difference method developed by Mickens [35]. The NSFD scheme
has been successfully used to different real-life models to avoid spurious solutions of
standard difference models [1, 11, 33, 36, 42, 45]. One of the most important aspects
of NSFD scheme is that each differential equation has to be considered as a unique
mathematical structure and consequently must be discretely modeled in a unique man-
ner [32]. In this paper, we seek to construct a discrete model of the corresponding
continuous model (1.2) that preserves the qualitative properties of the continuous sys-
tem and maintains dynamic consistencies. We would also like to compare these results
with the results of the Euler method.

The organization of this paper is as follows. In Section 2, we state some basic defi-
nitions and summarize the results of the continuous system. Two discrete systems and
their qualitative behaviors are presented in Section 3. Extensive numerical simulations
are presented in Section 4 to substantiate and compare our analytical results. Finally,
we summarize the results in Section 5.

2 Some Definitions and Results of the Continuous Sys-
tem

Consider the differential equation

dx

dt
= f(x, t, λ), (2.1)

where λ represents the parameter defining the system (2.1). Assume that a finite differ-
ence scheme corresponding to the continuous system (2.1) is described by

xk+1 = F (xk, tk, h, λ). (2.2)
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We assume that F (., ., .) is such that the proper uniqueness–existence properties holds;
the step size is h = ∇t with tk = hk, k = integer; and xk is an approximation to x(tk).

Definition 2.1 (See [34]). Let the differential equation (2.1) and/or its solutions have
a property P . The discrete model (2.2) is said to be dynamically consistent with the
equation (2.1) if it and/or its solutions also have the property P .

Definition 2.2 (See [2,10,34]). The NSFD procedures are based on just two fundamen-
tal rules:

(i) The discrete first derivative has the representation
dx

dt
→ xk+1 − ψ(h)xk

φ(h)
, h =

4t, where φ(h), ψ(h) satisfy the conditions ψ(h) = 1 + O(h2), φ(h) = h +
O(h2).

(ii) Both linear and nonlinear terms may require a nonlocal representation on the dis-
crete computational lattice. For example,

x→ 2xk − xk+1, x3 →
(
xk+1 + xk−1

2

)
x2k,

x3 → 2x3k − x2kxk+1, x2 →
(
xk+1 + xk + xk−1

3

)
xk.

While no general principles currently exist for selecting the functions ψ(h) and
φ(h), particular forms for a specific equation can easily be determined. Functional
forms commonly used for ψ(h) and φ(h) are

φ(h) =
1− e−λh

λ
, ψ(h) = cos(λh),

where λ is some parameter appearing in the differential equation.

Definition 2.3. The finite difference method (2.2) is called positive if for any value of
the step size h, solution of the discrete system remains positive for all positive initial
values.

Definition 2.4. The finite difference method (2.2) is called elementary stable if for any
value of the step size h, the fixed points of the difference equation are those of the
differential system and the linear stability properties of each fixed point being the same
for both the differential system and the discrete system.

Definition 2.5 (See [12]). A method that follows the Mickens rules (given in the Defi-
nition 2.2) and preserves the positivity of the solutions is called positive and elementary
stable nonstandard (PESN) method.

The following properties are known for the ODE system (1.2) [5].
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(I) Positivity and boundedness: Solutions of this system are positive and bounded
when start with positive initial values.

(II) Equilibrium points and their existence: The continuous system (1.2) has three
fixed points. The trivial fixed point E0(0, 0) and the predator-free fixed point
E1(k, 0) always exist. The coexistence fixed point is described by E∗(x∗, y∗),

where x∗ =
d

α(1− c)(θ − hd)
and y∗ =

r(k − x∗)[1 + hα(1− c)x∗]
kα(1− c)

. It exists if

θ > hd and c < c0, where c0 = 1− d

kα(θ − hd)
.

(III) Local stability of the equilibrium points: The fixed point E0 is a saddle point. The
predator-free fixed point E1 is a saddle point if c < c0 and stable if c > c0. In
the latter case, the coexistence fixed point E∗ does not exist. The fixed point E∗

is stable if (i) α >
1 + hd

kh(1− hd)
, (ii)

hd(αkh+ 1)

(αkh− 1)
< θ < 1 and (iii) c1 < c < c0,

where c1 = 1− θ + hd

αkh(θ − hd)
, c0 = 1− d

αk(θ − hd)
and unstable for 0 < c < c1.

A Hopf bifurcation exists at c = c1.

3 Study of Discrete Models
In the following, we propose two discrete models formulated by nonstandard finite dif-
ference (NSFD) technique introduced by Mickens and Euler forward method and study
their dynamical behaviors.

3.1 Nonstandard Finite Difference Method
For convenience, we first express the continuous system (1.2) as follows:

dx

dt
= rx− r

k
x2 − P (x, y)x, (3.1)

dy

dt
= Q(x)y − dy,

where P (x, y) =
α(1− c)y

1 + αh(1− c)x
and Q(x) =

θα(1− c)x
1 + αh(1− c)x

. We employ the fol-

lowing nonlocal approximations termwise for the system (3.1):
dx

dt
→ xn+1 − xn

t
,

dy

dt
→ yn+1 − yn

t
,

x→ 2xn − xn+1, Q(x)y → Q(xn+1)(2yn − yn+1),
x2 → xnxn+1, y → yn+1,
P (x, y)x→ P (xn, yn)xn+1,

(3.2)
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where t (> 0) is the stepsize.
By these transformations, the continuous-time system (1.2) transforms to the system

xn+1 − xn
t

= r(2xn − xn+1)−
r

k
xnxn+1 −

α(1− c)ynxn+1

1 + αh(1− c)xn
, (3.3)

yn+1 − yn
t

=
θα(1− c)xn+1(2yn − yn+1)

1 + αh(1− c)xn+1

− dyn+1.

The above system can be rewritten as

xn+1 =
(1 + 2rt){1 + hα(1− c)xn}xn

[(1 + rt+ rtxn
k

){1 + hα(1− c)xn}+ tα(1− c)yn]
, (3.4)

yn+1 =
[1 + (h+ 2tθ)α(1− c)xn+1]yn

[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]
.

Since 0 < c < 1 and all other parameters are positive, all solutions of the discrete-time
system (3.4) remains positive for any stepsize if they start with positive initial values.
Therefore, the system (3.4) is positive.

3.1.1 Existence and Stability of Fixed Points

At the fixed point, we have xn+1 = xn = x and yn+1 = yn = y. From (3.3), the fixed
points are obtained by solving the following couple of equations:

r(2x− x)− rx2

k
− α(1− c)xy

1 + αh(1− c)x
= 0,

θα(1− c)x(2y − y)

1 + αh(1− c)x
− dy = 0.

We thus get three fixed points. The trivial fixed point E0(0, 0), the predator-free fixed
point E1(k, 0) and the coexistence fixed point E∗(x∗, y∗), where

x∗ =
d

α(1− c)(θ − hd)
,

y∗ =
r(k − x∗)[1 + hα(1− c)x∗]

kα(1− c)
.

Observe that the first two fixed points always exist, but the interior fixed point exists if

θ > hd and c < c0, where c0 = 1− d

kα(θ − hd)
. To show the local stability, we express

the system (3.4) for convenience as

xn+1 = f(xn, yn), (3.5)
yn+1 = g(xn+1, yn) = h(xn+1)yn,
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where

f(xn, yn) =
(1 + 2rt){1 + hα(1− c)xn}xn

[(1 + rt+ rtxn
k

){1 + hα(1− c)xn}+ tα(1− c)yn]
, (3.6)

g(xn+1, yn) =
[1 + (h+ 2tθ)α(1− c)xn+1]yn

[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]
,

h(xn+1) =
[1 + (h+ 2tθ)α(1− c)xn+1]

[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]
.

The variational matrix of the system (3.5) is given by

J(x, y) =

(
a11 a12
a21 a22

)
,

where

a11 =
∂f(xn, yn)

∂xn

=
(1 + 2rt){1 + hα(1− c)xn}

[(1 + rt+ rtxn
k

){1 + α(1− c)xn}+ tα(1− c)yn]

+
(1 + 2rt)hα(1− c)xn

[(1 + rt+ rtxn
k

){1 + hα(1− c)xn}+ tα(1− c)yn]

−
(1 + 2rt){1 + hα(1− c)xn}xn[ rt

k
+ (1 + rt)hα(1− c) + 2rthα(1−c)xn

k
]

[(1 + rt+ rxn
k

){1 + hα(1− c)xn}+ tα(1− c)yn]2
,

a12 =
∂f(xn, yn)

∂yn

= − (1 + 2rt){1 + hα(1− c)xn}xntα(1− c)
[(1 + rt+ rxn

k
){1 + hα(1− c)xn}+ tα(1− c)yn]2

,

a21 =
∂g(xn+1, yn)

∂xn

=
∂g(xn+1, yn)

∂xn+1

∂f(xn, yn)

∂xn

=
∂g(xn+1, yn)

∂xn+1

a11

=

[
(h+ 2tθ)α(1− c)yn

[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]

− [1 + (h+ 2tθ)α(1− c)xn+1]yn[(1 + td)αh(1− c) + tθα(1− c)]
[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]2

]
a11,

a22 = h(xn+1) +
∂g(xn+1, yn)

∂xn+1

∂f(xn, yn)

∂yn

= h(xn+1) +
∂g(xn+1, yn)

∂xn+1

a12

= h(xn+1) +

[
(h+ 2tθ)α(1− c)yn

[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]

− [1 + (h+ 2tθ)α(1− c)xn+1]yn[(1 + td)αh(1− c) + tθα(1− c)]
[(1 + td){1 + hα(1− c)xn+1}+ tθα(1− c)xn+1]2

]
a12.

(3.7)
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If λ1 and λ2 be the eigenvalues of the above variational matrix, we then have the fol-
lowing definition in relation to the stability of system (3.5).

Definition 3.1. A fixed point (x, y) of the system (3.5) is called stable if |λ1| < 1,
|λ2| < 1 and a source if |λ1| > 1, |λ2| > 1. It is called a saddle if |λ1| < 1, |λ2| > 1 or
|λ1| > 1, |λ2| < 1 and a nonhyperbolic fixed point if either |λ1| = 1 or |λ2| = 1.

Lemma 3.2 (See [40]). Let λ1 and λ2 be the eigenvalues of the variational matrix

J(x, y) =

(
a11 a12
a21 a22

)
.

Then |λ1| < 1 and |λ2| < 1 iff the following conditions hold:

(i)1− det(J) > 0, (ii)1− trace(J) + det(J) > 0 and (iii)0 < a11 < 1, 0 < a22 < 1.

Theorem 3.3. (a) The fixed point E0 is always a saddle point. It can’t be a source or
hyperbolic or even stable.

(b) The fixed point E1 is stable if c > c0 and it can not be a source. It is a saddle
point if c < c0 and there may exist a saddle-node bifurcation in the neighborhood
of c = c0.

(c) The coexistence fixed point E∗ is stable if

α >
(1 + hd)

kh(1− hd)
,
hd(αkh+ 1)

(αkh− 1)
< θ < 1 and c1 < c < c0,

where c1 = 1− θ + hd

αkh(θ − hd)
, c0 = 1− d

kα(θ − hd)
.

Proof. At the fixed point E0(0, 0), xn+1 = xn = 0 and yn+1 = yn = 0. The corre-
sponding variational matrix is given by

J(0, 0) =

 1 +
rt

1 + rt
0

0
1

1 + td

 .

So eigenvalues of J(0, 0) are λ1 = 1 +
rt

1 + rt
and λ2 =

1

1 + td
. Since |λ1| > 1 and

|λ2| < 1 for all t > 0, the fixed point E0 is always a saddle point and it can’t be a source
or a hyperbolic fixed point or even stable.

At the fixed point E1, the variational matrix is

J(k, 0) =

(
a11 a12
a21 a22

)
,
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where a11 = 1 − rt

1 + 2rt
, a12 = − tkα(1− c)

(1 + 2rt){1 + khα(1− c)}
, a21 = 0 and a22 =

[1 + kα(1− c)(h+ 2tθ)]

[(1 + td){1 + khα(1− c)}+ tθα(1− c)k
. The eigenvalues of the matrix J(k, 0) are

λ1 = a11 and λ2 = a22. Observe that λ1 = 1 − rt

1 + 2rt
is always less than unity

for any step size t > 0 and λ2 =
[1 + kα(1− c)(h+ 2tθ)]

(1 + td)(1 + khα(1− c)) + tθα(1− c)k
is always

positive. Thus, for any t > 0, λ2 < 1 if c > c0, where c0=1− d

kα(θ − hd)
. Clearly, the

fixed point E1 is stable if c > c0. In this case, however, E∗ does not exist. Since λ1 is
always less than unity, so E1 can not be a source. On the other hand, λ2 > 1 if c < c0.
Therefore, the fixed point E1 is saddle if c < c0. In this case E∗ exists. The fixed point
E1 is non-hyperbolic if c = c0, where λ2 = 1. Since λ1 and λ2 are always positive and
none of them can be equal to −1, so period doubling bifurcation, i.e., flip bifurcation
can not occur at the fixed point E1. When c = c0 then one of the eigenvalues is 1 and
the other one is neither +1 nor−1. Therefore, saddle–node bifurcation may occur when
parameter c is in the neighborhood of c0.

At the interior fixed point, xn+1 = xn = x∗ and yn+1 = yn = y∗. The corresponding
variational matrix is

J(x∗, y∗) =

(
a11 a12
a21 a22

)
, where

a11 = 1 − rtx∗A

kG(x∗, y∗)(θ − hd)
, a12 = −tα(1− c)x∗

G(x∗, y∗)
, a21 =

tα(1− c)(θ − hd)y∗

H(x∗, y∗)
a11,

a22 = 1 +
tα(1− c)(θ − hd)y∗

H(x∗, y∗)
a12, G(x∗, y∗) =

θ(1 + 2rt)

(θ − hd)
, H(x∗, y∗) =

θ(1 + 2td)

(θ − hd)
,

A = θ + hd− khα(1− c)(θ − hd).
Since 0 < θ < 1 and θ > hd, G(x∗, y∗) and H(x∗, y∗) are always positive. Thus,

1 − trace(J) + det(J)=
t2α2(1− c)2(θ − hd)x∗y∗

G(x∗, y∗)H(x∗, y∗)
is positive and the condition (ii) of

Lemma 3.1 is satisfied. After some algebraic computations, a11 can be expressed as

a11 = 1−
(

rt

1 + 2rt

)(
x∗

k

)(
A

θ

)
. It is easy to observe that whenever 0 < A < θ holds

then 0 < a11 < 1. The condition θ > A holds if c < c0, which is the existence condition
of E∗, and the condition A > 0 is satisfied if c > c1. Straightforward calculation gives

a22 = 1 −
(

rt

1 + 2rt

)(
dt

1 + 2dt

)(
θ − hd
θ

)(
k − x∗

k

)
. Using existence conditions

of E∗, one can verify that 0 < a22 < 1. Therefore, condition (iii) of Lemma 3.1 is

satisfied if c > c1. One can easily deduce that 1 − det(J) =
rtx∗A

kG(x∗, y∗)(θ − hd)
, and

it is positive if A > 0, i.e., if c > c1. Since 0 < c < 1, it will be more significant if we

assume c1 > 0 and it holds if
hd(αkh+ 1)

(αkh− 1)
< θ < 1, α >

(1 + hd)

kh(1− hd)
. Therefore, the
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interior fixed point exists and becomes stable if conditions of the Theorem (3.3) (c) are
satisfied. Hence the theorem.

3.1.2 Hopf Bifurcation

We already have, when c = c1 then detJ(x∗, y∗) = 1 and 0 < trace(J) < 2 in the
neighborhood of c = c1. Eigenvalues of J(x∗, y∗) are complex conjugate with modulus

1 when c = c1 and are given by λ1,2 =
−trace(J)± i

√
4− trace(J)

2
. So, the system

may experience a Hopf bifurcation at E∗ in the neighborhood of c = c1. The model
(3.4) under a perturbation c∗ at c = c1 becomes

xn+1 = f̄(xn, yn), (3.8)
yn+1 = ḡ(xn, yn),

where

f̄(xn, yn) =
[1 + 2rt][1 + hα(1− c1 − c∗)xn]xn

[(1 + rt+ rtxn
k

)(1 + hα(1− c1 − c∗)xn) + tα(1− c− c∗)yn]
,

ḡ(xn, yn) =
[1 + (h+ 2tθ)α(1− c− c∗)xn+1]yn

[(1 + td)(1 + hα(1− c1 − c∗)xn+1) + tθα(1− c− c∗)xn+1]
, |c∗| << 1.

Let u(n) = x(n) − x∗ and v(n) = y(n) − y∗ in the model (3.8), then we transform
the fixed point E∗ of the map (3.4) into origin. Expanding f̄(xn, yn) and ḡ(xn, yn) as a
Taylor series at (u,v)=(0,0) to the 2nd order, we have

un+1 = a11un + a12vn + b1u
2
n + b2unvn + b3v

2
n + o((|un|+ |vn|)3), (3.9)

vn+1 = a21un + a22vn + c1u
2
n + c2unvn + c3v

2
n + o((|un|+ |vn|)3),

where, a11 =
δf̄(x∗, y∗, 0)

δxn
, a12 =

δf̄(x∗, y∗, 0)

δyn
, b1 =

1

2

δ2f̄(x∗, y∗, 0)

δx2n
,

b2 =
1

2

δ2f̄(x∗, y∗, 0)

δxnyn
, b3 =

1

2

δ2f̄(x∗, y∗, 0)

δy2n
, a21 =

δḡ(x∗, y∗, 0)

δxn
, a22 =

δḡ(x∗, y∗, 0)

δyn
,

c1 =
1

2

δ2ḡ(x∗, y∗, 0)

δx2n
, c2 =

1

2

δ2ḡ(x∗, y∗, 0)

δxnyn
, c3 =

1

2

δ2ḡ(x∗, y∗, 0)

δx2n
.

The characteristic equation associated with the linearization of (3.9) at (un, vn) =
(0, 0) is given by

λ2 + p(c∗)λ+ q(c∗) = 0, (3.10)

where

p(c∗) = −2 +
rtd[θ + hd− kαh{1− (c1 + c∗)}(θ − hd)]

kθ(1 + 2rt)α{1− (c1 + c∗)}(θ − hd)
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+
rt2d(θ − hd)

kθ(1 + 2rt)(1 + 2dt)

[
k − d

α{1− (c1 + c∗)}(θ − hd)

]
,

q(c∗) = 1− rtd[θ + hd− kαh{1− (c1 + c∗)}(θ − hd)]

kθ(1 + 2rt)α{1− (c1 + c∗)}(θ − hd)
.

The roots of the characteristic equation (3.10) are

λ1,2 =
−p(c∗)± i

√
4q(c∗)− p2(c∗)
2

.

Therefore, |λ1,2| = (q(c∗))
1
2 . Since q(c∗) = 1 when c∗ = 0, we have |λ1,2| = 1 at

c∗ = 0. Consequently,

l =

(
d |λ1,2|
dc∗

)
c∗=0

= −1

2

kαrth2d(θ − hd)

θ(1 + 2rt)(θ + hd)
6= 0. (3.11)

Also, at c∗ = 0

λm1,2 6= 1 (3.12)

for m = 1, 2, 3, 4, which is equivalent to p(0) 6= −2,−1, 0, 1, 2. Since 0 < p(0) =

−2 +

(
rt

1 + 2rt

)(
dt

1 + 2dt

)(
θ − hd
θ

)(
k − d

α(1−c1)(θ−hd)

k

)
< 2, p(0) can not be

−2,−1, 0,−2, 1, because each of the four fractions is less than unity. Next we study
the normal form of (3.9) when c∗ = 0.
Let α = Re(λ) and β = Im(λ). We construct an invertible matrix

T =

(
a12 0

α− a11 −β

)
and consider the translation

(
un
vn

)
= T
(
Xn

Yn

)
.

Thus, the map (3.9) becomes(
Xn

Yn

)
→
(
α −β
β α

) (
Xn

Yn

)
+
(
F (Xn, Yn)
G(Xn, Yn)

)
,

where F (Xn, Yn) =
−β

det(T )
[{b1a212 + b2a12(α− a11) + b3(α− a11)2}X2

n + {−βb2a12−

2b3β(α−a11)}XnYn + b3β
2Y 2

n + o(un + vn)3], G(Xn, Yn) =
1

det(T )
[{B1a

2
12 +B2(α−

a11)a12+B3(α−a11)2}X2
n+{−B2a12β−2B3β(α−a11)}XnYn−B3βY

2
n +o(un+vn)3],

B1 = b1(−α + a11) + a12c1, B2 = b2(−α + a11) + a12c2, B3 = b3(−α + a11) + a12c3.
In order to undergo Hopf bifurcation, we require that the following discriminatory

quantity s be nonzero

s = −Re
[

(1− 2λ̄)λ̄2

(1− λ)
ξ11ξ20

]
− 1

2
||ξ11| |2 + ||ξ02| |2 + Re(λ̄ξ21),

where
ξ20 =

1

8
[FXX −GY Y + 2GXY + i(GXX −GY Y − 2FXY )],
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ξ11 =
1

4
[FXX + FY Y + i(GXX +GXY )],

ξ02 =
1

8
[FXX − FY Y + 2GXY + i(GXX −GY Y − 2FXY )],

ξ21 =
1

16
[FXXX +FXY Y +GXXY +GY Y Y + i(GXXX +GXY Y −FXXY −FY Y Y )],

FXX = − 2β

det(T )
[b1a

2
12 + b2a12(α− a11) + b3(α− a11)2],

FXY =
β

det(T )
[βb2a12 + 2b3β(α− a11)],

FY Y = − 2β

det(T )
[b3β

2],

GXX =
2

det(T )
[B1a

2
12 +B2(α− a11)a12 +B3(α− a11)2],

GXY = − 1

det(T )
[B2a12β + 2B3β(α− a11)],

GY Y = − B3β

det(T )
,

FXXX = GY Y Y = FXXY = GXXY = FXY Y = GXY Y = 0.
Thus, from the above analysis and from Guckenheimer and Holmes [19, Theorem
3.5.2], we have the following theorem.

Theorem 3.4. If the conditions (3.11) and (3.12) hold and s 6= 0, then the model system
(3.4) undergoes a Hopf bifurcation at E∗(x∗, y∗) when the parameter c∗ varies in a
small neighborhood of the origin. Moreover, if s < 0 (respectively s > 0), then an
attracting (respectively repelling) invariant closed curve bifurcates from E∗(x∗, y∗) for
c∗ > 0 (respectively c∗ < 0).

3.2 The Euler Forward Method
By Euler’s forward method, we transform the continuous model (1.2) in the following
discrete model:

xn+1 − xn
t

= xn

[
r

(
1− xn

k

)
− α(1− c)yn

1 + αh(1− c)xn

]
, (3.13)

yn+1 − yn
t

= yn

[
θα(1− c)xn

1 + αh(1− c)xn
− d
]
,

where t > 0 is the step size. Rearranging the above equations, we have

xn+1 = xn + txn

[
r

(
1− xn

k

)
− α(1− c)yn

1 + αh(1− c)xn

]
, (3.14)

yn+1 = yn + tyn

[
θα(1− c)xn

1 + αh(1− c)xn
− d
]
.
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It is to be noticed that the system (3.14) with positive initial values is not uncondition-
ally positive due to the presence of negative terms. The system may therefore exhibit
spurious behaviors and numerical instabilities.

3.2.1 Existence and Stability of Fixed Points

At fixed point, we substitute xn+1 = xn = x and yn+1 = yn = y. One can easily
compute that (3.14) has the same fixed points as in the previous case. The fixed point
E0(0, 0), E1(k, 0) always exist and the fixed point E∗(x∗, y∗) exists if θ > hd and

c < c0, where x∗ =
d

α(1− c)(θ − hd)
, y∗ =

r(k − x∗)[1 + hα(1− c)x∗]
kα(1− c)

and c0 =

1− d

kα(θ − hd)
.

The variational matrix of the system (3.14) at any arbitrary fixed point (x, y) is given
by

J(x, y) =

(
a11 a12
a21 a22

)
,

where a11 = 1 + t

[
r

(
1− x

k

)
− α(1− c)y

1 + αh(1− c)x

]
+ tx

[
− r

k
+

hα2(1− c)2y
{1 + αh(1− c)x}2

]
,

a12 = − tα(1− c)x
1 + αh(1− c)x

, a21 =
tθα(1− c)y

1 + αh(1− c)x
− tθα2(1− c)2xy

[1 + αh(1− c)x]2
, a22 = 1 +

t

[
θα(1− c)x

1 + αh(1− c)x
− d
]
.

Theorem 3.5. (a) The equilibrium point E0 is always unstable. It will be a saddle

point if t <
2

d
and a source if t >

2

d
.

(b) The equilibrium point E1 is stable if c > c0 and

t < min

{
2

r
,

2{1 + kαh(1− c)}
d− kα(1− c)(θ − hd)

}
.

It is a saddle point if c > c0 and
2{1 + kαh(1− c)}

[d− kα(1− c)(θ − hd)]
< t <

2

r
; or c > c0

and
2

r
< t <

2{1 + kαh(1− c)}
[d− kα(1− c)(θ − hd)]

.

It is a source if c > c0 and t > max

{
2

r
,

2{1 + kαh(1− c)}
d− kα(1− c)(θ − hd)

}
.

(c) Suppose that the interior fixed point E∗ exists. It is then locally asymptotically

stable if c1 < c < c0 and t < min

[
G

H
,

2

G

]
, where G =

rx∗

kθ
[θ + hd − khα(1 −

c)(θ − hd)], H =
rx∗

k
[kα(1− c)(θ − hd)− d].



152 N. Bairagi and M. Biswas

Proof. At the equilibrium point E0, the variational matrix reads as

J(0, 0) =

(
1 + rt 0

0 1− td

)
.

The eigenvalues are λ1 = 1 + rt and λ2 = 1 − td. Since one eigenvalue is greater

than unity, E0 is always unstable. Note that |λ2| < 1 if t <
2

d
and |λ2| > 1 if t >

2

d
.

Therefore, E0 is saddle if t <
2

d
and a source if t >

2

d
.

The variational matrix evaluated at the fixed point E1(k, 0) is given by

J(k, 0) =

(
a11 a12
a21 a22

)
,

where

a11 = 1− rt, a12 = − tα(1− c)k
1 + αh(1− c)k

, a21 = 0

and

a22 = 1 + t

[
θα(1− c)k

1 + αh(1− c)k
− d
]
.

It is easy to observe that eigenvalues are given by

λ1 = 1− rt

and

λ2 = 1 + t

[
θα(1− c)k

1 + αh(1− c)k
− d
]
.

Absolute value of these eigenvalues are less than unity if

t < min

{
2

r
,

2{1 + kαh(1− c)}
d− kα(1− c)(θ − hd)

}
.

Therefore, the system (3.14) is locally asymptotically stable around E1 if c > c0 and

t < min

{
2

r
,

2{1 + kαh(1− c)}
d− kα(1− c)(θ − hd)

}
. However, the absolute value of λ1 is greater

than unity if t >
2

r
and that of λ2 is greater than unity if t >

2{1 + kαh(1− c)}
d− kα(1− c)(θ − hd)

with c > c0. Therefore, E1 will be a source if c > c0 and c > c0 and

t > max

{
2

r
,

2{1 + kαh(1− c)}
d− kα(1− c)(θ − hd)

}
.

The equilibrium point E1 will be a saddle point if either of the following two conditions
holds:
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(i)
2{1 + kαh(1− c)}

[d− kα(1− c)(θ − hd)]
< t <

2

r
& c > c0; OR

(ii)
2

r
< t <

2{1 + kαh(1− c)}
[d− kα(1− c)(θ − hd)]

& c > c0.

At the interior equilibrium point E∗, the Jacobian matrix is evaluated as

J(x∗, y∗) =

(
a11 a12
a21 a22

)
,

where a11 = 1 − tG, a12 = −tα(1− c)(θ − hd)x∗

θ
, a21 =

rtθ(k − x∗)
k

, a22 = 1 and

a12a21 = −t2H with G =
rx∗

kθ
[θ+ hd− khα(1− c)(θ− hd)], H =

rx∗

k
[kα(1− c)(θ−

hd)− d]. One can compute that det(J) = 1− tG+ t2H and trace(J) = 2− tG.
The interior fixed point E∗ of the system (3.14) will be locally asymptotically stable

if the following three conditions are satisfied simultaneously [8]:

(i) 1− det(J) > 0, (ii) 1− trace(J) + det(J) > 0, (iii) 1 + trace(J) + det(J) > 0.

Note that 1 − trace(J) + det(J) = t2H > 0 as H is always positive following the
existence conditions of E∗. Thus, condition (ii) is satisfied. To verify (i), we observe

that 1 − det(J) is positive if t <
G

H
. As the step size is positive and H is always

positive, one can confer that 1 − det(J) is positive if G is positive, implying c > c1.
Simple computations give, 1 + trace(J) + det(J) = 2(2− tG) + t2H . This expression

will be positive if 0 < t <
2

G
. Therefore, coexistence equilibrium point E∗ exists and

becomes stable if c1 < c < c0, t < min

[
G

H
,

2

G

]
. Hence the theorem.

3.2.2 Hopf Bifurcation

We now show that the system (3.14) undergoes a Hopf bifurcation at the interior fixed
point E∗ if the following theorem holds.

Theorem 3.6. Discrete system (3.14) undergoes a Hopf bifurcation at the interior fixed

point E∗ when t =
G

H
and satisfies the transversality and nonresonance conditions.

Proof. To prove this we have to show that the jacobian matrix J(x∗, y∗) has a pair

of complex conjugate eigenvalues in the neighborhood of t =
G

H
and the following

conditions hold:

(i) |λ1,2| = 1 if t =
G

H
,
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(ii)
d|λ1,2|
dt

∣∣∣∣
t=G

H

6= 0 (transversality condition),

(iii)
(
λ1,2

)s
6= 1 for all s = 1, 2, 3, 4 (nonresonance conditions).

Eigenvalues of the jacobian matrix J(x∗, y∗) are λ1,2 =
2− tG+ t

√
G2 − 4H

2
. There-

fore, λ1,2 are complex conjugate if G2 − 4H < 0, i.e., if −2
√
H < G < 2

√
H . Since

G = tH > 0, the previous inequality becomes 0 < G < 2
√
H . The modulus of

λ1,2 is equal to unity if detJ = 1, i.e., if t =
G

H
. Therefore, the Jacobian matrix

J(x∗, y∗) has complex conjugate roots with modulus one if parameters belong to the

set U={(r, k, α, θ, h, c, d): 0 < G < 2
√
H , t =

G

H
}. Clearly,

d|λ1,2|
dt

∣∣∣∣
t=G

H

=
G

2
6= 0.

Now
(
λ1,2

)s
6= 1 for all s = 1, 2, 3, 4, which is equivalent to traceJ(x∗, y∗)

∣∣∣∣
t=G

H

6=

−2,−1, 0, 1, 2. Since, TraceJ(x∗, y∗)

∣∣∣∣
t=G

H

=
2H −G2

H
which will not be equal to

−2,−1, 0, 1, 2 if G2 6= 0, 4H, 3H, 2H,H . From the set U , it is clear that G2 can not be
equal to 0 or 4H . As G = tH and 0 < t < 1, G2 can not be equal to 3H or 2H or H .
Hence the theorem.

4 Numerical Simulations
In this section we present some numerical simulations to validate our analytic results
of the NSFD discrete system (3.4) and the Euler system (3.14) with their continuous
counterpart (1.2). For this experiment, we consider the following parameters set of the
well studied predator–prey interaction Paramecium aurelia and Didinium nasutum as
considered in [5]:

r = 2.65, K = 898, h = 0.0437, α = 0.045, d = 1.06, θ = 0.215.

The step size is kept fixed as t = 0.1 in all simulations, if not stated otherwise. We con-
sider the initial values I1 = (15, 5.83) and I2 = (45, 15), as it were in the experimental
setup [31] and [44], respectively. We consider few other initial values I3 = (800, 70),
I4 = (700, 140) and I5 = (50, 160) for further verification. For the above param-
eter set, we find different critical values of c as c1 = 0.1227, c0 = 0.8445. The
interior fixed point and predator-free fixed points are evaluated as E∗ = (x∗, y∗) =
(253.9056, 121.8967) and E1 = (898, 0). We first reproduce the bifurcation diagram
(Fig. 4.1) of the continuous system (1.2) with respect to the parameter c as in [5] by
using ODE45 of the software Matlab 7.11.
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Figure 4.1: Bifurcation diagrams of system populations (1.2) with c as the bifurca-
tion parameter. These figures show that both the prey and predator populations are
unstable for c ∈ [0, c1) and stable for c ∈ (c1, c0). Prey populations reaches to its
carrying capacity and predator populations go to extinction if c > c0. Parameters are
r = 2.65, K = 898, h = 0.0437, α = 0.045, d = 1.06 and θ = 0.215. Here c1 = 0.1227
and c0 = 0.8445.
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Figure 4.2: Profiles of prey and predator populations of NSFD system (3.4) for c = 0.04
(Fig. a), c = 0.45 (Fig. b) and c = 0.85 (Fig. c). Here time step is t = 0.1 and other
parameters are as in the Fig. 4.1.

Following the analytical results stated in Section 2, the bifurcation diagrams show
that the equilibrium E∗ is unstable for 0 < c < c1 and stable for c1 < c < c0. The
predator-free equilibrium E1 is stable for c > c0. Thus, all species coexist in stable
state at intermediate degree of complexity (c1 < c < c0) and coexist in oscillatory state
at lower degree of complexity (0 < c < c1). Predator population goes to extinction
and the prey population reaches to its carrying capacity at higher degree of complexity
c > c0.

Representative behavior of trajectories of the NSFD system (3.4) for low (0 < c <
c1), intermediate (c1 < c < c0) and high (c > c1) structural complexity are presented
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in the Fig. 4.2. The first figure (Fig. 4.2a) shows that solutions starting from different
initial points converge to the stable limit cycle for lower value of c = 0.04. All solutions
converge to the stable coexistence equilibrium E∗ for intermediate value of c = 0.45
(Fig. 4.2b). However, the predator population goes to extinction and the prey population
reaches to its carrying capacity at higher value of c = 0.85 (Fig. 4.2c), depicting the
stability of the equilibrium E1.
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Figure 4.3: Bifurcation diagrams of prey population (Fig. a) and predator population
(Fig. b) of NSFD model (3.4) with c as the bifurcation parameter with step size t = 0.1.
The same have been plotted with step size t = 3 (Figs. c & d). These figures show that
both the prey and predator populations oscillate for c ∈ (0, c1) and stable for c ∈ (c1, c0).
The predator-free equilibrium E1 is stable for c > c0. Figures (a) & (c) are qualitatively
same; similar is the case for (b) & (d). Thus, NSFD scheme is independent of step size.
All parameters are as in Fig. 4.1.

Dynamics of the system (3.4) for varying c can be succinctly represented by the
bifurcation diagram Fig. 4.3. It shows that all populations oscillate for 0 < c < c1
and coexist in stable state for c1 < c < c0. If c > c0, then predator-free equilibrium is
stable. This figure shows that NSFD model (3.4) exhibit the same behavior as that of
the continuous model (1.2) (compare Figs. 4.3 (a,b) with Figs.4.1 (a,b)) and therefore
dynamically consistent. We have plotted the same bifurcation diagrams with step size
t = 3 (Figs. 4.3(c), 4.3(d)). The qualitative behavior remains same in both cases,
implying that NSFD scheme is independent of step size.

We plot the bifurcation diagram of Euler discrete system (3.14) in Fig. 4.4 with same
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step size t = 0.1. It shows that stability change does not occur at the lower critical value
c = c1 but at a latter value of c. Thus, Euler’s scheme is not dynamically consistent with
its continuous counterpart.
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Figure 4.4: Bifurcation diagram of the prey population (Fig. 4.4a) and that of the preda-
tor population (Fig. 4.4b) in Euler’s discrete system (3.14) with step size t = 0.1.
Parameters are as in the Fig. 4.1. Though parameters of Fig. 4.2 and Fig. 4.4 are
same, populations in Fig. 4.4 stabilize at much higher value than c1, implying dynamic
inconsistency of the system (3.14) with the original continuous system (1.2)

.
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Figure 4.5: Figs. (a), (b) and (c) represent, respectively, the time series solutions of
the systems (1.2), (3.4) and (3.14) for c = 0.3. In Figs. (b), (c) step size are taken as
t = 0.23 and Fig. (a) is plotted by using ODE45 of Matlab 7.11. The first two figures
show that both populations are stable and thus NSFD model is dynamically consistent
with the continuous system. But the last figure shows that populations are unstable,
indicating the inconsistency of the Euler system with its continuous counterpart.

According to the results of the continuous system (1.2), solutions should converge to
the stable equilibrium E∗ for the intermediate value c = 0.3 (Fig.4.5a). Though NSFD
system (3.4) converges to the interior equilibrium E∗ (Fig.4.5b), Euler discrete system
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(3.14) oscillates around E∗ (Fig.4.5c). These results indicate the dynamic consistency
of NSFD system and inconsistency of Euler system with its continuous counterpart.
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Figure 4.6: Bifurcation diagrams of prey population of Euler forward model (3.14) (Fig.
a) and NSFD model (3.4) (Fig. b) with stepsize t as the bifurcation parameter. Here
c = 0.45 and all the parameters and initial point are same as in Fig. 4.1. The first figure
shows that the prey population is stable for small stepsize t and unstable for higher value
of t. The second figure shows that the prey population is stable for all stepsize t.

To compare stepsize dependency of the Euler model and NSFD model, we have
plotted the solutions of the systems (3.14) and (3.4) considering the stepsize t as a vari-
able parameter (Fig. 4.6) for a fixed intermediate value of c = 0.45. It is to be recalled
(see Fig. 4.2) that the continuous system (1.2) is stable at this intermediate value of
complexity, c = 0.45. Fig. 4.6a shows that solution behavior of Euler’s model depends
on the stepsize. If stepsize is small, system population is stable and it resembles with the
continuous system (1.2). As stepsize is increased, system population begins to fluctuate
and thus shows spurious behaviors. However the second figure (Fig. 4.6b) shows that
NSFD model (3.4) remains stable for all t, indicating independency of stepsize.

5 Summary
Nonstandard finite difference method (NSFD) scheme has gained lot of attentions in
the last few years because it generally does not show spurious behavior as compared to
other standard finite difference methods. It can also improve the accuracy and reduce
computational costs of traditional finite-difference schemes. In this work, we have stud-
ied two discrete systems by using NSFD scheme and forward Euler scheme of a well
studied two-dimensional continuous predator–prey system that considers the effect of
habitat complexity. We have shown that dynamics of the discrete system formulated by
NSFD scheme are same as that of the continuous system. It preserves the local stability
of all the fixed points and the positivity of the solutions of the continuous system for
any step size. Simulation experiments show that NSFD system always converge to the
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correct steady-state solutions for any arbitrary large value of step size (t) in accordance
with the theoretical results. However, the discrete model formulated by forward Euler
method does not show consistency with its continuous counterpart. Rather it shows
scheme-dependent instability when stepsize restriction is violated.
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