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Abstract

We provide conditions for the existence of multiple solutions of two-point
boundary value problems for a system of two nonlinear second-order ordinary dif-
ferential equations.
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1 Introduction
We present existence and multiplicity results for systems of the type{

x′′ = φ(t, x, y),
y′′ = ψ(t, x, y).

(1.1)

Our method is the shooting one. For the scalar problem

x′′ = f(t, x), x(0) = 0, x(1) = 0, (1.2)

the shooting approach says: if x(t; γ) is a solution of the Cauchy problem

x′′ = f(t, x), x(0) = 0, x′(0) = γ, (1.3)

then the problem (1.2) is solvable if

1) x(t; γ) extends to t = 1;
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2) x(t; γ) continuously depends on γ;

3) there exist γ1 and γ2 such that

x(1; γ1)x(1; γ2) < 0. (1.4)

We provide similar results for the problem (1.1),

x(0) = 0, y(0) = 0, x(1) = 0, y(1) = 0. (1.5)

Our approach uses two-dimensional vector fields [1, 2].
A solution of the boundary value problem (1.1), (1.5) is a vector function (x(t), y(t))

with C2[0, 1] components.

2 Vector Field

We suppose that the right sides of (1.1) are continuous functions and there are also
continuous partial derivatives of ϕ and ψ with respect to x and y. This is enough for
continuous dependence of solutions on the initial data. We assume also that all solutions
of (1.1) extend to the interval [0, 1].

Given (α, β) ∈ R2, we denote by (x(t;α, β), y(t;α, β)) a solution of (1.1) such that

x(0) = y(0) = 0, x′(0) = α, y′(0) = β. (2.1)

Define the mapping

Φ : R2 → R2, Φ(α, β) = ((x(1;α, β), y(1;α, β)). (2.2)

It is well defined due to the above assumptions on continuous dependence and extend-
ability.

The critical points of the vector field Φ are (α, β) such that Φ(α, β) = (0, 0). Any
critical point generates a solution to the problem (1.1), (1.5). In order to look for so-
lutions of (1.1), (1.5), we investigate Φ(α, β) and show that under certain conditions,
there exist (α, β) such that Φ(α, β) = (0, 0).

It is convenient for our purposes to consider the initial conditions in the form

x(0) = 0, x′(0) = R cosΘ, y(0) = 0, y′(0) = R sinΘ,
0 ≤ Θ < 2π.

(2.3)

The initial values are located on circles CR of radius R, where R varies from zero to
infinity.



Multiplicity in 4-dimensional Boundary Value Problems 223

3 Tools

In what follows we make use of Brower degree

deg(Φ, CR, (0, 0)),

which is identical with the rotation number γ(Φ;CR) of the vector field Φ on circles
CR (the terminology is as in [2, Ch. 1]).

Since our considerations are based on the theory developed in [2], we prefer to
formulate the results in terms of rotation numbers.

Theorem 3.1 (See [2, Theorem 3.1]). Suppose a continuous vector field Φ does not have
critical points (zero vectors) in a closed domain Ω̄. Then the rotation number γ(Φ; Γ)
on the boundary Γ of Ω is zero.

Corollary 3.2. In the conditions of Theorem 3.1, if γ(Φ; Γ) ̸= 0, then there is a critical
point in Ω.

Proposition 3.3. Suppose Ω is an annular region with inner and outer boundaries Γ1

and Γ2 respectively. Then the rotation number of the vector field Φ over the boundary Γ
of Ω is

γ(Φ; Γ) = γ(Φ; Γ2)− γ(Φ; Γ1).

Corollary 3.4. If an annular region Ω does not contain critical points of the vector field
Φ, then

γ(Φ; Γ2) = γ(Φ; Γ1).

The conclusion is the following. If

γ(Φ;CR1) ̸= γ(Φ;CR2),

whereR1 > R2, then in the respective annular regionD(R1, R2), there is a critical point
of the vector field Φ or, in other words, D(R1, R2) contains an initial condition (α, β)
such that a solution of the Cauchy problem{

x′′ = φ(t, x, y),
y′′ = ψ(t, x, y),

x(0) = 0, y(0) = 0, x′(0) = α, y′(0) = β,

satisfies the boundary condition

x(1) = 0, y(1) = 0.
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4 Results
Theorem 4.1. Let Φ be the vector field defined in (2.2). Suppose γ(Φ;CR) ̸= 0 for
some R. Then there exists a solution (x(t), y(t)) of the problem (1.1), (1.5) such that

x′2(0) + y′2(0) < R2.

Proof. The proof follows from the results of the previous section.

Theorem 4.2. Let Φ be the vector field defined in (2.2). Suppose D(R1, R2) is an
annular region with a boundary CR1 ∪ CR2 and

γ(Φ;CR1) ̸= γ(Φ;CR2).

Then there exists a solution (x(t), y(t)) of the problem (1.1), (1.5) such that

R1
2 < x′2(0) + y′2(0) < R2

2.

Proof. The proof follows from the results of the previous section.

Theorem 4.3. Let Φ be the vector field defined in (2.2). Suppose there are multiple
disjoint annular regions Di with the property described in Theorem 4.2. Then there
are multiple solutions (xi, yi) of the problem (1.1), (1.5) with the initial conditions
(x′i(0), y

′
i(0)) ∈ Di.

Proof. The proof follows from Theorem 4.2.

5 Example
Consider the problem {

x′′ = y − x3,
y′′ = −x3 (5.1)

x(0) = 0, y(0) = 0, x(1) = 0, y(1) = 0. (5.2)

Take the initial conditions

x(0) = 0, y(0) = 0, x′(0) = α, y′(0) = β,

where α = R cosΘ, β = R sinΘ, 0 ≤ Θ < 2π. Consider the vector field

(α, β) → (x(1;α, β), y(1;α, β)).

Critical points generate solutions of the BVP (5.1), (5.2).
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The figures show vectors (x(1;α, β), y(1;α, β)), where α = R cosΘ, β = R sinΘ,
Θ ∈ [0, 2π − ε], where ε is a small positive number. The images of CR under the trans-
formation CR → Φ(CR) intentionally are not closed in order to detect the orientation.
Small black squares indicate starting point (Θ = 0). Arrows indicate the orientation as
Θ increases from zero to 2π.

It appears that the problem (5.1), (5.2) has at least two nontrivial solutions with
(x′(0), y′(0)) belonging to the annular regions with the boundaries respectivelyC13∪C17

and C17 ∪ C60.

6 Final Remarks

If system (1.1) is linear, then the images of circles CR under the transformation CR →
Φ(CR) are ellipses with positive or negative orientations as shown in [5]. Thus the
results are possible for asymptotically linear systems of the form (1.1), where a compar-
ison is made of the linear system of variations with respect to the trivial solution (then
ϕ(t, 0, 0) and ϕ(t, 0, 0) should be identical zero) and the linear system at infinity.

The above technique can be applied to detecting solutions for the fourth order dif-
ferential systems [3] and equations [4] as well.

Similarly problems with other two-point boundary conditions for the four dimen-
sional systems can be considered. The vector field Φ can be defined appropriately.
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