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1 Introduction
In this paper we consider the difference equation

xn+1 = ax3n + bx3n−1 + cxn + dxn−1, (1.1)

where the parameters a, b, c and d are positive numbers and the initial conditions x−1
and x0 are arbitrary numbers. Equation (1.1) is a special case of a general second or-
der difference equation with cubic terms considered in [2], where the global dynamics
was established in the case of all non-negative parameters and the initial conditions, in
the hyperbolic case. In [2] we found precisely the basins of attraction of all attractors,
which are either equilibrium points, period-two solutions or the point at infinity. The
boundaries of these basins of attraction are the global stable manifolds of neighboring
saddle equilibrium points (resp. nonhyperbolic equilibrium points of stable type) or the
saddle period-two points (resp. nonhyperbolic period-two points of stable type). The
unstable manifolds of neighboring saddle equilibrium points (resp. nonhyperbolic equi-
librium points of stable type) play the role of carrying simplex, that is of the manifold
which eventually carries the solutions toward its attractor. See [1] for similar results on
second order difference equation with quadratic terms.

In this paper we demonstrate the computational procedure for finding the local stable
and unstable manifold for equation (1.1). The method can be extended in a straightfor-
ward manner to the general second order difference equation with cubic terms consid-
ered in [2], but it will be computationally extensive and it will contain 10 parameters.

The paper is organized as follows. The rest of this section contains the result on
global behavior of solutions of equation (1.1) from [2]. Section 2 contains some prelim-
inary results about cooperative maps needed to establish the smoothness of stable and
unstable manifolds and so justify the use of a method of undetermined coefficients. Sec-
tion 3 contains a computational procedure and asymptotic expansions of two invariant
manifolds, obtained by using Mathematica. Finally Section 4 contains some numerical
examples and the comparison of the asymptotic expansions of global stable manifolds
with the basins of attraction obtained by Dynamica 3 [7]. Appendix gives the values
of some coefficients in asymptotic expansions of two invariant manifolds, obtained by
using Mathematica.

Set
un = xn−1 and vn = xn for n = 0, 1, . . . (1.2)

and write Eq.(1.1) in the equivalent form:

un+1 = vn (1.3)
vn+1 = av3n + bu3n + cvn + dun.

Let T be the corresponding map defined by:

T

(
u
v

)
=

(
v

av3 + bu3 + cv + du

)
. (1.4)
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The following result was established in [2]:

Theorem 1.1. If

c+ d < 1 and
((

c >
(d− 1)(2a− b)

2b− a
and 2a < b

)
or 2a ≥ b

)
(1.5)

then Eq.(1.1) has three distinct equilibrium points x̄− = −
√

1− c− d√
a+ b

, x̄0 = 0 and

x̄+ =

√
1− c− d√
a+ b

, and the following holds:

i) x̄− and x̄+ are the saddle points;

ii) x̄0 is locally asymptotically stable.

Further, there exist four continuous curves Ws(x̄−),Ws(x̄+) (stable manifolds of x̄−
and x̄+), Wu(x̄−),Wu(x̄+), (unstable manifolds of x̄− and x̄−) where Ws(x̄−) and
Ws(x̄+) are passing through the points E−(x̄−, x̄−) and E+(x̄+, x̄+) respectively, and
are graphs of decreasing functions. The curves Wu(x̄−) are the graphs of increasing
functions, and it has endpoints E−(x̄−, x̄−) and E0(0, 0). The curve Wu(x̄+) is the
graphs of increasing function and it has the endpoints E0(0, 0) and E+(x̄+, x̄+). Every
solution {xn} which starts below Ws(x̄+) and above Ws(x̄−) in North-east ordering
converges to E0(0, 0) and every solution {xn} which starts above Ws(x̄+) or below
Ws(x̄−) in North-east ordering satisfies limxn =∞. The set of initial conditions R2 is
the union of four disjoint basins of attraction, namely

R2 = B(E−) ∪ B(E+) ∪ B(E) ∪ B(E∞),

where E−, E, E+and E∞ denote the points (x−, x−), (0, 0), (x+, x+) and (∞,∞)
respectively, and

B(E−) =Ws(E−),

B(E+) =Ws(E+),

B(E0) =
{

(x, y)|(xE− , yE−) �ne (x, y) �ne (xE+ , yE+) for some

(xE+ , yE+) ∈ Ws(E+) and (xE− , yE−) ∈ Ws(E−)
}
,

B(E∞) =
{

(x, y)|(xE+ , yE+) �ne (x, y) for some (xE+ , yE+) ∈ Ws(E+)
}

∪
{

(x, y)|(x, y) �ne (xE− , yE−) for some (xE− , yE−) ∈ Ws(E−)
}
.

As one may see from Theorem 1.1 the boundaries of the basins of attraction of all at-
tractors of Eq.(1.1) are the stable manifolds of equilibrium points. In addition, by using
the results from [10] one can see that the solutions which are asymptotic to the locally
asymptotically stable equilibrium solutions are approaching the unstable manifolds of
the neighboring saddle equilibrium points. The monotonicity and smoothness of stable
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and unstable manifolds for the map T given with (1.4) is guaranteed by Theorems 2.1,
2.3, 2.4 of [10]. See [5, 8, 10, 13, 14] for related results about the stable manifolds for
competitive maps. Our main goal here is to get the local asymptotic estimates for these
manifolds for both equilibrium solutions. We will bring the considered map to the nor-
mal form around the equilibrium solutions and then use the method of undetermined
coefficients to find the local approximations of the considered manifolds. Since the map
T is cooperative, it is guaranteed that both stable and unstable manifolds are as smooth
as the functions of the considered map and that are monotonic such that the stable man-
ifold is decreasing and unstable manifold is increasing, see [3, 10]. See [5, 11, 15] for
similar local approximations of stable and unstable manifolds. See [4, 6, 7, 12, 15] for
basic results on stable and unstable manifolds for general maps.

2 Preliminaries
In this section we present some basic results for the cooperative maps which describe
the existence and the properties of their invariant manifolds.

A first order system of difference equations{
xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, 2, . . . , (x0, y0) ∈ S , (2.1)

where S ⊂ R2, (f, g) : S → S, f , g are continuous functions is cooperative if f(x, y)
and g(x, y) are non-decreasing in x and y. Strongly cooperative systems of difference
equations or strongly cooperative maps are those for which the functions f and g are
coordinate-wise strictly monotone.

If v = (u, v) ∈ R2, we denote with Q`(v), ` ∈ {1, 2, 3, 4}, the four quadrants in
R2 relative to v, i.e., Q1(v) = {(x, y) ∈ R2 : x ≥ u, y ≥ v}, Q2(v) = {(x, y) ∈
R2 : x ≤ u, y ≥ v}, and so on. Define the South-East partial order �se on R2 by
(x, y) �se (s, t) if and only if x ≤ s and y ≥ t. Similarly, we define the North-East
partial order �ne on R2 by (x, y) �ne (s, t) if and only if x ≤ s and y ≤ t. For A ⊂ R2

and x ∈ R2, define the distance from x to A as dist(x,A) := inf {‖x − y‖ : y ∈ A}.
By intA we denote the interior of a set A.

It is easy to show that a map F is cooperative if it is non-decreasing with respect to
the North-East partial order, that is if the following holds:(

x1

y1

)
�ne

(
x2

y2

)
⇒ F

(
x1

y1

)
�ne F

(
x2

y2

)
. (2.2)

The following five results were proved by Kulenović and Merino [10] for compet-
itive systems in the plane, when one of the eigenvalues of the linearized system at an
equilibrium (hyperbolic or non-hyperbolic) is by absolute value smaller than 1 while the
other has an arbitrary value. We give the analogue versions for cooperative maps.

A regionR ⊂ R2 is rectangular if it is the cartesian product of two intervals in R.
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Theorem 2.1. Let T be a cooperative map on a rectangular regionR ⊂ R2. Let x ∈ R
be a fixed point of T such that ∆ := R ∩ int (Q2(x) ∪ Q4(x)) is nonempty (i.e., x is
not the NE or SW vertex of R), and T is strongly cooperative on ∆. Suppose that the
following statements are true.

a. The map T has a C1 extension to a neighborhood of x.

b. The Jacobian matrix of T at x has real eigenvalues λ, µ such that 0 < |λ| < µ,
where |λ| < 1, and the eigenspace Eλ associated with λ is not a coordinate axis.

Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin
of attraction of x, such that C is tangential to the eigenspace Eλ at x, and C is the graph
of a strictly decreasing continuous function of the first coordinate on an interval. Any
endpoints of C in the interior ofR are either fixed points or minimal period-two points.
In the latter case, the set of endpoints of C is a minimal period-two orbit of T .

Corollary 2.2. If T has no fixed point nor periodic points of minimal period two in ∆,
then the endpoints of C belong to ∂R.

As is well known for maps that are strongly cooperative near the fixed point, hy-
pothesis (b). of Theorem 2.1 reduces just to |λ| < 1, see [10]. Also, one can show that
in such a case no associated eigenvector is aligned with a coordinate axis.

Theorem 2.3. Under the hypotheses of Theorem 2.1, suppose there exists a neighbor-
hood U of x in R2 such that T is of class Ck on U ∪ ∆ for some k ≥ 1, and that
the Jacobian of T at each x ∈ ∆ is invertible. Then the curve C in the conclusion of
Theorem 2.1 is of class Ck.

The following result gives a description of the global stable and unstable manifolds
of a saddle point of a cooperative map. The result is the modification of Theorem 5
from [8]. See also [9].

Theorem 2.4. In addition to the hypotheses of Theorem 2.1, suppose that µ > 1 and
that the eigenspace Eµ associated with µ is not a coordinate axis. If the curve C of
Theorem 2.1 has endpoints in ∂R, then C is the global stable manifoldWs(x) of x, and
the global unstable manifold Wu(x) is a curve in R that is tangential to Eµ at x and
such that it is the graph of a strictly increasing function of the first coordinate on an
interval. Any endpoints ofWu(x) inR are fixed points of T .

Theorem 2.5. Assume the hypotheses of Theorem 2.1, and let C be the curve whose
existence is guaranteed by Theorem 2.1. If the endpoints of C belong to ∂R, then C
separatesR into two connected components, namely

W− : = {x ∈ R \ C : ∃y ∈ C with x �ne y}
W+ : = {x ∈ R \ C : ∃y ∈ Cwith y �ne x} ,

(2.3)

such that the following statements are true.
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(i) W− is invariant, and dist(T n(x),Q1(x))→ 0 as n→∞ for every x ∈ W−.

(ii) W+ is invariant, and dist(T n(x),Q3(x))→ 0 as n→∞ for every x ∈ W+.

If, in addition, x is an interior point of R and T is C2 and strongly cooperative in
a neighborhood of x, then T has no periodic points in the boundary of Q2(x) ∪ Q4(x)
except for x, and the following statements are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that T n(x) ∈ intQ1(x) for n ≥ n0.

(iv) For every x ∈ W+ there exists n0 ∈ N such that T n(x) ∈ intQ3(x) for n ≥ n0.

Remark 2.6. The map T defined with (1.4) is strongly cooperative in R2. Theorems
2.1, 2.3 and 2.4 show that the stable and unstable manifolds of cooperative maps, which
satisfies certain conditions, are simple monotonic curves which are as smooth as the
functions of the map. Thus the assumed forms of these manifolds are justified. As is
well-known the stable and unstable manifolds of general maps can have complicated
structure consisting of many branches or being strange attractors, see [4,6,15] for some
examples of polynomial maps such as Henon with unstable manifold being a strange
attractor. Finally, see [14] for examples of competitive and so cooperative maps in the
plane with chaotic attractors.

3 Invariant Manifolds and Normal Forms
Let (

ξn+1

ηn+1

)
=

(
µ1 0
0 µ2

)(
ξn
ηn

)
+

(
g1(ξn, ηn)
g2(ξn, ηn)

)
, (3.1)

where g1(0, 0) = 0, g2(0, 0) = 0, Dg1(0, 0) = 0 and Dg2(0, 0) = 0. Suppose that
|µ1| < 1 and |µ2| > 1. Then, there are two unique invariant manifolds Ws and Wu

tangents to (1, 0) and (0, 1) at (0,0), which are graphs of the maps ϕ : E1 → E2 and ψ :
E1 → E2, such that ϕ(0) = ψ(0) = 0 and ϕ′(0) = ψ′(0) = 0. See [5,6,11,15]. Letting
ηn = ϕ(ξn) yields

ηn+1 = ϕ(ξn+1) = ϕ(µ1ξn + g1(ξn, ϕ(ξn))). (3.2)

On the other hand by (3.1)

ηn+1 = µ2ϕ(ξn) + g2(ξn, ϕ(ξn)). (3.3)

Equating equations (3.2) and (3.3) yields

ϕ(µ1ξn + g1(ξn, ϕ(ξn))) = µ2ϕ(ξn) + g2(ξn, ϕ(ξn)). (3.4)
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Similarly, letting ξn = ψ(ηn) yields

ξn+1 = ψ(ηn+1) = ψ(µ2ηn + g2(ψ(ηn), ηn)). (3.5)

By using (3.1) we obtain

ξn+1 = µ1ψ(ηn) + g1(ψ(ηn), ηn). (3.6)

Equating equations (3.5) and (3.6) yields

ψ(µ2ηn + g2(ψ(ηn), ηn)) = µ1ψ(ηn) + g1(ψ(ηn), ηn). (3.7)

Thus the functional equations (3.4) and (3.7), define the local stable manifoldWs =
{(ξ, η) ∈ R2 : η = ϕ(ξ)}, and the local unstable manifold Wu = {(ξ, η) ∈ R2 :
ξ = ψ(η)}. Without loss generality, we can assume that solutions of the functional
equations (3.4) and (3.7) take the forms ϕ(ξ) = α1ξ

2 + β1ξ
3 + O(|ξ|4) and ψ(η) =

α2η
2 + β2η

3 +O(|η|4).

3.1 Normal Form of the Map T at the Saddle Points x̄− and x̄+

Let x̄ denote one of the saddle points x̄− or x̄+. Put yn = xn− x̄. Then Eq(1.1) becomes

yn+1 = a (x̄+ yn) 3 + b (x̄+ yn−1)
3 + c (x̄+ yn) + d (x̄+ yn−1)− x̄. (3.8)

Set un = yn−1 and vn = yn for n = 0, 1, . . . and write Eq(3.8) in the equivalent form:

un+1 = vn (3.9)
vn+1 = a (x̄+ vn) 3 + b (x̄+ un)3 + c (x̄+ vn) + d (x̄+ un)− x̄.

Let F be the function defined by:

F

(
u
v

)
=

(
v

a (x̄+ v) 3 + b (x̄+ u)3 + c (x̄+ v) + d (x̄+ u)− x̄

)
. (3.10)

Then F has the fixed point (0, 0), which corresponds to the fixed point (x̄, x̄) of the map
T. The Jacobian matrix of F is given by

JacF (u, v) =

(
0 1

d+ 3b (u+ x̄)2 c+ 3a (v + x̄)2

)
.

At (0, 0), JacF (u, v) has the form

J0 = JacF (0, 0) =

(
0 1

d+ 3bx̄2 c+ 3ax̄2

)

=

 0 1
−3cb− 2db+ 3b+ ad

a+ b

−2ca− 3da+ 3a+ bc

a+ b

 .

(3.11)
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The eigenvalues of (3.11) are µ1,2 where

µ1 = −a(2c+ 3d− 3)− bc+ A

2(a+ b)
and µ2 = −a(2c+ 3d− 3)− bc− A

2(a+ b)
,

and
A =

√
(a(−2c− 3d+ 3) + bc)2 + 4(a+ b)(ad+ b(−3c− 2d+ 3)),

and the corresponding eigenvectors are given by

v1 =

(
−2ac− 3ad+ 3a+ bc+ A

b(6c+ 4d− 6)− 2ad
, 1

)T
and

v2 =

(
−2ac− 3ad+ 3a+ bc− A
b(6c+ 4d− 6)− 2ad

, 1

)T
,

respectively.
Then we have that

F

(
u
v

)
=

(
0 1

d+ 3bx̄2 c+ 3ax̄2

)(
u
v

)
+

(
f1(u, v)
g1(u, v)

)
, (3.12)

and

f1(u, v) =0

g1(u, v) =x̄
(
3av2 + 3bu2 − 1 + c+ d

)
+ (a+ b)x̄3 + av3 + bu3.

Then, the system (3.9) is equivalent to(
un+1

vn+1

)
=

(
0 1

d+ 3bx̄2 c+ 3ax̄2

)(
un
vn

)
+

(
f1(un, vn)
g1(un, vn)

)
. (3.13)

Let (
un
vn

)
= P ·

(
ξn
ηn

)
where

P =

 −2ca+ 3da− 3a− A− bc
2(3cb+ 2db− 3b− ad)

−2ca− 3da+ 3a− A+ bc

2(3cb+ 2db− 3b− ad)
1 1


and

P−1 =

 3cb+ 2db− 3b− ad
A

2ca+ 3da− 3a+ A− bc
2A

−3cb− 2db+ 3b+ ad

A

−2ca− 3da+ 3a+ A+ bc

2A

 .
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Then system (3.13) is equivalent to(
ξn+1

ηn+1

)
=

(
µ1 0
0 µ2

)(
ξn
ηn

)
+

(
f̃1(ξn, ηn)
g̃1(ξn, ηn)

)
, (3.14)

where (
f̃1(u, v)
g̃1(u, v)

)
:= P−1 ·H1

(
P ·
(
u
v

))
and

H1

(
u
v

)
:=

(
f1(u, v)
g1(u, v)

)
.

By straightforward calculation we obtain that

f̃1(u, v) =
a(2c+ 3d− 3) + A− bc

2A
Υ1(u, v),

g̃1(u, v) =
a(−2c− 3d+ 3) + A+ bc

2A
Υ1(u, v),

where

Υ1(u, v) = x̄

(
3b(−a(2c+ 3d− 3)(u+ v) + A(u− v) + bc(u+ v))2

4(ad+ b(−3c− 2d+ 3))2

)
+ x̄

(
3a(u+ v)2 + c+ d− 1

)
+ a(u+ v)3

+ x̄3(a+ b) +
b(−a(2c+ 3d− 3)(u+ v) + A(u− v) + bc(u+ v))3

8(b(3c+ 2d− 3)− ad)3
.

3.2 Stable Manifolds at x̄− and x̄+

Assume that (1.5) holds and that the local stable manifold corresponding to the saddle
point E+ is the graph of the function ϕ1 of the form

ϕ1(ξ) = α1ξ
2 + β1ξ

3 +O(|ξ|4), α1, β1 ∈ R,

and that the local stable manifold corresponding to the saddle point E− is the graph of
the function ϕ2 of the form

ϕ2(ξ) = α2ξ
2 + β2ξ

3 +O(|ξ|4), α2, β2 ∈ R,

Now we compute the constants α1, α2, β1 and β2. The function ϕ1 must satisfy the
stable manifold equation

ϕ1

(
µ1ξ + f̃1 (ξ, ϕ1(ξ))

)
= µ2ϕ1(ξ) + g̃1 (ξ, ϕ1(ξ)) ,
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for x̄ =

√
1− c− d√
a+ b

. This leads to the following polynomial equation

p1ξ
2 + p2ξ

3 + · · ·+ p26ξ
27 = 0.

Substituting x̄2 into p1 and p2 and solving system p1 = 0 and p2 = 0, we obtain the
values

α1 =
Υ1

Υ2

, β1 =
Υ3

Υ4

where the coefficients Υ3 and Υ4, generated by Mathematica are in Appendix A and

Υ1 = 3(a+ b)3/2
√

1− c− d(a(2c+ 3d− 3) + A− bc)(
4a3d2 + a2b

(
4c2 − 12c(d+ 1) + (6− 7d)d+ 9

)
+ 2ab (A(2c+ 3d− 3)

+b
(
16c2 + 3c(7d− 11) + 2(3− 2d)2

))
+ b(A− bc)2

)
,

Υ2 = 2A(ad+ b(3− 3c− 2d))2
(
a2(2c+ 3d− 3)(2c+ 3d− 1)− 2a(3d(A

+b(c− 1)) + 2(c− 2)(A+ bc) + 3b) + A2 + 2Ab(c+ 1) + b2(c− 2)c
)
.

Since ηn = α1ξ
2
n + β1ξ

3
n, and(

ξn
ηn

)
= P−1 ·

(
xn−1 − x̄+
xn − x̄+

)
(3.15)

we can approximate locally the local stable manifoldWs
loc(x̄+, x̄+) as the graph of the

map ϕ̃1(x) such that S+(x, ϕ̃1(x)) = 0 where

S+(x, y) :=
(y − x̄+) (a(3− 2c− 3d) +A+ bc) + 2 (x− x̄+) (ad+ b(3− 3c− 2d))

2A

− β1 ((A− bc+ a(2c+ 3d− 3)) (y − x̄+) + (x− x̄+) (b(6c+ 4d− 6)− 2ad)) 3

8A3

− α1 ((A− bc+ a(2c+ 3d− 3)) (y − x̄+) + (x− x̄+) (b(6c+ 4d− 6)− 2ad)) 2

4A3
(3.16)

and which satisfies

ϕ̃1(x̄+) = x̄+ and ϕ̃′1(x̄+) =
b(6c+ 4d− 6)− 2ad

−2ac− 3ad+ 3a+ bc+ A
.

The function ϕ2 must satisfy the stable manifold equation

ϕ2

(
µ1ξ + f̃1 (ξ, ϕ2(ξ))

)
= µ2ϕ2(ξ) + g̃1 (ξ, ϕ2(ξ)) ,

for x̄ = −
√

1− c− d√
a+ b

. This leads to the following polynomial equation

p′1ξ
2 + p′2ξ

3 + · · ·+ p′26ξ
27 = 0.
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Substituting x̄2 into p′1 and p′2 and solving system p′1 = 0 and p′2 = 0, we obtain the
values

α2 = −α1 = −Υ1

Υ2

, β2 =
Υ5

Υ4

where the coefficient Υ5, generated by Mathematica is in appendix A. Since ηn =
α2ξ

2
n + β2ξ

3
n, (3.15) we can approximate locally the local stable manifoldWs

loc(x̄−, x̄−)
as the graph of the map ϕ̃2(x) such that S−(x, ϕ̃2(x)) = 0 where

S−(x, y) :=
(y − x̄−) (a(3− 2c− 3d) +A+ bc) + 2 (x− x̄−) (ad+ b(3− 3c− 2d))

2A

− β2 ((A− bc+ a(2c+ 3d− 3)) (y − x̄−) + (x− x̄−) (b(6c+ 4d− 6)− 2ad)) 3

8A3

− α2 ((A− bc+ a(2c+ 3d− 3)) (y − x̄−) + (x− x̄−) (b(6c+ 4d− 6)− 2ad)) 2

4A3
(3.17)

and which satisfies

ϕ̃2(x̄−) = x̄− and ϕ̃′2(x̄−) =
b(6c+ 4d− 6)− 2ad

−2ac− 3ad+ 3a+ bc+ A
.

Theorem 3.1. Consider Eq.(1.1). Then the local stable manifolds corresponding to the
saddle points x̄+ and x̄− are given with the asymptotic expansions S+(x, ϕ̃1(x)) = 0
and S−(x, ϕ̃2(x)) = 0 respectively.

3.3 Unstable Manifolds at x̄− and x̄+

Assume (1.5) and that the local unstable manifold, that corresponds to the saddle point

x̄+ =

√
1− c− d√
a+ b

, is the graph of the function ψ1 that has the form

ψ1(η) = γ1η
2 + δ1η

3 +O(|η|4), γ1, δ1 ∈ R

and that the local unstable manifold, that corresponds to the saddle point

x̄− = −
√

1− c− d√
a+ b

,

is the graph of the function ψ2 that has the form

ψ2(η) = γ2η
2 + δ2η

3 +O(|η|4), γ2, δ2 ∈ R.

Now we compute the constants γ1 and δ1.
The function ψ1 must satisfy the unstable manifold equation

ψ1(µ2η + g̃1(ψ1(η), η)) = µ1ψ1(η) + f̃1(ψ1(η), η),
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for x̄ = x̄+ =

√
1− c− d√
a+ b

. This leads to the following polynomial equation

q1η
2 + q2η

3 + · · ·+ q26η
27 = 0.

Substituting x̄+ into q1 and q2 and solving system q1 = 0 and q2 = 0, we obtain the
values

γ1 =
Γ1

Γ2

, δ1 =
Γ3

Γ4

.

where the coefficients Γ3 and Γ4, generated by Mathematica are in Appendix A and

Γ1 = 3(a+ b)3/2
√
−c− d+ 1(a(2c+ 3d− 3) +A− bc)

(
4a3d2 + a2b

(
4c2 − 12c(d+ 1)

+(6− 7d)d+ 9) + 2ab
(
A(2c+ 3d− 3) + b

(
16c2 + 3c(7d− 11) + 2(3− 2d)2

))
+b(A− bc)2

)
Γ2 = 2A(ad+ b(−3c− 2d+ 3))2

(
a2(2c+ 3d− 3)(2c+ 3d− 1)− 2a(3d(A+ b(c− 1))

+2(c− 2)(A+ bc) + 3b) +A2 + 2Ab(c+ 1) + b2(c− 2)c
)
.

Since ξn = γ1η
2
n + δ1η

3
n, and (3.15) we can approximate locally the local unstable

manifoldWu
loc(x̄+, x̄+) as the graph of the map ψ̃1(y) such that U(ψ̃1(y), y) = 0 where

U+(x, y) :=
(y − x̄+) (a(2c+ 3d− 3) +A− bc) + (x− x̄+) (2ad+ b(6c+ 4d− 6))

2A

− δ1 ((y − x̄+) (a(3− 2c− 3d) +A+ bc) + 2 (x− x̄+) (ad+ b(3− 3c− 2d))) 3

8A3

− γ1 ((y − x̄+) (a(3− 2c− 3d) +A+ bc) + 2 (x− x̄+) (ad+ b(3− 3c− 2d))) 2

4A2
(3.18)

and which satisfies

ψ̃1(x̄+) = x̄+ and ψ̃′1(x̄+) =
b(6c+ 4d− 6)− 2ad

−2ac− 3ad+ 3a+ bc− A
.

Now we compute the constants γ2 and δ2.
The function ψ2 must satisfy the unstable manifold equation

ψ2(µ2η + g̃1(ψ2(η), η)) = µ1ψ2(η) + f̃1(ψ2(η), η),

for x̄ = x̄− = −
√

1− c− d√
a+ b

.

This leads to the following polynomial equation

q′1η
2 + q′2η

3 + · · ·+ q′26η
27 = 0.
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Substituting x̄− into q1 and q2 and solving system q1 = 0 and q2 = 0, we obtain the
values

γ2 = −γ1 =
Γ1

Γ2

, δ2 =
Γ5

Γ4

.

where the coefficient Γ5, generated by Mathematica is in appendix A.
Since ξn = γ2η

2
n + δ2η

3
n, and (3.15) we can approximate locally the local unstable

manifoldWu
loc(x̄−, x̄−) as the graph of the function ψ̃2(y) such that U ′(ψ̃2(y), y) = 0,

where

U−(x, y) :=
(y − x̄−) (a(2c+ 3d− 3) +A− bc) + (x− x̄−) (2ad+ b(6c+ 4d− 6))

2A

− δ2 ((y − x̄−) (a(3− 2c− 3d) +A+ bc) + 2 (x− x̄−) (ad+ b(3− 3c− 2d))) 3

8A3

− γ2 ((y − x̄−) (a(3− 2c− 3d) +A+ bc) + 2 (x− x̄−) (ad+ b(3− 3c− 2d))) 2

4A2
(3.19)

and which satisfies

ψ̃2(x̄−) = x̄− and ψ̃′2(x̄−) =
b(6c+ 4d− 6)− 2ad

−2ac− 3ad+ 3a+ bc− A
.

Thus we proved the following result.

Theorem 3.2. Consider Eq.(1.1). Then the local unstable manifolds corresponding to
the saddle points x̄− and x̄+ are given with the asymptotic expansions U−(ψ̃2(y), y) = 0
and U+(ψ̃1(y), y) = 0 respectively.

4 Numerical Examples
In this section we provide some numerical examples and we compare visually the
asymptotic approximations of stable and unstable manifolds, obtained by using Math-
ematica, with the boundaries of the basins of attraction obtained by using the software
package Dynamica 3 [7].
For a = 1.0, b = 1.0, c = 0.3 and d = 0.2 we have that

S1
+(x, y) =0.00687369(1.(−3.4(x− 0.5)− 0.3(y − 0.5))− 0.4(x− 0.5)

+ 2.62832(y − 0.5))3 − 0.0430681(1.(−3.4(x− 0.5)− 0.3(y − 0.5))

− 0.4(x− 0.5) + 2.62832(y − 0.5))2 − 0.11291(3.8(x− 0.5)

+ 6.52832(y − 0.5)),

S1
−(x, y) =0.00687369(1.(−3.4(x+ 0.5)− 0.3(y + 0.5))− 0.4(x+ 0.5)

+ 2.62832(y + 0.5))3 + 0.0430681(1.(−3.4(x+ 0.5)− 0.3(y + 0.5))

− 0.4(x+ 0.5) + 2.62832(y + 0.5))2 − 0.11291(3.8(x+ 0.5)

+ 6.52832(y + 0.5))
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and for a = 16.0, b = 2.0, c = 0.5 and d = 0.1

S2
+(x, y) =− 0.0150918(8.4(x− 0.149071) + 61.3307(y − 0.149071))

+ 0.00186278(2.(−2.6(x− 0.149071)− 0.5(y − 0.149071))

− 3.2(x− 0.149071) + 5.93065(y − 0.149071))3

− 0.00686115(2.(−2.6(x− 0.149071)− 0.5(y − 0.149071))

− 3.2(x− 0.149071) + 5.93065(y − 0.149071))2,

S2
−(x, y) =− 0.0150918(8.4(0.149071 + x) + 61.3307(0.149071 + y))

+ 0.00686115(−3.2(0.149071 + x) + 5.93065(0.149071 + y)

+ 2.(−2.6(0.149071 + x)− 0.5(0.149071 + y)))2

+ 0.00186278(−3.2(0.149071 + x) + 5.93065(0.149071 + y)

+ 2.(−2.6(0.149071 + x)− 0.5(0.149071 + y)))3.

Figures 4.1 and 4.2 show the graph of the functions S1
+(x, y) = 0, S1

−(x, y) = 0,
S2
+(x, y) = 0, and S2

−(x, y) = 0 with the basins of attraction created with Dynamica 3.

Figure 4.1: The graph of the function S1
+(x, y) = 0 (red curves) and S1

−(x, y) = 0 (blue
curves) for a = 1.0, b = 1.0, c = 0.3 and d = 0.2 with the basins of attraction generated
by Dynamica 3.

For a = 1.0, b = 1.0, c = 0.3 and d = 0.2 we have that

U1
+(x, y) =− 0.11291(1.(−3.4(x− 0.5)− 0.3(y − 0.5))− 0.4(x− 0.5)

+ 2.62832(y − 0.5)) + 0.00213032(3.8(x− 0.5) + 6.52832(y − 0.5))2

− 0.000149822(3.8(x− 0.5) + 6.52832(y − 0.5))3,
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Figure 4.2: The graph of the function S2
+(x, y) = 0 (red curves) and S2

−(x, y) = 0
(blue curves) for a = 16.0, b = 2.0, c = 0.5 and d = 0.1 with the basins of attraction
generated byDynamica 3.

U1
−(x, y) =− 0.11291(1.(−3.4(x+ 0.5)− 0.3(y + 0.5))− 0.4(x+ 0.5)

+ 2.62832(y + 0.5))− 0.000149822(3.8(x+ 0.5) + 6.52832(y + 0.5))3

− 0.00213032(3.8(x+ 0.5) + 6.52832(y + 0.5))2,

and for a = 16.0, b = 2.0, c = 0.5 and d = 0.1

U2
+(x, y) =− 0.0150918(2.(−2.6(x− 0.149071)− 0.5(y − 0.149071))

− 3.2(x− 0.149071) + 5.93065(y − 0.149071))

+ 0.0000416195(8.4(x− 0.149071) + 61.3307(y − 0.149071))2

− 2.0226418 · 10−6(8.4(x− 0.149071) + 61.3307(y − 0.149071))3,

U2
−(x, y) =0.0150918(2.(−2.6(x+ 0.149071)− 0.5(y + 0.149071))

− 3.2(x+ 0.149071) + 5.93065(y + 0.149071))

− 2.0226418 · 10−6(8.4(x+ 0.149071) + 61.3307(y + 0.149071))3

− 0.0000416195(8.4(x+ 0.149071) + 61.3307(y + 0.149071))2.

Figures 4.3 and 4.4 show the graph of the functions U1
+(x, y) = 0, U1

−(x, y) = 0,
U2
+(x, y) = 0, and U2

−(x, y) = 0 with the basins of attraction created with Dynamica 3.
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Figure 4.3: The graph of the function U1
+(x, y) = 0 (red curve) and U1

−(x, y) = 0 (blue
curve) for a = 1.0, b = 1.0, c = 0.3 and d = 0.2 with the basins of attraction generated
by Dynamica 3.

Figure 4.4: The graph of the function U2
+(x, y) = 0 (red curve) and U2

−(x, y) = 0 (blue
curve) for a = 16.0, b = 2.0, c = 0.5 and d = 0.1 with the basins of attraction generated
byDynamica 3.
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A Values of Coefficients Υ3, Υ4, Υ5, Γ3, Γ4 and Γ5

Υ4 =2A(ad− 3bc− 2bd+ 3b)3
(
8a3c3 + 36a3c2d− 36a3c2 + 54a3cd2 − 108a3cd+ 46a3c+ 27a3

d3 − 81a3d2 + 69a3d− 15a3 + 12a2Ac2 + 36a2Acd− 36a2Ac+ 27a2Ad2 − 54a2Ad+ 31a2

A− 12a2bc3 −36a2bc2d+ 36a2bc2 − 27a2bcd2 + 54a2bcd− 39a2bc− 24a2bd+ 24a2b+ 6a

A2c+ 9aA2d− 9aA2 −12aAbc2 − 18aAbcd+ 18aAbc+ 8aAb+ 6ab2c3 + 9ab2c2d− 9ab2c2

− 12ab2d+ 12ab2 +A3 − 3A2bc +3Ab2c2 + 4Ab2 − b3c3 + 4b3c
)

Γ4 =2A(ad+ b(−3c− 2d+ 3))3
(
a3(−(2c+ 3d− 5))(2c+ 3d− 3)(2c+ 3d− 1)

+a2
(
A
(
12c2 + 36c(d− 1) + 27(d− 2)d+ 31

)
+ 3b

(
c
(
4c2 + 12c(d− 1)

+9(d− 2)d+ 13) + 8(d− 1)))− a
(
A2(6c+ 9d− 9)

+2Ab(3c(2c+ 3d− 3)− 4) + 3b2
(
c2(2c+ 3d− 3)− 4d+ 4

))
+A3 + 3A2bc

+Ab2
(
3c2 + 4

)
+ b3c

(
c2 − 4

))
Υ3 =(a+ b)3

(
8d3(2c+ 3d− 3)a5 +

(
b
(
16c4 + 96(d− 1)c3 + 72

(
d2 − 6d+ 3

)
c2 −

8
(
13d3 + 36d2 − 81d+ 27

)
c− 9

(
7d4 − 4d3 − 30d2 + 36d− 9

))
− 8Ad3

)
a4

−4b
(
A
(
8c3 + 36(d− 1)c2 + 18

(
2d2 − 6d+ 3

)
c+ 3

(
5d3 − 21d2 + 27d− 9

))
+
(
8c4 − 36(2d+ 1)c3 − 54

(
5d2 − 5d− 1

)
c2 − 3

(
83d3 − 207d2 + 117d+ 9

)
c− 18(3− 2d)2(d− 1)d

))
a3 − 2b

((
204c4 + 36(23d− 26)c3 + 27

(
39d2 − 98d+ 59

)
c2

+4(3− 2d)2(34d− 33)c+ 12(d− 1)(2d− 3)3
)
b2 − 6A

(
4c3 − 6(d+ 2)

c2 +
(
−15d2 + 18d+ 9

)
c− 2(3− 2d)2d

)
b− 3A2(2c+ 3d− 3)2

)
a2 + 4b ((−2c− 3d+ 3)

A3 − 3bc(2c+ 3d− 3)A2 + b2
(
48c3 + 9(11d− 17)c2 + 18(3− 2d)2c+ 2(2d− 3)3

)
A

+b3c
(
52c3 + 3(35d− 53)c2 + 18(3− 2d)2c+ 2(2d− 3)3

))
a+ b(A+ bc)4

)
− 6(a+ b)3/2

√
−c− d+ 1(b(−3c− 2d+ 3) + ad)

(
4d2

(
4c2 + 4(3d− 4)c

+3
(
3d2 − 8d+ 5

))
a5 +

(
8A(2c+ 3d− 2)d2 + b

(
16c4 − 112c3 − 8

(
19d2 + 3d− 36

)
c2

−4
(
54d3 − 95d2 − 30d+ 81

)
c− 9

(
7d4 − 22d3 + 16d2 + 14d− 15

)))
a4

+2
((

56c4 + 4(72d− 89)c3 + 6
(
80d2 − 204d+ 135

)
c2

+3
(
102d3 − 403d2 + 564d− 267

)
c+ 9

(
8d4 − 43d3 + 91d2 − 89d+ 33

))
b2

+A
(
−48d3 + 117d2 − 66d+ c2(4− 48d)− 12c

(
9d2 − 9d+ 1

)
+ 9
)
b+ 2A2d2

)
a3

−2b
((

4c2 + 2(12d− 7)c+ 17d2 − 33d+ 12
)
A2 − 3b

(
24c3 + (76d− 72)c2

+2
(
32d2 − 75d+ 35

)
c+ 16d3 − 61d2 + 70d− 21

)
A+ b2

(
60c4 + 6(30d− 31)c3

+
(
157d2 − 261d+ 108

)
c2 +

(
48d3 − 43d2 − 126d+ 117

)
c+ 12(3− 2d)2(d− 1)

))
a2 + 2b

(
−A3 + b

(
22c2 + (30d− 41)c+ 8d2 − 21d+ 15

)
A2

+b2
(
−36c3 + (105− 48d)c2 − 2

(
8d2 − 45d+ 51

)
c

+4(3− 2d)2
)
A+ b3c

(
14c3 + (18d+ 1)c2 +

(
8d2 + 15d− 45

)
c+ 4(3− 2d)2

))
a

+b(A+ bc)2
(
A2 − 2b(c+ 1)A+ b2c(c+ 2)

))
α1
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Υ5 =
(
8d3(2c+ 3d− 3)a5 +

(
b
(
16c4 + 96(d− 1)c3 + 72

(
d2 − 6d+ 3

)
c2

−8
(
13d3 + 36d2 − 81d+ 27

)
c− 9

(
7d4 − 4d3 − 30d2 + 36d− 9

))
− 8Ad3

)
a4

−4b
(
A
(
8c3 + 36(d− 1)c2 + 18

(
2d2 − 6d+ 3

)
c+ 3

(
5d3 − 21d2 + 27d− 9

))
+b
(
8c4 − 36(2d+ 1)c3 − 54

(
5d2 − 5d− 1

)
c2 − 3

(
83d3 − 207d2 + 117d+ 9

)
c

−18(3− 2d)2(d− 1)d
))
a3 − 2b

((
204c4 + 36(23d− 26)c3 + 27

(
39d2 − 98d+ 59

)
c2

+4(3− 2d)2(34d− 33)c+ 12(d− 1)(2d− 3)3
)
b2 − 6A

(
4c3 − 6(d+ 2)c2 +

(
−15d2 + 18d

+9) c− 2(3− 2d)2d
)
b− 3A2(2c+ 3d− 3)2

)
a2

+4b
(
(−2c− 3d+ 3)A3 − 3bc(2c+ 3d− 3)A2

+b2
(
48c3 + 9(11d− 17)c2 + 18(3− 2d)2c+ 2(2d− 3)3

)
A

+b3c
(
52c3 + 3(35d− 53)c2 + 18(3− 2d)2c

+2(2d− 3)3
))
a+ b(A+ bc)4

)
(a+ b)3 + 6

√
−c− d+ 1(b(−3c− 2d+ 3) + ad)(

4d2
(
4c2 + 4(3d− 4)c+ 3

(
3d2 − 8d+ 5

))
a5 +

(
8A(2c+ 3d− 2)d2 + b

(
16c4 − 112c3

−8
(
19d2 + 3d− 36

)
c2 − 4

(
54d3 − 95d2 − 30d+ 81

)
c

−9
(
7d4 − 22d3 + 16d2 + 14d− 15

)))
a4 + 2

((
56c4 + 4(72d− 89)c3

+6
(
80d2 − 204d+ 135

)
c2 + 3

(
102d3 − 403d2 + 564d− 267

)
c

+9
(
8d4 − 43d3 + 91d2 − 89d+ 33

))
b2

+A
(
−48d3 + 117d2 − 66d+ c2(4− 48d)− 12c

(
9d2 − 9d+ 1

)
+ 9
)
b+ 2A2d2

)
a3

−2b
((

4c2 + 2(12d− 7)c+ 17d2 − 33d+ 12
)
A2

−3b
(
24c3 + (76d− 72)c2 + 2

(
32d2 − 75d+ 35

)
c+ 16d3 − 61d2 + 70d− 21

)
A+ b2

(
60c4 + 6(30d− 31)c3 +

(
157d2 − 261d+ 108

)
c2

+
(
48d3 − 43d2 − 126d+ 117

)
c+ 12(3− 2d)2(d− 1)

))
a2

+2b
(
−A3 + b

(
22c2 + (30d− 41)c+ 8d2 − 21d+ 15

)
A2 + b2

(
−36c3 + (105− 48d)c2

−2
(
8d2 − 45d+ 51

)
c+ 4(3− 2d)2

)
A+ b3c

(
14c3 + (18d+ 1)c2 +

(
8d2 + 15d− 45

)
c

+4(3− 2d)2
))
a+ b(A+ bc)2

(
A2 − 2b(c+ 1)A+ b2c(c+ 2)

))
α2(a+ b)3/2

Γ3 =2(a+ b)3
(
8d3(2c+ 3d− 3)a5 +

(
8Ad3 + b

(
16c4 + 96(d− 1)c3 + 72

(
d2 − 6d+ 3

)
c2 − 8

(
13d3 + 36d2 − 81d+ 27

)
c− 9

(
7d4 − 4d3 − 30d2 + 36d− 9

)))
a4

+4b
(
A
(
8c3 + 36(d− 1)c2 + 18

(
2d2 − 6d+ 3

)
c

+3
(
5d3 − 21d2 + 27d− 9

))
+ b

(
−8c4 + 36(2d+ 1)c3 + 54

(
5d2 − 5d− 1

)
c2

+3
(
83d3 − 207d2 + 117d+ 9

)
c+ 18(3− 2d)2(d− 1)d

))
a3

+2b
(
−
(
204c4 + 36(23d− 26)

c3 + 27
(
39d2 − 98d+ 59

)
c2 + 4(3− 2d)2(34d− 33)c+ 12(d− 1)(2d− 3)3

)
b2

−6A
(
4c3 − 6(d+ 2)c2 +

(
−15d2 + 18d+ 9

)
c− 2(3− 2d)2d

)
b+ 3A2(2c+ 3d− 3)2

)
a2

+4b
(
(2c+ 3d− 3)A3 − 3bc(2c+ 3d− 3)A2
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√
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