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Abstract

We investigate the boundedness and persistence of solutions, the global sta-
bility of the positive fixed point and the occurrence of periodic solutions for the
quadratic rational difference equation

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + C

with nonnegative parameters and initial values. We obtain sufficient conditions
that imply the global asymptotic stability of a positive fixed point. We also obtain
necessary and sufficient conditions for the occurrence of solutions of prime period
2 when γ, aA + B > 0. Global convergence of solutions of planar systems of
rational equations are studied by folding these systems to equations of the above
type.

AMS Subject Classifications: 39A05, 39A23, 39A30.
Keywords: Difference equations, quadratic rational difference equations, global stabil-
ity, periodic solutions.

1 Introduction
We investigate the dynamics of the second-order equation

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(1.1)
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where
0 ≤ a < 1, α, β, γ, A,B ≥ 0, α + β + γ,A+B,C > 0. (1.2)

Equation (1.1) is a quadratic-fractional equation since it can be written as

xn+1 =
aAx2

n + aBxnxn−1 + (aC + α)xn + βxn−1 + γ

Axn +Bxn−1 + C
(1.3)

and (1.3) is a special case of the equation

xn+1 =
px2

n + qxnxn−1 + δx2
n−1 + c1xn + c2xn−1 + c3

Axn +Bxn−1 + C
(1.4)

which includes rational equations that are the sum of linear equation and a linear frac-
tional equation mentioned in [5]:

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
.

When a = 0, (1.1) reduces to linear fractional case that has been studied extensively;
see, e.g., [12] and references therein. More recently, second-order linear fractional equa-
tions have appeared in [1, 2].

The study of rational equations with quadratic terms is less extensive, but recently
they have been of increasing interest; see, e.g., [5–7, 9, 11, 16]. Some instances where
quadratic terms appear in the denominator have been studied in [3, 15].

In this paper we show that when (1.2) holds then (1.1) typically does not have pe-
riodic solutions of period greater than 2. Further, we show that if solutions of period
2 do not occur then the solutions of (1.1) converge to the unique positive fixed point.
When aA + B, γ > 0 we obtain necessary and sufficient conditions for the occurrence
of periodic solutions and in particular prove that such solutions may appear if and only
if the positive fixed point is a saddle.

In the final section we apply the results obtained for (1.1) to rational planar systems
of type

xn+1 = axn + byn + c (1.5)

yn+1 =
a′xn + b′yn + c′

a′′xn + b′′yn + c′′
(1.6)

by folding the system into an equation of type (1.1). Our use of this method (discussed
below) is not standard in the published literature and leads to new results. We derive
sufficient conditions on the parameters of (1.5)–(1.6) that imply global convergence of
orbits initiated in the positive quadrant to a unique fixed point. In a new twist, we see
that this behavior occurs even if some of the parameters in (1.5)–(1.6) are negative.
In such a case the positive quadrant is not invariant but avoidance of singularities by
the aforementioned orbits is assured by the existence of a corresponding solution for
(1.1) which does not have any singularities under assumptions (1.2). We briefly discuss
applications to biological models of species populations and pose conjectures for future
research.
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2 Existence and Boundedness of Solutions
When (1.2) holds we may assume that C = 1 in (1.1) without loss of generality by
dividing the numerator and denominator of the fractional part by C and relabeling the
parameters. Thus we consider

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
. (2.1)

Note that the underlying function

f(u, v) = au+
αu+ βv + γ

Au+Bv + 1

is continuous on [0,∞) × [0,∞). The next result gives sufficient conditions for the
positive solutions of (2.1) to be uniformly bounded from above and below by positive
bounds.

Lemma 2.1. Let (1.2) hold and assume further that

α = 0 if A = 0 and β = 0 if B = 0. (2.2)

Then the following are true:

(a) Every solution {xn} of (2.1) with nonnegative initial values is uniformly bounded
from above, i.e., there is a number M > 0 such that xn ≤M for all n sufficiently
large.

(b) If γ > 0 then there is L ∈ (0,M) such that L ≤ xn ≤ M for all large n.
Moreover, [L,M ] is an invariant interval for (2.1).

Proof. (a) Let

ρ1 =

{
α/A if A > 0
0 if A = 0

ρ2 =

{
β/B if B > 0
0 if B = 0

By (1.2), δ = ρ1 + ρ2 + γ > 0 and for all n ≥ 0

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
≤ axn + ρ1 + ρ2 + γ = axn + δ.

Thus

x1 ≤ ax0 + δ

x2 ≤ ax1 + δ ≤ a2x0 + δ(1 + a).
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Proceeding this way inductively, we obtain

xn ≤ anx0 + δ(1 + a+ . . .+ an−1)

= anx0 + δ
1− an

1− a

=
δ

1− a
+ an

[
x0 −

δ

1− a

]
.

For every ε > 0 there is a positive integer N such that if n ≥ N then the right hand side
above is less than δ/(1− a) + ε. In particular, if ε = a/(1− a) then for all n ≥ N ,

xn ≤
δ

1− a
+

a

1− a
=
δ + a

1− a
:= M.

(b) Suppose that γ > 0. Then for all n > N

xn ≥
γ

(A+B)M + 1
:= L.

To verify that L < M we observe that

M ≥ (1− a)M = a+ δ ≥ a+ γ > a+ L ≥ L.

Finally, we establish that f(u, v) ∈ [L,M ] for all u, v ∈ [L,M ]. If u, v ∈ [L,M ] then

f(u, v) ≤ aM + δ =
aδ + a2

1− a
+ δ =

δ + a2

1− a
≤ δ + a

1− a
= M.

Further,

f(u, v) ≥ γ

(A+B)M + 1
= L for all 0 ≤ u, v ≤M

and the proof is complete.

We emphasize that conditions (2.2) allow A > 0 with α = 0 and B > 0 with β = 0.
More instances of invariant intervals for the special case a = 0 can be found in [12].

Remark 2.2. If a ≥ 1 then the solutions of (2.1) may not be uniformly bounded. In
fact, all nontrivial solutions of (2.1) are unbounded since xn+1 ≥ axn for all n if a > 1.
When a = 1 solutions may still be unbounded as is readily seen in the following, first-
order special case:

xn+1 = xn +
αxn

Axn + 1
.
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3 Existence and Local Stability of Unique Positive Fixed
Points

The fixed point of (2.1) must satisfy the following equation:

x = ax+
αx+ βx+ γ

Ax+Bx+ 1
.

Combining and rearranging terms yields

(1− a)(A+B)x2 − [α + β − (1− a)]x− γ = 0

i.e., the fixed points must be the roots of the quadratic equation

S(t) = d1t
2 − d2t− d3 (3.1)

where
d1 = (1− a)(A+B), d2 = α + β − (1− a), d3 = γ.

If (1.2) holds then d1 > 0 and d3 ≥ 0. There are two more cases to consider.
Case 1: If d2 = 0 then (3.1) has two roots given by

t± = ±
√
d3

d1

.

Thus if γ > 0 then the unique positive fixed point of (2.1) is

x̄ =

√
γ

(1− a)(A+B)
.

Case 2: When d2 6= 0 then the roots of (3.1) are given by

t± =
α + β − (1− a)±

√
[α + β − (1− a)]2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
.

In particular, if γ > 0 then the unique positive fixed point of (2.1) is

x̄ =
α + β − (1− a) +

√
[α + β − (1− a)]2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
. (3.2)

The above discussions imply the following.

Lemma 3.1. If (1.2) holds and γ > 0 then (2.1) has a positive fixed point x̄ that is
uniquely given by (3.2).
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We now consider the local stability of x̄ under the hypotheses of the above lemma.
The characteristic equation associated with the linearization of (2.1) at the point x̄ is
given by

λ2 − fu(x̄, x̄)λ− fv(x̄, x̄) = 0 (3.3)

where

f(u, v) = au+
αu+ βv + γ

Au+Bv + 1

with

fu = a+
α(Au+Bv + 1)− A(αu+ βv + γ)

(Au+Bv + 1)2
= a+

(Bα− Aβ)v + α− Aγ
(Au+Bv + 1)2

and

fv =
β(Au+Bv + 1)−B(αu+ βv + γ)

(Au+Bv + 1)2
=

(Aβ −Bα)u+ β −Bγ
(Au+Bv + 1)2

.

Define

fu(x̄, x̄) = a+
α− (1− a)Ax̄

(A+B)x̄+ 1
:= p

fv(x̄, x̄) =
β − (1− a)Bx̄

(A+B)x̄+ 1
:= q

and note that the fixed point x̄ is locally asymptotically stable if both roots of (3.3),
namely,

λ1 =
p−

√
p2 + 4q

2
and λ2 =

p+
√
p2 + 4q

2

are inside the unit disk of the complex plain. Both roots are complex if and only if
p2 + 4q < 0 or q < −(p/2)2. In this case, |λ1| = |λ2| = −q so both roots have modulus
less than 1 if and only if q > −1 or equivalently, q + 1 > 0, i.e.,

β − (1− a)Bx̄+ (A+B)x̄+ 1 > 0

(A+ aB)x̄+ β + 1 > 0.

This is clearly true if (1.2) holds. So if (1.2) holds and γ > 0 and if −1 < q < −p2/4
then x̄ is locally asymptotically stable with complex roots or eigenvalues.

Now suppose that q ≥ −p2/4 and the eigenvalues are real. First, observe that
p+ q < 1, or equivalently

[(2a− 1)A+ aB]x̄+ α− (A+B)x̄− (1− a) + β − (1− a)Bx̄ < 0

2(1− a)(A+B)x̄ > α + β − (1− a) (3.4)
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which is true if (1.2) holds and γ > 0; see (3.2). Next, note that p < 2. To see this,
p− 2 < 0 if and only if

α− (1− a)Ax̄− (2− a)[(A+B)x̄+ 1] < 0. (3.5)

Since by (3.4)

(2− a)(A+B)x̄ = 2(1− a)(A+B)x̄+ a(A+B)x̄

> α + β − (1− a) + a(A+B)x̄

it follows that

α− (1− a)Ax̄− (2− a)[(A+B)x̄+ 1]

= −(1− a)Ax̄− (2− a) + α− (2− a)(A+B)x̄

< −(1− a)Ax̄− (2− a)− β + (1− a)− a(A+B)x̄

= −(1− a)Ax̄− 1− β − a(A+B)x̄

< 0.

This proves that (3.5) is true. Finally, p > −2, since this is equivalent to

α− (1− a)Ax̄ > −(2 + a)[(A+B)x̄+ 1]

or
(1 + 2a)Ax̄+ (2 + a)Bx̄ > −α− (2 + a)

which is true if 1.2 holds and γ > 0.
Now, a routine calculation shows that λ2 < 1 if and only if q < 1 − p, which is

indeed the case by the above. Next, λ2 > −1 if and only if

p+
√
p2 + 4q > −2. (3.6)

If p > −2 then (3.6) holds trivially. On the other hand, if p ≤ −2 or p+ 2 ≤ 0 then

(2 + a)[(A+B)x̄+ 1] + α− (1− a)Ax̄ ≤ 0

(1 + 2a)Ax̄+ (2 + a)(Bx̄+ 1) + α ≤ 0

which is not possible if (1.2) holds. It follows that |λ2| < 1 if (1.2) holds and γ > 0.

Next, consider λ1 and note that λ1 < 1 if and only if p −
√
p2 + 4q < 2. This is

clearly true if p < 2 which is in fact the case and we conclude that λ1 < 1 if (1.2) holds
and γ > 0.

Next, λ1 > −1 if and only if

p−
√
p2 + 4q > −2.
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This requires that p > −2 which is true if (1.2) holds and γ > 0. Now the above
inequality reduces to p+ 1 > q or

β − (1− a)Bx̄− a[(A+B)x̄+ 1]− α + (1− a)Ax̄ < (A+B)x̄+ 1

β − α− (1 + a) < 2(aA+B)x̄. (3.7)

We also note that if the reverse of the above inequality holds, i.e.,

2(Aa+B)x̄ < β − α− (1 + a). (3.8)

then the above calculation show that λ1 < −1 while |λ2| < 1. Therefore in this case
x̄ is a saddle point. If β − α − (1 + a) ≤ 0 then (3.8) does not hold and x̄ is locally
asymptotically stable.

The preceding calculations in particular prove the following.

Lemma 3.2. Let (1.2) hold and γ > 0. Then the positive fixed point x̄ of (2.1) is locally
asymptotically stable if and only if (3.7) holds and a saddle point if and only if the
reverse inequality, i.e., (3.8), holds.

Since x̄ is nonhyperbolic if neither (3.7) nor (3.8) holds, Lemma 3.2 gives a complete
picture of the local stability of x̄ under its stated hypotheses.

3.1 Global Stability and Convergence of Solutions
In this section, we discuss global convergence to the positive fixed point and start by
quoting the following familiar result from [10].

Lemma 3.3. Let I be an open interval of real numbers and suppose that f ∈ C(Im,R)
is nondecreasing in each coordinate. Let x̄ ∈ I be a fixed point of the difference equa-
tion

xn+1 = f(xn, xn−1, . . . , xn−m+1) (3.9)

and assume that the function h(t) = f(t, . . . , t) satisfies the conditions

h(t) > t if t < x̄ and h(t) < t if t > x̄, t ∈ I. (3.10)

Then I is an invariant interval of (3.9) and x̄ attracts all solutions with initial values in
I.

We now use the preceding result to obtain sufficient conditions for the global attrac-
tivity of the positive fixed point.

Theorem 3.4. (a) Assume that (1.2) holds with γ > 0 and suppose that f(u, v) is
nondecreasing in both arguments. Then (2.1) has a unique fixed point x̄ > 0 that
is asymptotically stable and attracts all positive solutions of (2.1).
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(b) Assume that (1.2) holds with γ > 0 and

Bα ≤ Aβ ≤ Bα + 2aB, Aγ ≤ a+ α, Bγ ≤ β. (3.11)

Then (2.1) has a unique fixed point x̄ > 0 that is asymptotically stable and attracts
all positive solutions of (2.1).

Proof. (a) The existence and uniqueness of x̄ > 0 follows from Lemma 3.1. Next, the
function h in (3.10) takes the form

h(t) = at+
(α + β)t+ γ

(A+B)t+ 1
.

Note that the fixed point x̄ of (2.1) is a solution of the equation h(t) = t so we verify
that conditions (3.10) hold. For t > 0 the function h may be written as

h(t) = φ(t)t, where φ(t) = a+
α + β + γ/t

(A+B)t+ 1
.

Note that φ(x̄) = h(x̄)/x̄ = 1. Further,

φ′(t) =
−[(A+B)t+ 1]γ/t2 − (A+B)[α + β + γ/t]

[(A+B)t+ 1]2

so φ is decreasing (strictly) for all t > 0. Therefore,

t < x̄ implies h(t) = φ(t)t > φ(x̄)t = t,

t > x̄ implies h(t) = φ(t)t < φ(x̄)t = t.

Now by Lemma 3.3 x̄ attracts all positive solutions of (2.1). In particular, x̄ is not a
saddle point so by Lemma 3.2 it is asymptotically stable.

(b) We show that if the inequalities (3.11) hold then the function

f(u, v) = au+
αu+ βv + γ

Au+Bv + 1

is nondecreasing in each of its two coordinates u, v. This is demonstrated by computing
the partial derivatives fu and fv to show that fu ≥ 0 and fv ≥ 0. By direct calculation
fu ≥ 0 iff

a(Au+Bv)2 + 2aAu+ (2aB +Bα− Aβ)v + a+ α− Aγ ≥ 0.

The above inequality holds for all u, v > 0 if

2aB +Bα− Aβ ≥ 0, Aγ ≤ a+ α. (3.12)
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Similarly, fv ≥ 0 iff
(Aβ −Bα)u+ β −Bγ ≥ 0

which is true for all u, v > 0 if

Aβ −Bα ≥ 0, Bγ ≤ β. (3.13)

By the inequalities (3.12) and (3.13), conditions (3.11) are sufficient for f to be nonde-
creasing in each of its coordinates. The rest follows from (a).

The next two results from [12] are stated as lemmas for convenience.

Lemma 3.5. Let [a, b] be an interval of real numbers and assume that f : [a, b]×[a, b]→
[a, b] is a continuous function satisfying the following properties:

(a) f(x, y) is nonincreasing in x ∈ [a, b] for each y ∈ [a, b] and f(x, y) is nonde-
creasing in y ∈ [a, b] for each x ∈ [a, b];

(b) Equation (3.14) has no prime period two solution in [a, b].

Then the difference equation
xn+1 = f(xn, xn−1) (3.14)

has a unique fixed point x̄ ∈ [a, b] and every solution converges to x̄.

Lemma 3.6. Let [a, b] be an interval of real numbers and assume that f : [a, b]×[a, b]→
[a, b] is a continuous function satisfying the following properties:

(a) f(x, y) is nondecreasing in x ∈ [a, b] for each y ∈ [a, b] and f(x, y) is nonin-
creasing in y ∈ [a, b] for each x ∈ [a, b];

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m and f(M,m) = M

it follows that m = M .

Then (3.14) has a unique fixed point x̄ ∈ [a, b] and every solution converges to x̄.

Theorem 3.7. (a) Let (1.2) hold with γ > 0 and further assume that α = 0 if A = 0.
If f(u, v) is nondecreasing in u and nonincreasing in v, then (2.1) has a positive
fixed point x̄ that attracts every solution with nonnegative initial values.

(b) If (1.2) holds with γ,A,B > 0 and

α

A
≥ γ ≥ β

B
(3.15)

then (2.1) has a unique positive fixed point x̄ that is asymptotically stable and
attracts all solutions of (2.1).
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Proof. (a) Note that by hypothesis fv ≤ 0 and this implies that β = 0 if B = 0.
Now Lemma 2.1 implies that for arbitrary positive initial values there are real numbers
L0,M0 > 0 and a positive integer N such that xn ∈ [L0,M0] for n ≥ N . Therefore, to
prove the global attractivity of x̄ we need only show that the hypotheses of Lemma 3.6
are satisfied with [a, b] = [L0,M0].

Next, consider the system

f(m,M) = m and f(M,m) = M.

Clearly, m = M = x̄ is a solution to the above system. If we assume that m 6= M , then
the above system will have a positive solution if m,M > 0 and satisfy the following
equations:

m = am+
αm+ βM + γ

Am+BM + 1
(3.16a)

M = aM +
αM + βm+ γ

AM +Bm+ 1
. (3.16b)

From (3.16a) we get

(1− a)(Am2 +BMm+m) = αm+ βM + γ. (3.17)

Similarly, from (3.16b) we get

(1− a)(AM2 +BMm+M) = αM + βm+ γ. (3.18)

Taking the difference of both sides of the above two equations in (3.17) and (3.18) yields

(1− a)[A(M2 −m2) + (M −m)] = α(M −m) + β(m−M)

(1− a)(M −m)(A(m+M) + 1) = (M −m)(α− β).

When A = α = 0, then the last expression implies that the system f(m,M) =
m f(M,m) = M has no positive solution besides M = m = x̄ and we are done.
We next assume that A > 0. Since M 6= m we get

(1− a)A(m+M) = α− β − (1− a). (3.19)

From (3.19) we infer that α−β−(1−a) > 0, or stated differently, when α−β−(1−a) ≤
0, then the above system has no positive solution besides m = M = x̄. Next, we sum
the equations in (3.17) and (3.18) to get

(1− a)A(m2 +M2) + 2(1− a)BMm = (α + β − (1− a))(M +m) + 2γ.

Adding and subtracting 2A(1− a)Mm from the left hand side of the above yields

(1− a)A(m+M)2 + 2(1− a)(B − A)Mm = (α + β − (1− a))(M +m) + 2γ.
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Thus

2(1− a)(B − A)Mm = (M +m) [(α + β − (1− a)− (1− a)A(M +m)] + 2γ

= (M +m) [(α + β − (1− a)− α + β + (1− a)] + 2γ

=
2β(α− β − (1− a))

(1− a)A
+ 2γ

i.e.,

(1− a)(B − A)Mm =
β[α− β − (1− a)]

(1− a)A
+ γ

from which we infer that B − A > 0, since the right hand side of (3.20) is positive.
Stated differently, this implies that when B < A, the above system has no positive
solution besides m = M = x̄.

Now, let

m+M =
α− β − (1− a)

(1− a)A
:= P

and

Mm =
β(α− β − (1− a))

(1− a)2A(B − A)
+

γ

(1− a)(B − A)
:= Q.

Then m = P −M and M(P −M) = Q. Similarly, M = P −m and m(P −m) = Q.
Thus M and m must be the roots of the quadratic equation

S(t) = t2 − Pt+Q.

Therefore, for the roots of S(t) to be real, we require that P 2 − 4Q > 0, i.e.,

[α− β − (1− a)]2

(1− a)2A2
− 4β[α− β − (1− a)]

(1− a)2A(B − A)
− 4γ

(1− a)(B − A)
> 0

which is equivalent to

4γ(1− a)

B − A
<
α− β − (1− a)

A

[
α− β − (1− a)

A
− 4β

B − A

]
. (3.20)

Now
α− β − (1− a)

A
− 4β

B − A
=

(B − A) [α− β − (1− a)]− 4Aβ

A(B − A)

and

(B − A)[α− β − (1− a)]− 4Aβ

= (B − A)[α− β − (1− a)]− 4Aβ

+ A[α− β − (1− a)]− A[α− β − (1− a)]

= (A+B)[α− β − (1− a)]− 2A[α + β − (1− a)].
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Thus the inequality in (3.20) becomes

4γ(1− a)

B − A
<
α− β − (1− a)

A

[
α− β − (1− a)

A
− 4β

B − A

]
=
α− β − (1− a)

A2(B − A)
[(A+B)[α− β − (1− a)]− 2A[α + β − (1− a)]] .

Multiplying both sides by (B − A)(A+B) yields

4γ(1− a)(A+B)

<
(A+B)2

A2
[α− β − (1− a)]2 − 2(A+B)

A
[α + β − (1− a)][α− β − (1− a)].

Adding [α + β − (1− a)]2 to both sides we get

[α + β − (1− a)]2 + 4γ(1− a)(A+B)

< [α + β − (1− a)]2 − 2(A+B)

A
[α + β − (1− a)][α− β − (1− a)]

+
(A+B)2

A2
[α− β − (1− a)]2

= [α + β − (1− a)− A+B

A
(α− β − (1− a))]2

< [α + β − (1− a)− (α− β − (1− a)]2 = 4β2

which implies that

[α + β − (1− a)]2 + 4γ(1− a)(A+B)− 4β2 < 0. (3.21)

But since for the above system to have a solution, α−β−(1−a) > 0, then α−(1−a) >
β. This implies that the inequality in (3.21) is false (i.e., the roots of S(t) cannot be real),
as

[α + β − (1− a)]2 + 4γ(1− a)(A+B)− 4β2 > (2β)2 + 4γ(1− a)(A+B)− 4β2

= 4γ(1− a)(A+B) > 0.

Thus the system f(m,M) = m, f(M,m) = M has no positive solution wherem 6= M .
Lemma 2.1 implies that for arbitrary positive initial values, there is an integer N such
that xn ∈ [L,M ] for n > N , so with [a, b] = [L,M ] and xN and xN+1 as initial values,
xn must converge to x̄ by Lemma 3.6.

(b) The condition in (3.15) are sufficient to ensure that fu ≥ 0 and fv ≤ 0 for all
u, v ≥ 0, and the result follows from (a).
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4 Periodic Solutions
We consider some conditions that lead to the occurrence of periodic solutions of (2.1). In
this section, we explicitly assume thatAa+B > 0. By assumption in (1.2), Aa+B = 0
implies that a = B = 0, which reduces (2.1) to the second-order rational equation

xn+1 =
αxn + βxn−1 + γ

Axn + 1
(4.1)

which has been studied in [12, page 167]. In particular, it was shown that when

β = α + 1

then every solution of (4.1) converges to a period-two solution.

4.1 Prime Period Two Solutions
The following gives necessary and sufficient conditions for the existence of a positive
period 2 solution when aA+B > 0.

Theorem 4.1. Assume that (1.2) holds with γ,Aa + B > 0. Then (2.1) has a positive
prime period two solution if and only if the following conditions are satisfied:

(i) β − α− (1 + a) > 0;
(ii) A−B > 0;
(iii)

4γ

(1 + a)(A−B)

<

[
β − α− (1 + a)

Aa+B

] [
β − α− (1 + a)

Aa+B
− 4 [Aa(β − 1) +B(α + a)]

(1 + a)(A−B)(Aa+B)

]
(4.2)

Proof. Equation (2.1) has a positive prime period two solution if there exist real num-
bers m,M > 0, with m 6= M , such that

m = aM +
αM + βm+ γ

AM +Bm+ 1
and M = am+

αm+ βM + γ

Am+BM + 1
. (4.3)

From (4.3) we obtain

(m− aM)(AM +Bm+ 1) = αM + βm+ γ (4.4)

(M − am)(Am+BM + 1) = αm+ βM + γ. (4.5)

Taking the difference of right and left hand sides of (4.4) and (4.5) and rearranging the
terms yields

(Aa+B)(m−M)(m+M) = (m−M)(β − α− (1 + a))
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or

m+M =
β − α− (1 + a)

Aa+B
. (4.6)

Since Aa+B > 0, we infer from (4.6) that β−α− (1+a) > 0 is a necessary condition
for existence of positive period two solutions.

Similarly, adding the right and left hand sides of (4.4) and (4.5) and rearranging the
terms yields

2(A− aB)Mm = (α + β − (1− a))(M +m) + (Aa−B)(m2 +M2) + 2γ.

Adding an subtracting 2(Aa−B)Mm from the right hand side of the above yields

2(1 + a)(A−B)Mm = (m+M) [(α + β − (1− a)) + (Aa−B)(m+M)] + 2γ.

Inserting from (4.6) the expression for m+M inside the square bracket yields

2(1 + a)(A−B)Mm

= (M +m)

[
(α + β − (1− a)) +

Aa−B
Aa+B

(β − α− (1 + a))

]
+ 2γ

=
2(M +m)

Aa+B
[Aa(β − 1) +B(α + a)] + 2γ.

Thus

(1 + a)(A−B)Mm =

[
β − α− (1 + a)

(Aa+B)2

]
[Aa(β − 1) +B(α + a)] + γ. (4.7)

Since from (4.6) we have β − α − (1 + a) > 0, then β − 1 > 0. Thus the right hand
side of (4.7) is positive and therefore, A − B > 0 is another necessary condition for
existence of positive period two solutions and

Mm =
1

(1 + a)(A−B)

[ [
β − α− (1 + a)

(Aa+B)2

]
[Aa(β − 1) +B(α + a)] + γ

]
. (4.8)

Let

P =
β − α− (1 + a)

Aa+B

and

K =
1

(1 + a)(A−B)

[ [
β − α− (1 + a)

(Aa+B)2

]
[Aa(β − 1) +B(α + a)] + γ

]
with P,K > 0. From (4.6) we obtain

m =
β − α− (1 + a)

Aa+B
−M = P −M.
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Inserting the above into (4.8) yields

M(P −M) = K or M2 − PM +K = 0. (4.9)

Similarly, an identical expression can be obtained for m, i.e.,

m2 − Pm+K = 0. (4.10)

Thus M and m must be real and distinct positive roots of the quadratic equation

Q(t) = t2 − Pt+K

with

t =
P ±
√
P 2 − 4K

2

which will be the case if and only if

P 2 − 4K > 0

which is equivalent to (4.2).

We also establish the following general result on nonexistence of period 2 solutions.

Theorem 4.2. Let D be a subset of real numbers and assume that f : D ×D → D is
nondecreasing in x ∈ D for each y ∈ D and nonincreasing in y ∈ D for each x ∈ D.
Then the difference equation (3.14) has no prime period two solution.

Proof. Assume that the above difference equation has prime period two solution. Then
there exist real numbers m and M , such that

f(m,M) = M and f(M,m) = m.

Whenm = M , we are done. So assume thatm 6= M . Ifm < M , then by the hypothesis

f(m,M) ≤ f(M,M) ≤ f(M,m)

which implies that M ≤ m, which is a contradiction.
Similarly, if m > M , then by the hypothesis

f(M,m) ≤ f(M,M) ≤ f(m,M)

which implies that m ≤M , which is also a contradiction.

Our final result of this section establishes the connection between existence of prime
period two solutions and the stability of the fixed point.

Theorem 4.3. Let (1.2) hold with γ,Aa + B > 0. Then (2.1) has a positive prime
period two solution if and only it x̄ is a saddle.
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Proof. First, when α + β − (1− a) = 0, then the fixed point x̄ is given by

x̄ =

√
γ

(1− a)(A+B)
.

This implies that
β − α− (1 + a) = −2(a+ α) < 0

and x̄ must be stable so (2.1) has no prime period two solution.
Now assume that α + β − (1− a) 6= 0. Then the fixed point is given by

x̄ =
α + β − (1− a) +

√
(α + β − (1− a))2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
.

By Lemma 3.2, x̄ is a saddle if and only if

x̄ <
β − α− (1 + a)

2(Aa+B)

which implies that β − α− (1 + a) > 0.
Now

x̄ <
β − α− (1 + a)

2(Aa+B)

iff

α + β − (1− a) +
√

(α + β − (1− a))2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
<
β − α− (1 + a)

2(Aa+B)

iff√
(α + β − (1− a))2 + 4(1− a)(A+B)γ

(1− a)(A+B)
<
β − α− (1 + a)

(Aa+B)
− α + β − (1− a)

(1− a)(A+B)

iff√
(α + β − (1− a))2 + 4(1− a)(A+B)γ <

(1− a)(A+B)(β − α− (1 + a))

Aa+B

− [α + β − (1− a)]

iff

(α + β − (1− a))2 + 4(1− a)(A+B)γ

<
(1− a)2(A+B)2(β − α− (1 + a))2

(Aa+B)2

− 2(1− a)(A+B)(α + β − (1− a))(β − α− (1 + a))

Aa+B

+ (α + β − (1− a))2
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iff

4(1− a)(A+B)γ <
(1− a)2(A+B)2(β − α− (1 + a))2

(Aa+B)2

− 2(1− a)(A+B)(α + β − (1− a))(β − α− (1 + a))

Aa+B

iff

4γ <
(1− a)(A+B)(β − α− (1 + a)2)

(Aa+B)2
− 2(α + β − (1− a))(β − α− (1 + a))

Aa+B

=
(β − α− (1 + a))

Aa+B

[
(1− a)(A+B)(β − α− (1 + a))

Aa+B
− 2(α + β − (1− a))

]
=

(β − α− (1 + a))

Aa+B

×
[

(1− a)(A+B)(β − α− (1 + a))− 2(Aa+B)(α + β − (1− a))

Aa+B

]
.

Adding and subtracting (1 +a)(A−B)[β−α− (1 +a)] to the numerator of the second
fraction in previous equation yields

(1− a)(A+B)(β−α− (1 + a))− 2(Aa+B)(α + β − (1− a))

= (1 + a)(A−B)[β − α− (1 + a)]− 4Aa(β − 1)− 4B(α + a).

Thus we have

4γ <
β − α− (1 + a)

Aa+B

× (1 + a)(A−B)(β − α− (1 + a))− 4 [Aa(β − 1) +B(α + a)]

Aa+B
.

Note that since γ > 0, it must be the case that the right hand side of the last expression
is positive, which implies that A− B > 0. Dividing both sides of the above expression
by (1 + a)(A−B) then yields:

4γ

(1 + a)(A−B)

<
β − α− (1 + a)

Aa+B

[
(β − α− (1 + a))

Aa+B
− 4 [Aa(β − 1) +B(α + a)]

(Aa+B)(1 + a)(A−B)

]
and the proof is complete, since the conditions of Theorem 4.1 are satisfied.

We end our discussion in this section with the following immediate consequence of
the results already established.
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Corollary 4.4. Let (1.2) hold with γ,Aa + B > 0, and suppose that f(u, v) is nonde-
creasing in u and either nondecreasing or nonincreasing in v.

(a) Equation (2.1) has no periodic solution of period greater than two.

(b) If (2.1) has no prime period two solution then all solutions of (2.1) converge to
the positive fixed point x̄.

The above results give partial answers to two conjectures in [12] for the special case
a = 0.

5 Applications
Certain planar systems of rational difference equations may be folded, or reduced, to the
second-order equation in (2.1). For a general treatment of folding and its applications,
we refer to [17]. In the special case of system (1.5)–(1.6), i.e.,

xn+1 = axn + byn + c

yn+1 =
a′xn + b′yn + c′

a′′xn + b′′yn + c′′

using routine calculations, when b 6= 0 we can eliminate one of the two variables and
fold the system into the second-order equation 1

xn+2 = axn+1 +
(bb′ + cb′′)xn+1 + (bD′ab + cD′′ab)xn + bD′cb + cD′′cb

b′′xn+1 +D′′abxn +D′′cb
(5.1)

with
yn =

xn+1 − axn − c
b

(5.2)

where

D′ab = a′b− ab′, D′′ab = a′′b− ab′′, D′cb = bc′ − b′c, D′′cb = bc′′ − b′′c. (5.3)

If D′′cb 6= 0, i.e., bc′′ 6= b′′c then we may normalize (5.1) to obtain

xn+2 = axn+1 +
αxn+1 + βxn + γ

Axn+1 +Bxn + 1
(5.4)

with

α =
1

D′′cb
[bb′ + cb′′] , β =

1

D′′cb
[bD′ab + cD′′ab] , γ =

1

D′′cb
[bD′cb + cD′′cb] (5.5a)

A =
b′′

D′′cb
, B =

D′′ab
D′′cb

. (5.5b)

1Notice that when b = 0, the first equation of the above system is uncoupled and can be solved
directly.
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It is routine to check that the orbits of the system (1.5)–(1.6) correspond to the solutions
of (5.4) in the sense that if {xn} is a solution of (5.4) with given initial values x0 and
x1 and {yn} is given by (5.2) for n ≥ 0, then {(xn, yn)} is an orbit of (1.5)–(1.6).
Conversely, if {(xn, yn)} is an orbit of (1.5)–(1.6) from an initial point (x0, y0) and
x1 = ax0 + by0 + c, then {xn} is a solution of (5.4).

The results established in the previous sections can help identify similar behavior in
the planar system (1.5)–(1.6), some of which we state below.

Corollary 5.1. Let the parameters of (1.5)–(1.6) satisfy

0 ≤ a < 1, b > 0, c,b′′ ≥ 0, bb′ > −cb′′ (5.6a)
a′b > max{ab′,−(1− a)b′}, a′′b > ab′′, bc′ > b′c, bc′′ > b′′c. (5.6b)

Then the system (1.5)–(1.6) has a unique fixed point (x̄, ȳ) ∈ (0,∞)2 where x̄ is given
by (3.2) and

ȳ =
(1− a)x̄− c

b
(5.7)

Proof. The fixed points of (1.5)–(1.6) satisfy the equations:

x̄ = ax̄+ bȳ + c (5.8a)

ȳ =
a′x̄+ b′ȳ + c′

a′′x̄+ b′′ȳ + c′′
. (5.8b)

From (5.7) and (5.8b) we obtain

ȳ =
a′x̄+ b′ (1−a)x̄−c

b
+ c′

a′′x̄+ b′′ (1−a)x̄−c
b

+ c′′

=
[a′b+ b′(1− a)]x̄+ bc′ − b′c

[a′′b+ b′′(1− a)]x̄+ bc′′ − b′′c
.

Thus the conditions in (5.6) imply that the parameters in the folding (5.4) as defined by
(5.5) satisfy (1.2) and that x̄ given by (3.2) and ȳ given by (5.7) are strictly positive.

Corollary 5.2. Let (5.6) hold and suppose that the parameters of (1.5)–(1.6) satisfy
either all of the inequalities in (i) or the inequality in (ii) below:

(i)

D′′ab(bb
′ + cb′′) ≤ b′′(bD′ab + cD′′ab) ≤ D′′ab(bb

′ + cb′′) + 2aD′′abD
′′
cb

b′′(bD′cb + cD′′cb) ≤ D′′cb[bb
′ + cb′′ + aD′′cb]

D′′ab(bD
′
cb + cD′′cb) ≤ D′′cb(bD

′
ab + cD′′ab).

(ii)
1

b′′
(bb′ + cb′′) ≥ 1

D′′cb
(bD′cb + cD′′cb) ≥

1

D′′ab
(bD′ab + cD′′ab).

Then all solutions of (1.5)–(1.6) from initial values (x0, y0) ∈ [0,∞)2 converge to
(x̄, ȳ) ∈ (0,∞)2.
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Proof. The conditions in (5.6) are sufficient to ensure that the parameters in the folding
(5.4) as defined by (5.5) satisfy (1.2) and that if x0, y0 ≥ 0, then x0, x1 = ax0+by0+c ≥
0. Conditions in (i) and (ii) satisfy the hypotheses of Theorems 3.4 and 3.7 from which
the result follows.

Example 5.3. Consider the following system

xn+1 = 0.2xn + yn + 1 (5.9a)

yn+1 =
1.2xn + yn + 2

xn + yn + 2
(5.9b)

Routine calculations show that the parameters of (5.9) satisfy the conditions (i) in Corol-
lary 5.2, which implies that all solutions of (5.9) from nonnegative initial values con-
verge to the fixed point in the positive quadrant. We note that the system in (5.9) folds
into

yn = xn+1 − 0.2xn − 1

xn+2 = 0.2xn+1 +
2xn+1 + 1.8xn + 2

xn+1 + 0.8xn + 1
.

Corollary 5.4. Let (5.6) hold. Then (1.5)–(1.6) has a prime period two solution in
[0,∞)2 if and only if

2a′′x̄ < a′b+ a′′c− ac′′ − (1 + a)(b′′ + c′′). (5.10)

Proof. The conditions in (5.6) are sufficient to ensure that the parameters in the folding
(5.4) as defined by (5.5) satisfy (1.2) and that if x0, y0 ≥ 0, then x0, x1 = ax0 + by0 +
c ≥ 0. Straightforward algebraic calculations show that the condition in (3.8) can be
expressed with respect to parameters of (1.5)–(1.6) as (5.10). By Lemma 3.2 the fixed
point (x̄, ȳ) is a saddle and the proof follows from Theorem 4.3.

Example 5.5. Consider the system

xn+1 = 0.01xn + yn + 0.1 (5.11a)

yn+1 =
5xn + 2yn + 1

0.1xn + yn + 1
. (5.11b)

Routine calculations show that the system in (5.11) satisfies the conditions in Corollary
5.4. Therefore, (5.11) has a prime period two solution. We note that the system in (5.11)
folds into

yn = xn+1 − 0.01xn − 0.1

xn+2 = 0.01xn+1 +
2.1xn+1 + 4.989xn + 0.89

xn+1 + 0.09xn + 0.9
.
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Remark 5.6. We note that the above results hold for (1.5)–(1.6) even if some parameters
are negative. Of course, in this case the positive quadrant is not invariant; however,
orbits of the system avoid singularities in the plane if (1.5)–(1.6) folds into (1.1) and the
parameters of this scalar equation satisfy (1.2).

Example 5.7. Consider the following system

xn+1 = 0.6xn + 0.1yn + 0.2 (5.12a)

yn+1 =
−0.1xn − 0.1yn + 0.1

xn + 0.05yn + 2
. (5.12b)

By routine calculations we see that the parameters in (5.12) satisfy (ii) in Corollary 5.2.
Thus all solutions from nonnegative initial values (x0, y0) converge to the positive fixed
point in the first quadrant. We note that the system in (5.12) folds into

yn = 10xn+1 − 6xn − 2

xn+2 = 0.6xn+1 +
0.019xn + 0.041

0.05xn+1 + 0.07xn + 0.19
.

where the equation for xn+2 does not contain negative parameters.

Special cases of (1.5)–(1.6) have applications in biological models of species pop-
ulations. An example can be found in [14] that considers a model of stage-structured
species population with Beverton–Holt recruitment function given by

xn+1 = α1xn + α2yn

yn+1 =
bxn

1 + c1xn + c2yn

where α1, α2 are the survival rates of adult and juvenile members of the species, and
c1 and c2 are competition coefficients. Using a similar approach as in the current pa-
per, it is shown that for low level of competition, the solutions of the above system
converge to a unique positive equilibrium. However, sufficiently large values of c2 can
have a destabilizing effect on the equilibrium and the population will exhibit period-two
oscillations.

We conclude with the interesting fact that, beyond the parameter ranges of this paper,
allowing negative parameters in the system (1.5)–(1.6) yields a richer variety of dynamic
behavior for this system. The results in this section complement those in [13] that show
that the rational system in (1.5)–(1.6) can have coexisting periodic orbits of all possible
periods as well as stable aperiodic orbits if some parameters are negative.

Example 5.8. To illustrate possible occurrence of complex behavior with negative pa-
rameters, consider the following version of (1.5)–(1.6)

xn+1 = xn + 2yn − 2

yn+1 =
0.25xn + 0.5yn + 1

3xn + 6yn − 6
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It is shown in [13] that this system has periodic orbits of all periods (depending on initial
points) and Li–Yorke type chaos occurs.

The results in the current paper complement those shown in [13] to which we refer
the reader for more detail. For additional results on planar rational systems exhibiting
complex behavior we refer to [17].

6 Concluding Remarks and Future Considerations
We studied the dynamics of a second-order quadratic fractional difference equation with
nonnegative parameters and initial values. We obtained several sufficient conditions for
the global stability of the positive fixed point. In addition, when (1.2) holds and γ > 0,
we obtained necessary and sufficient conditions for the occurrence of periodic solutions
and in particular proved that such solutions may appear if and only if the positive fixed
point is a saddle.

A natural extension for future research involves addition of a linear delay term to
the above equation, i.e., the study of

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(6.1)

We close with the following conjectures:

Conjecture 6.1. Let (1.2) hold and further assume that b ≥ 0 and a + b < 1. Then the
equation in (6.1) does not have any prime periodic solutions of period greater than 2.

Conjecture 6.2. Let (1.2) hold and further assume that b ≥ 0 and a+ b < 1. If (6.1) has
no prime period two solution, then every solution of (6.1) converges to a unique positive
fixed point.
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