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Abstract
We consider a system of difference equations with ceiling density dependence

to model the dynamics of a coupled population on an arbitrary, finite number of
distinct patches where migration between all patches is possible. In this model,
each patch possesses a separate carrying capacity, and the dynamics of the coupled
population is governed by a linear model until the population of a patch reaches
its capacity after which it remains at this maximum value. Further, we analyze the
global attractors of this model and apply these results to an Arabian oryx metapop-
ulation model with some patches protected and others unprotected from poaching.
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1 Introduction

In many ecological examples, a population lives in a habitat that is separated into distinct
geographical areas, called patches, between which the population can migrate. Such
partial isolation could be due to natural or human-made factors (including geographical
barriers such as rivers, valleys, highways, and pipelines) or resource availability (such
as water or food source localization) [3,8,10,13]. A collection of such partially isolated
subpopulations is called a metapopulation.

In this paper we outline the design and analysis of a mathematical model using
difference equations with an arbitrary, finite number, n, of geographical patches where
migration between all the patches is allowed. This is a generalization of the 2-patch
model analyzed in [3] to n patches. Since patches differ in size and resource availability,
they differ in the number of individual organisms that they can support. That is, each
geographical patch has its own carrying capacity that its population may never exceed,
called a ceiling density dependence. We describe the dynamics of such an n-patch model
in three lemmas and two theorems in Section 3.

In [3], a justification was given for the use of a ceiling density dependence in the
population dynamics of a 2-patch model, which is also valid for n patches. Since there
is often a paucity of detailed knowledge regarding the density dependence of the pop-
ulation, expressing this nonlinearity in a function is generally impractical. Therefore,
we make the assumption that population size in each patch increases like a linear model
until that subpopulation reaches its respective carrying capacity. This is a commonly
accepted approach and is incorporated in widely used, simulation-based population vi-
ability software such as RAMAS/METAPOP (Akcakaya [2]).

In the case with an arbitrary, finite number of patches, the location of the equilibria is
necessarily more complicated than the 2-patch case. The determination and description
of these equilibria is contained in Theorem 3.5 and three preceding lemmas. The proof
of the global attractivity of some of the equilibria is markedly similar in the n-patch
case to the 2-patch case, and these results are contained in Theorem 3.6, whose proof
is similar to that of [3, Theorem 4.1] and is therefore given in the Appendix. Once we
have the n-patch results, the consideration of more realistic metapopulations becomes
possible. In Section 4, we apply our results to an Arabian oryx model with some patches
protected from poaching and some patches unprotected.

2 Setup and Notation

Assume there are n patches for some positive integer n. In notation consistent with [3],
we will denote the number or density of females in patch j at time t ∈ N by Nj,t, and
the population vector at time t by

~Nt = [N1,t, N2,t, . . . , Nn,t]
T .
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The individual population in each patch cannot exceed the carrying capacity of that
patch, and the vector of carrying capacities is

~K = [K1, K2, . . . , Kn]
T .

Let J = [rij] be the matrix that incorporates both the intra-patch dynamics (i.e., pop-
ulation growth and death rates) as well as the inter-patch dynamics (i.e., probabilities
for moving from one patch to another in one time-step). In this paper, we will use the
following standard notation.

• By ~X > ~Y (or ~X ≥ ~Y ), we mean that each entry of ~X is greater than (or greater
than or equal to) the corresponding entry of ~Y .

• For ~V , ~W ∈ Rn, min{~V , ~W} is the vector with jth entry min{Vj,Wj}.

• We denote the spectral radius of J by ρ(J).

The time evolution of this system is then given by

~Nt+1 = min{J ~Nt, ~K} (2.1)

where the minimum is taken to ensure the population in patch j never exceeds the cor-
responding carrying capacity Kj . Clearly, J is by necessity nonnegative, and we further
assume that it is positive so that all patches in the metapopulation are connected to each
other through migration.

We begin by investigating the location of the equilibria of this system. The only
biologically relevant equilibria, ~N∗, are nonnegative and satisfy

~N∗ = min{J ~N∗, ~K}. (2.2)

In three lemmas and Theorem 3.5, we describe all such equilibria. While Theorem 3.5
is organized into cases based on how ρ(J) compares to 1, these cases do in fact cover
all possibilities of how J ~K compares to ~K as follows.

1. If J ~K ≤ ~K with at least one inequality strict, then ρ(J) < 1 by Lemma 3.2.

2. If J ~K = ~K, then ρ(J) = 1 by Lemma 3.3.

3. If J ~K ≥ ~K with at least one inequality strict, then ρ(J) > 1 by Lemma 3.4.

4. If some entries of J ~K are strictly less than those of ~K and some are strictly
greater, then any of the above cases for ρ(J) could occur.

In the next section a more specific version of this is proved.
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3 The Equilibria

Definition 3.1. Let ~Nt = [N1,t, . . . Nn,t]
T . An equilibrium ~N∗ = [N∗1 , . . . N

∗
n]

T is called
globally attracting if

lim
t→∞

~Nt = ~N∗

for every ~N0 ∈ Rn
+ \ {~0}.

Before proceeding to our lemmas, we first note that ~0 is trivially always an equilib-
rium.

Lemma 3.2. If J ~K ≤ ~K with at least one inequality strict, then ρ(J) < 1.

Proof. Suppose J ~K ≤ ~K with at least one inequality strict, and let λ = ρ(J). Since J
is positive, by the Perron–Frobenius theorem, λ is an eigenvalue and has a eigenvector
~v = [v1, v2, . . . , vn]

T > 0. Let

r = min
i

{
Ki

vi

}
and reorder the entries so that r = K1/v1. Since ~v is an eigenvector of J and r 6= 0,
r~v 6= ~0 is also an eigenvector of J , so

λr~v = Jr~v (3.1)

where

r~v =

[
K1,

K1

v1
v2,

K1

v1
v3, . . . ,

K1

v1
vn

]
.

The first component of (3.1) is then

λK1 = r11K1 +
n∑

i=2

r1i

(
K1

v1
vi

)
< r11K1 +

n∑
i=2

r1iKi

because by definition of r,
K1

v1
≤ Ki

vi
,

so
K1

v1
vi ≤ Ki

for all i = 1, . . . , n. Moreover, one of these inequalities is strict because if all were
equal, then ~K would be an eigenvector of J , which contradicts that at least one inequal-
ity of J ~K ≤ ~K is strict. From J ~K ≤ ~K, we have

r11K1 +
n∑

i=2

r1iKi ≤ K1,

so λK1 < K1, and λ < 1, i.e., ρ(J) < 1.
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Lemma 3.3. If J ~N∗ = ~N∗ ≤ ~K, then ρ(J) = 1.

Proof. By the Perron–Frobenius theorem, a positive matrix J has a positive leading
eigenvalue λ = ρ(J), which has the only nonnegative real eigenvector of J . Since
J ~N∗ = ~N∗ implies that 1 is an eigenvalue with a nonnegative eigenvector ~N∗, 1 must
be the leading eigenvalue, i.e., ρ(J) = 1.

Lemma 3.4. If J ~K ≥ ~K with at least one inequality strict, then ρ(J) > 1.

Proof. Suppose J ~K ≥ ~K with at least one inequality strict, and let λ = ρ(J). By
the Perron–Frobenius theorem, λ has an eigenvector ~v = [v1, v2, . . . , vn]

T > 0. Let

r = max
i

{
Ki

vi

}
and reorder the entries so that r =

K1

v1
. Since ~v is an eigenvector of J

and r 6= 0, r~v 6= ~0 is also an eigenvector of J . As before, the first component of (3.1) is

λK1 = r11K1 +
n∑

i=2

r1i

(
K1

v1
vi

)
> r11K1 +

n∑
i=2

r1iKi

because by definition of r,
K1

v1
≥ Ki

vi
,

so
K1

v1
vi ≥ Ki

for all i = 1, . . . , n. Moreover, one of these inequalities is strict because if all were
equal, then ~K would be an eigenvector of J , which contradicts that at least one inequal-
ity of J ~K ≥ ~K is strict. From J ~K ≥ ~K, we have

r11K1 +
n∑

i=2

r1iKi ≥ K1,

so λK1 > K1, and λ > 1, i.e., ρ(J) > 1.

Theorem 3.5. Assume J has all positive entries and ~K is a positive vector.

1. If ρ(J) < 1, then ~0 is a globally attracting equilibrium. By Lemma 3.2, this
includes the case J ~K ≤ ~K with at least one inequality strict.

2. If ρ(J) = 1, then the only equilibria are c~v for 0 ≤ c ≤ r where ~v is a positive

eigenvector of J associated to the leading eigenvalue 1 and r = min
i

{
Ki

vi

}
. By

Lemma 3.3, this includes the case J ~K = ~K.

3. If ρ(J) > 1 and J ~K ≥ ~K with at least one inequality strict, then the only equi-
libria are ~0 and ~K.
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4. If ρ(J) > 1 and some entries of J ~K are strictly greater than those of ~K and some
strictly less, then the only nonzero equilibrium has some patches at capacity and
some below. Specifically, every patch j with (J ~K)j < Kj has equilibrium below
capacity. If we reorder the patches so that those with equilibria at capacity are
first and those below capacity last, i.e., the capacity vector is ~K = [ ~K(1), ~K(2)]T

and the nonzero equilibrium is ~N∗ = [ ~K(1), ~N∗(2)]T where ~N∗(2) < ~K(2), and
write J in corresponding blocks

J =

[
J11 J12
J21 J22

]
(3.2)

so that J21 ~K(1) + J22 ~N
∗(2) = ~N∗(2), then ~N∗(2) = (I − J22)−1J21 ~K(1).

Proof. 1. If ρ(J) < 1, then as t → ∞, J t → 0, so ~Nt ≤ J t ~N0 → ~0, i.e., ~0 is
globally attracting.

2. Now suppose ρ(J) = 1. By the Perron–Frobenius theorem, there exists a positive

eigenvector ~v associated to the leading eigenvalue 1. Let r = min
i

{
Ki

vi

}
. Then,

for 0 ≤ c ≤ r, Jc~v = c~v ≤ ~K, so c~v is an equilibrium for 0 ≤ c ≤ r. Suppose

there exists another equilibrium ~N∗ 6= c~v for 0 ≤ c ≤ r. Let s = max
i

{
N∗i
vi

}
and reorder so that s =

N∗1
v1

. Clearly, s~v is also an eigenvector of J associated to

the leading eigenvalue 1, so the first component of s~v = Js~v is

N∗1 = r11N
∗
1 +

n∑
i=2

r1i

(
N∗1
v1
vi

)
> r11N

∗
1 +

n∑
i=2

r1iN
∗
i (3.3)

because by definition of s,
N∗1
v1
≥ N∗i

vi
,

so
N∗1
v1
vi ≥ N∗i

for all i = 1, . . . , n. Moreover, one of these inequalities is strict because if all
were equal, then ~N∗ would be a multiple of v, a contradiction. But since ~N∗ is an

equilibrium, ~N∗ = min{J ~N∗, ~K}, so r11N∗1 +
n∑

i=2

r1iN
∗
i ≥ N∗1 , and (3.3) yields

the contradiction N∗1 > N∗1 . Thus, c~v for 0 ≤ c ≤ r are the only equilibria in this
case.

3. Next, suppose ρ(J) > 1 and J ~K ≥ ~K with at least one inequality strict. Clearly,~0
is an equilibrium, as is ~K because J ~K ≥ ~K implies min{J ~K, ~K} = ~K. Suppose
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there exists a nonzero equilibrium ~N∗ ≤ ~K with at least one inequality strict.
Reorder the patches so that those at capacity are first and those below capacity
last, i.e., ~N∗ = [ ~K(1), ~N∗(2)]T and ~K = [ ~K(1), ~K(2)]T where ~N∗(2) < ~K(2).
By assumption ~N∗(2) is nonempty, and by Lemma 3.3, if ~K(1) were empty, then
ρ(J) = 1, a contradiction, so both ~N∗(2) and ~K(1) are nonempty. Write J as in
(3.2) so that

J21 ~K(1) + J22 ~N
∗(2) = ~N∗(2). (3.4)

Since J21 ~K(1) > 0, we have J22 ~N∗(2) < ~N∗(2), so ρ(J22) < 1 by Lemma 3.2
with ~N∗(2) in place of ~K. This implies that I − J22 is invertible, so, from (3.4),
we have

(I − J22)−1J21 ~K(1) = ~N∗(2). (3.5)

Similarly, from J ~K ≥ ~K, we have J21 ~K(1) + J22 ~K(2) ≥ ~K(2), so

(I − J22)−1J21 ~K(1) ≥ ~K(2),

which, together with (3.5), yields ~N∗(2) ≥ ~K(2), a contradiction. Thus, ~0 and ~K
are the only equilibria in this case.

4. Finally, suppose ρ(J) > 1 and that some entries of J ~K are strictly greater than
those of ~K and some strictly less. Patches j with (J ~K)j < Kj cannot have
equilibria at capacity since for those patches min{(J ~K)j, Kj} < Kj . On the
other hand, at least one patch for which (J ~K)j ≥ Kj must have equilibrium
at capacity for if not, Lemma 3.3 implies ρ(J) = 1, a contradiction. Thus, we
reorder the patches so that those with equilibria at capacity are first and those
below capacity last, i.e., ~N∗ = [ ~K(1), ~N∗(2)]T and ~K = [ ~K(1), ~K(2)]T where
~N∗(2) < ~K(2) and both ~K(1) and ~N∗(2) are nonempty. Write J as in (3.2) so
that J21 ~K(1) + J22 ~N

∗(2) = ~N∗(2). Since J21 ~K(1) > 0, J22 ~N∗(2) < ~N∗(2), so
ρ(J22) < 1 by Lemma 3.2 with ~N∗(2) in place of ~K. This implies that I − J22
is invertible, so, from above, we have (I − J22)−1J21 ~K(1) = ~N∗(2). Thus, ~0 and
[ ~K(1), (I − J22)−1J21 ~K(1)]T are the only equilibria in this case.

This concludes the proof.

Theorem 3.6. 1. In Case (1) of Theorem 3.5, ~0 is a globally attracting equilibrium.

2. In Case (2) of Theorem 3.5, there is no globally attracting equilibrium.

3. In Cases (3) and (4) of Theorem 3.5, the nonzero equilibrium is a globally attract-
ing equilibrium.

The proof of this theorem is similar to the proof of [3, Theorem 4.1], with some
complications due to the arbitrary patch number. This proof is in the Appendix.
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4 Example: an Arabian Oryx Metapopulation
In this section, we apply our model to an Arabian oryx (Oryx leucoryx) population living
in six patches. The population is subject to poaching, and in the absence of protection,
it is in asymptotic decline. We investigate what happens when one or two patches are
protected, effectively changing the mortality in those patches. We use Theorem 3.5 to
help determine to what degree the mortality must be lowered in order to maintain the
largest possible population.

The entries of the matrix J are determined in terms of underlying life history param-
eters and with data from the relevant literature. All parameters refer to transitions from
one time-step to the next where the step size is one year. Only females are counted in
this model, with the implicit assumption that the sex ratio in the population stays fixed
as time evolves. Moreover, this also implicitly assumes that matings are not limited
by the number of males in the population. This assumption is justified in this example
because a single male can mate with several females.

If the population in patch i is below the carrying capacity Ki, then the population
dynamics in patch i are determined by a linear combination of individuals who survived
and stayed in patch i from the previous time-step and individuals who migrated to patch
i in the previous time-step. Let b be the probability that a given female in patch i
gives birth to a single offspring, f the probability that the newborn is a female, m the
probability of migration from one patch to another, and α the probability of surviving
migration. In this example, we assume that these parameters are independent of the
patch. Let µi be the probability of death in patch i; µi is naturally expected to be lower
for protected patches. Then the jth component of the vector J ~N is

(J ~N)j =
n∑

k=1

rjkNk

where, for i, j = 1, . . . , n with j 6= i,

rii = (1− µi)(1 + bf)(1−m),

rij = (1 + bf)mα.

We assume that rij > 0 for all i, j ∈ {1, . . . , n} so that all patches in the metapopulation
are connected to each other through migration.

We parameterize our model with data for Arabian oryx (Oryx leucoryx) from the
literature. A summary of the range of vital rates published for this species are as follows.
Under favorable conditions, females give birth to a single calf each year, which has a
75% [9] to 92.5% [14] chance of surviving the first year. Therefore, b is between 0.75
and 0.925, so we take b = 0.8375, the average of these two values. Additionally, the
sex ratio is assumed to be f = 0.5 [9, 12, 14]. Annual mortality of adult Arabian oryx
in captivity ranges from 4% to 15% [1, 9], so we choose the average, µ = 0.095, for
protected patches. For the unprotected patches, the mortality rate is assumed to increase
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up to 40% [12], so we take µ = 0.4 for these. Following [5], we assume that 6% of
each subpopulation migrates to other patches, so m = 0.06/5 since the migration is
spread out over five other patches assuming this migration is spread equally. In [5], it is
assumed that migration mortality is zero because subpopulations are connected through
“safe” corridors. However, it is fair to assume that migration outside of corridors is
risky, so in our model we set α = .5, so migration mortality is 1− α = 0.5.

With this data, we obtain diagonal entries rii = 0.841035 for unprotected patches
(which describe the intra-patch dynamics) and rii = 1.26856 for protected patches. The
off-diagonal entries rij for i 6= j are all 0.00849252 (which describe migration). For
the six patches, we chose carrying capacities of 40, 60, 80, 100, 120 and 140 since the
minimum viable population size is 100 [11] and for illustrative purposes, it is interesting
to have a variety of viable and nonviable populations.

One patch protected: In this case, the leading eigenvalue of J is 1.2078949, so
there is a positive asymptotically stable equilibrium ~N∗, which can be obtained as fol-
lows. We rearrange the carrying capacity vector ~K so that the protected patch is K1

(so µ1 = 0.095 and r11 = 1.26856); then N∗1 = K1. If not, the vector ~N∗ satisfies
J ~N∗ = ~N∗, which would mean, by the Perron–Frobenius theorem, that 1 is the leading
eigenvalue of J , a contradiction. The remaining five entries of ~N∗ are given by

~N∗(2) = (I − J22)−1J21K1. (4.1)

For instance, if the patch with capacity 140 is protected,

~N∗ = [140, 9.512009, 9.512009, 9.512009, 9.512009, 9.512009]T (4.2)

while protecting a patch with capacity Kj leads to equilibrium (Kj/140) ~N
∗.

We obtain the same equilibrium for lower values of µ1 and hence higher values of
r11. In fact, as long as the leading eigenvalue of J is greater than 1, the Perron–Frobenius
theorem implies that ~N∗ is given by (4.2) when protecting the 140-capacity patch. It is
possible to use the stability radius (see, for instance, [6]) to conclude that if

r11 > 1− J12(I − J22)−1J21 = 0.997115,

then ρ(J) > 1, and we find the same ~N∗ as before. This means that if we protect one
patch and

0 < µ < 0.2886514

(that is, mortality in the protected patch is below approximately 28.86%), then the
asymptotic population reaches its largest possible value.

In Figure 4.1, we simulate the system with r11 = 1.26856 (that is, µ = 0.095),
starting with a population of 10 in all patches. Note that it takes about 10 time-steps
(years) for the protected population to reach its carrying capacity, while the unprotected
patches get near their limit of 9.512009 by around 30 years. If we let r11 = 1 (close to
the stability radius), it takes approximately 800 years to reach the same protected patch
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Figure 4.1: One patch protected (r11 = 1.26856). The upper curve is the population of
the protected patch; the lower curve is the population the unprotected patches.
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Figure 4.2: One patch partially protected (r11 = 1). The upper curve is the population
of the protected patch; the lower curve is the population the unprotected patches.
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equilibrium, and the other patches take approximately 850 years to get near their limit
(Figure 4.2).

Two patches protected: If r11 and r22 are both raised sufficiently for ρ(J) > 1,
then

Kj ≤ (J ~K)j for j = 1, 2 (4.3)

Kj > (J ~K)j for j = 3, 4, 5, 6 (4.4)

where the j = 1 and j = 2 patches are the protected ones. This is true regardless of
which of the two patches are protected. From the proof of Theorem 3.5, we see that
(4.4) implies that N∗j < Kj for j = 3, 4, 5, 6 since (J ~K)j ≥ (JN∗)j for all j. However,
we cannot conclude from (4.3) that N∗j = Kj for j = 1, 2. Since ρ(J) > 1, we can
conclude that at least one N∗j = Kj for j = 1, 2; otherwise, the Perron–Frobenius
theorem would be violated. Therefore, for either one or two patches, N∗j = Kj .

If the two patches are fully protected so that r11 = r22 = 1.26856, then it is easy
to verify numerically that both N∗1 = K1 and N∗2 = K2. The remaining four entries of
~N∗ are given by (4.1). For example, if the protected patches are the ones with carrying
capacity 80 and 60, then

~N∗ = [80, 60, 8.906851, 8.906851, 8.906851, 8.906851]T . (4.5)

It is worth noting that while we are protecting the same number of individuals (approx-
imately 140) as for (4.2), the total metapopulation size is lower (175.6 compared to
187.6) because the unprotected patches here have a lower asymptotic population than
for (4.2). In Figure 4.3, we give a simulation of this system. We can obtain the same
equilibrium population with lower levels of protection, provided ρ(J) > 1. For illustra-
tive purposes, we will consider only protection so that r11 = r22; that is, the same level
of protection is provided in both patches. This way, we can control the degree of protec-
tion by one parameter. The convergence will be slower for lower protection levels; for
instance, if r11 = r22 = 1, it takes approximately 150 years before the population levels
off. The convergence is faster if the starting population is close to the limit; for instance,
if the starting population is 50 in each patch, it takes only two years for the 60-capacity
patch population to get to 60, and three years for the 80-capacity patch population to get
to 80, while it takes around 30 years for the unprotected patches to reach their limits.

We can verify numerically that if

r11 = r22 ≥ 0.98949,

then the asymptotic limit is still (4.5). When

0.98719 ≤ r11 = r22,

we see numerically that ρ(J) < 1, so the population dies off for that range of protection.
In the narrow range

0.98719 ≤ r11 = r22 < 0.98948, (4.6)
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Figure 4.3: Two patches fully protected (r11 = r22 = 1.26856). The upper curve is the
population of the 80-capacity patch, the middle curve is the population the 60-capacity
patch, and the lower curve is the population of the unprotected patches.
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Figure 4.4: Population equilibria, N∗i , values as a function of r11 = r22. The upper
curve is for the 80-capacity patch, the middle curve is for the 60-capacity patch, and the
lower curve is for the unprotected patches.

we get a range of equilibria. In particular, the population in the patch with carrying
capacity 60 converges to 60, but the population in the patch with carrying capacity
80 does not approach 80. To illustrate this, in Figure 4.4, we show N1, N2 and N3 as
functions of r11 = r22 in the range (4.6). We see that the limiting population is extremely
sensitive in this range, while out of this range the population is not at all sensitive. In
Figure 4.5, we give a simulation of this system when r11 = r22 = 0.988, which is in
this sensitive range. The convergence is extremely slow, taking over 2000 years to get
near the limiting populations; this is to be expected because the leading eigenvalue of J
is 1.00079, just a little above one. As we see, the limiting population of the 80-capacity
patch is approximately 65, as predicted by Figure 4.5.

Similar patterns hold when we protect any two patches in this model: there is a range
of r11 = r22 for which the limiting population is zero, a range for which the limiting
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Figure 4.5: Two patches partially protected (r11 = r22 = 0.988). The upper curve is the
population of the 80-capacity patch, the middle curve is the population the 60-capacity
patch, and the lower curve is the population of the unprotected patches.
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Figure 4.6: All patches protected with (rjj = 0.9757358), the smallest protection of all
patches which leads to every patch approaching capacity.



Analysis of a Coupled n-Patch Population Model 153

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

14
0

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

14
0

years

po
pu

la
tio

n 
si

ze

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

14
0

years

po
pu

la
tio

n 
si

ze

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

14
0

years

po
pu

la
tio

n 
si

ze

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

14
0

years

po
pu

la
tio

n 
si

ze

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

14
0

years

po
pu

la
tio

n 
si

ze

Figure 4.7: One patch protected (r11 = 1.26856), with migration survival at α = 1. The
upper curve is the population of the protected patch; the lower curve is the population
the unprotected patches.
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population has the carrying capacity of the two protected patches, and a narrow range in
between where the population of the lower capacity protected patch is reached, but the
other protected patch stays below the capacity.

If we protect all patches the same amount so that rjj is constant at a value r, then
when r > 0.9575375 (µ = 0.31689), the spectral radius ρ(J) > 1 and the population is
viable. When r is increased to 0.9757358 (µ = 0.30390), all patches reach capacity, as
shown in Figure 4.6, and this r is the lowest such r. This can also be seen by checking
that J ~K > ~K. As 0.9757358 is increased from 0.9575375 to 0.9757358, the limiting
population increases monotonically.

Finally, we investigate what happens if the probability α that migration will be suc-
cessful is increased. This will increase rij for i 6= j, while leaving the diagonal of J
alone. As expected, this will increase the population in the unprotected patches. For
instance, if one patch is protected, as in Figure 4.1, but α is increased to its biological
limit α = 1, the resulting population behaves as in Figure 4.7, with the protected patch
reaching the capacity of 140, while the other patches have limit 26.12034, compared
with 9.512009 when α = 0.5.

5 Conclusions

We have studied a coupled population model for an arbitrary, finite number of patches
where the model is linear in a patch until the patch’s carrying capacity is reached. This
is a reasonable approximation for a wide range of models where there is a dearth of
data preventing determination of the nonlinear function describing density dependence.
Moreover, it is shown in [4] that the asymptotic behavior of a density dependent system
is strongly dependent on the functional form for the nonlinearity. Hence, we impose as
few assumptions on the nonlinearity as possible. For this model, when ρ(J) 6= 1, the
results are as one would expect: if ρ(J) < 1, the origin is globally attracting, while
if ρ(J) > 1, some patches will have populations approaching their carrying capacity.
The example illustrates what we expect is a typical situation: when ρ(J) is sufficiently
larger than 1, the globally attracting equilibrium ~N∗ is not at all sensitive to the life
history parameters, but there is a small range of parameters for which ρ(J) > 1 and
the globally attracting equilibrium is sensitive to the life history parameters. This latter
situation corresponds to ρ(J) being slightly larger than 1, which also corresponds to
very slow convergence; Theorems 3.5 and 3.6, combined with numerical tests, give a
way of economically improving life history parameters (e.g., mortality) to get the best
possible globally attracting equilibrium since, past a certain point, any improvement in
the life history will not improve the asymptotic behavior.
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6 Appendix: Proof of Theorem 3.6
The proofs in this appendix are similar to those in [3] with some modifications to ac-
count for n patches as opposed to 2. Parts 1 and 2 of Theorem 3.6 follow immediately
from Theorem 3.5. The remainder of this Appendix is devoted to outlining the proof
of Part 3 of Theorem 3.6, so we assume that ρ(J) > 1. In this proof, we use the nota-
tion that if ~x ∈ Rn and a ∈ R, then ~x < a means that all entries of x are less than a.
Similar interpretation is used for ~x ≤ a, ~x > a, and ~x ≥ a. Also, we define R+ as the
nonnegative real numbers.

We write the system (2.1) as

~Nt+1 = G( ~Nt). (6.1)

Given a system
~Nt+1 = F ( ~Nt), (6.2)

we may guarantee global attractivity if certain conditions are satisfied on the map F .

Definition 6.1. A map F : Rn
+ → Rn

+ is sublinear if, for all 0 < λ < 1 and x ∈ Rn
+

such that x > [0, 0]T , it follows that λF (x) < F (λx). F is a monotone map if for all
x, y ∈ Rn

+ such that x ≤ y, it follows that Fx ≤ Fy.

The long-term dynamics of difference equations which are monotone and sublinear
maps can be stated concisely as follows.

Theorem 6.2 (See [7]). Let F : Rn
+ → Rn

+ be a monotone, sublinear, and continuous
operator over Rn

+. Let

P = int Rn
+ = {[x1, . . . , xn]T ∈ Rn | x1 > 0, . . . xn > 0}.

Precisely one of the following three cases holds:
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1. Each nonzero orbit of (6.2) in P is unbounded.

2. Each orbit of (6.2) in P is bounded with at least one limit point not contained in
P .

3. Each nonzero orbit of (6.2) in P converges to a unique fixed point of P .

We would prefer to replace P with Rn
+\{~0} since here we want to be able to consider

initial populations which start with the population in only some of the patches. This is
not a mathematical issue for our system since a population starting in Rn

+ \ {~0} will be
in P during the second time-step.

As with the 2-patch case in [3], our operator G is not sublinear. Hence, we cannot
directly apply this theorem to (6.1). However, it is again possible to construct a sequence
of monotone, sublinear maps {Gm}m∈N that will converge to our operatorG from below.
As a result, we may use the global attractivity properties of this approximating sequence,
each with its own attractor, to draw conclusions about the global attractivity for the
nonzero equilibrium of our model system (6.1).

Theorem 6.3. There exists maps Gm : Rn
+ → Rn

+, m ∈ N, such that Gm is monotone
and sublinear and Gm → G uniformly on Rn

+. Furthermore, (Gm) is increasing in the
sense that for every ~x ∈ Rn

+ and k > m, Gk(~x) > Gm(~x).

This result is [3, Theorem 3.3], where the result is proved in R2, and the proof is
identical for Rn. In the proof, scalar-valued functions gm(z, a) = min{z, a}, for scalar
z and a, are constructed such that

Gm(~x) = [gm((J~x)1, K1), . . . , gm((J~x)n, Kn)]
T .

Let ~xm,t solve
~xm,t+1 = Gm(~xm,t). (6.3)

From the proof of [3, Theorem 3.3] we also have

d

dz
gm(z,K) |z=0= 1

for any K > 0 and m ∈ N, so the Jacobian of Gm at ~0 is J . We are further restricting
ourselves to the case with ρ(J) > 1, so ~0 is not globally attractive. By the definition of
Gm and gm, we know that Gm(~x) ≤ ~K for all ~x ∈ Rn

+. Hence, the trajectories of (6.3)
are bounded by ~K. By Theorem 6.2, the system (6.3) has a unique globally attractive
equilibrium in P . Since there is not a single attractor for all Gm, we will denote each
attractor for the respective Gm by ~xm.

We must now show that the sequence (~xm)m∈N is nondecreasing. Let x̂ ∈ P and
k,m ∈ N with k > m, so

~xk = lim
t→∞

~xk,t where xk,t+1 = Gm(xk,t) and xk,0 = x̂
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~xm = lim
t→∞

~xm,t where xm,t+1 = Gm(xm,t) and xm,0 = x̂.

By Theorem 6.2, we know that Gk(~x) > Gm(~x) for all ~x ∈ Rm
+ . Therefore, by induc-

tion, we find that ~xk,t ≥ ~xm,t for all t ∈ N and, consequently, ~xk ≥ ~xm.
Because (~xm)m∈N is a nondecreasing, bounded sequence in Rn, it converges to some

x̃ ∈ Rn
+. Given ε > 0 and any norm, ‖ · ‖, on Rn, there exists M ∈ N such that

‖G(~x) − Gm(~x)‖ < ε for all m > M and ~x ∈ Rm
+ by Theorem 6.2. Since Gm(~xm) =

~xm,
‖G(~xm)− ~xm‖ = ‖G(~xm)−Gm(~xm)‖ < ε

for all m > M . With m→∞ and the continuity of G, we have G(x̃) = x̃. In the cases
of interest here, the only fixed points of G are ~0 and ~N∗. Moreover, since the sequence
(~xm) is increasing, we have x̃ = ~N∗. In particular, this yields

lim
m→∞

~xm = ~N∗. (6.4)

Now write ~N∗ = [ ~K(1), ~N∗(2)]T as in the statement of Theorem 3.5, and decompose
~xm analogously as [~xm(1), ~xm(2)]T . From (6.4), for ε > 0, there must exist M > 0 such
that

0 < ~K(1)− ~xm(1) < ε/2 (6.5)

for all m > M . Let m0 > M and x̂ ∈ P . Consider

~Nt+1 = G( ~Nt), ~N0 = x̂

with the vector ~Nt = [ ~Nt(1), ~Nt(2)]
T and

~xm0,t+1 = Gm0(~xm0,t), ~xm0,0 = x̂ (6.6)

where ~xm0,t = [~xm0,t(1), ~xm0,t(2)]
T . BecauseGm0(~x) ≤ G(~x) for all ~x ∈ Rn

+, it follows
that

~xm0,t(1) ≤ ~Nt(1) (6.7)

for all t ∈ N. The system (6.6) has an equilibrium [~xm0(1), ~xm0(2)]
T , so there must

exist T > 0 such that
|~xm0,t(1)− ~xm0(1)| < ε/2 (6.8)

for all t > T . By combining the equations (6.5), (6.7), and (6.8), we find | ~Nt− ~K(1)| < ε
for t > T , which shows that

lim
t→∞

~Nt(1) = ~K(1). (6.9)

Specifically, if ρ(J) > 1 and J ~K ≥ ~K, then ~N∗ = ~K is a globally attracting equilib-
rium.

If ~N∗ 6= ~K, then, by Theorem 3.5,

~N∗ = [ ~K(1), (I − J22)−1J21 ~K(1)]T
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where
ρ(J22) < 1. (6.10)

Recall that ~Nt(2) satisfies

~Nt+1(2) = min{J21 ~Nt(1) + J22 ~Nt(2), ~K(2)}.

Let ~Mt have the same dimension and initial state as ~Nt(2) satisfying

~Mt+1 = J21 ~Nt(1) + J22 ~Mt. (6.11)

By construction, ~Nt(2) ≤ Mt. It follows from (6.9), (6.10), (6.11), and the standard
discrete-time variation of parameters formula that

lim
t→∞

~Mt = (I − J22)−1J21 ~K(1).

By the assumptions of the decomposition, (I − J22)−1J21 ~K(2) ≤ ~K(1), so

lim
t→∞

~Nt(2) ≤ lim
t→∞

~Mt ≤ ~K(1).

This shows that
~Nt+1(2) = J21 ~Nt(1) + J22 ~Nt(2)

for large enough t. It again follows from the discrete-time variation of parameters for-
mula that

lim
t→∞

~Nt(2) = (I − J22)−1J21 ~K(1),

finishing the proof.


