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Abstract

In this paper, we investigate a class of nonlinear parabolic problems, known as
viscous Hamilton–Jacobi-type problems. We establish conditions on data sufficient
to insure that blow-up occurs in finite time. Moreover, conditions on data and
geometry of the spatial domain are derived, ensuring the solution to exist for all
time with exponential decay.
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1 Introduction
Qualitative properties of solutions to nonlinear parabolic problems, as blow-up, decay
bounds, extinction in finite time, have been largely investigated, due to their interest-
ing applications in physics, chemistry and biology (see [1, 3, 10–12]). In this paper
we consider a class of nonlinear parabolic equations which source term depend on the
gradient of the solution, known as “viscous Hamilton–Jacobi” equation. These equa-
tions are also related to physical theory of growth and roughening of surfaces, known as
Kadar–Parisi–Zhang equations (see [4]).

More precisely, we consider the following boundary value problem:
ut = ∆u+ k(t)f(|∇u|2) (x, t) ∈ Ω× (0, t∗),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

Received April 2, 2014; Accepted May 3, 2014
Communicated by Sandra Pinelas



214 M. Marras, S. Vernier-Piro

where Ω is a bounded domain in RN , N ≥ 2, with smooth boundary ∂Ω and t∗ is the
possible blow-up time. u0(x) is a nonnegative C1 function in Ω which vanishes on ∂Ω,
and the time dependent coefficient k(t) is a positive, boundedC1- function. We consider
classical solutions of problem (1), which are nonnegative by maximum principle. It is
well known that, as time evolves, the asymptotic behavior of u(x, t) may change in
consequence of the choice of k, f and u0.

The goal of this paper is to show how the choices of the data give rise to solutions
with very different behavior: blow-up phenomena or global existence. Compared with
Hamilton–Jacobi equation where the source term is |∇u|p, p > 1 (see [12]), we have
a more general function k(t)f(|∇u|2) and the time dependent coefficient k(t) plays an
important role in order to have bounded or unbounded solutions. The paper is organized
in this way: in Section 2, we prove that if the initial data u0 is “large enough” and k and
f satisfy appropriate restrictions, the solution blows up in finite time t∗ and an upper
bound of t∗ is derived. On the contrary, in Section 3, conditions on k, f, u0, and Ω are
established, sufficient to obtain exponential decay in time of the solution u.

2 Blow-up in Finite Time
The aim of this section is to introduce conditions on data sufficient to ensure that the
solution u blows up in finite time t∗ and to derive an upper bound of t∗. Let us introduce
the auxiliary function

U(t) = k(t)

∫
Ω

uσ(x, t) dx, σ ≥ 3, (2.1)

which, from assumptions on k(t) and u0(x), has positive initial value

U0 = U(0) = k(0)

∫
Ω

u0(x)σdx.

We prove the following.

Theorem 2.1. Let u(x, t) be the solution of problem (1.1) with Ω a bounded domain in
RN and U(t) defined in (2.1). Assume that

f(s2) ≥ s2ξ, (2.2)

with ξ :=
σ − 1

σ − 2
and

k′(t)

k(t)
≥ β > 0. (2.3)

If the initial data u0(x) is “large enough” in the sense of

U0 >
σ2(σ − 1)σ−2|Ω|

4λ1

, (2.4)
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with |Ω| the N-volume of Ω, and λ1 the first eigenvalue of the following problem{
∆ϕ− λϕ = 0, ϕ > 0, x ∈ Ω,
ϕ(x) = 0, x ∈ ∂Ω,

then
lim
t→t∗

max
Ω

u(x, t) = +∞,

with
t∗ ≤ T ∗ := − 1

a(ξ − 1)
ln
[
1− a

b
U1−ξ

0

]
, (2.5)

a, b positive constants depending on data.

Proof. Firstly we prove that U(t) is strictly increasing. By using (1.1) and the diver-
gence theorem, we have

U ′(t) =
k′

k
U(t)− kσ(σ − 1)

∫
Ω

uσ−2|∇u|2dx+ k2σ

∫
Ω

uσ−1f(|∇u|2).

By using (2.3) and (2.2), we obtain (by using for brevity ξ =
σ − 1

σ − 2
)

U ′(t) ≥ βU(t)− kσ(σ − 1)

∫
Ω

uσ−2|∇u|2dx+ k2σ

∫
Ω

uσ−1|∇u|2ξdx (2.6)

= βU(t)− kσ(σ − 1)J + k2σI.

We now apply Hölder’s inequality to obtain

J =

∫
Ω

uσ−2|∇u|2dx ≤
[ ∫

Ω

uσ−1|∇u|2ξdx
] 1
ξ |Ω|1−

1
ξ ,

from which we obtain

I =

∫
Ω

uσ−1|∇u|2ξdx ≥ Jξ|Ω|1−ξ. (2.7)

We now replace (2.7) in (2.6) and obtain

U ′ ≥ βU − kσ(σ − 1)J + k2σ|Ω|1−ξJξ (2.8)

= βU + σkJ
{
− (σ − 1) + k|Ω|1−ξJξ−1

}
.

Then by using the Rayleigh inequality, we have

J =
4

σ2

∫
Ω

|∇u
σ
2 |2dx ≥ 4

σ2
λ1

∫
Ω

uσdx. (2.9)
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Replacing (2.9) in (2.8), we obtain

U ′ ≥ βU + σkJ

{
−(σ − 1) +

[ 4

σ2|Ω|
λ1

]ξ−1

k
(∫

Ω

uσdx
)ξ−1

}
,

and since k(t) ≥ 1 as a consequence of (2.3), we obtain

U ′ ≥ βU + σkJ

{
−(σ − 1) +

[ 4

σ2|Ω|
λ1

]ξ−1

U ξ−1

}
, (2.10)

where the last term is positive if

U(t) >
σ2(σ − 1)σ−2|Ω|

4λ1

,

and this is the case since we assume (2.4). Now by using again (2.9) in (2.10), we obtain
the differential inequality

U ′ ≥ βU +
4

σ
λ1U

{
−(σ − 1) +

[ 4

σ2|Ω|
λ1

]ξ−1

U ξ−1

}
(2.11)

=

{
β − 4λ1(σ − 1)

σ

}
U(t) +

[ 4

σ2|Ω|
λ1

]ξ−1

U ξ := aU(t) + bU ξ(t),

with a = β − 4λ1(σ − 1)

σ
, b =

[ 4

σ2|Ω|
λ1

]ξ−1

. Now integrating the differential

inequality
U ′ ≥ aU(t) + bU ξ(t),

from 0 to t, by using the substitution U1−ξ(t) = η(t), we obtain

η(t) ≤
{
η(0)− b

a

[
1− e−a(ξ−1)t

]}
ea(ξ−1)t.

Let T ∗ be defined by

η(0) =
b

a

[
1− e−a(ξ−1)T ∗]

. (2.12)

Then we have the blow-up of U(t) at time t∗ < T ∗. From (2.12), we easily obtain (2.5).
We remark that T ∗ is an upper bound of t∗.

3 Decay in Time
From the previous section results, we know that the solution of problem (1.1) may blow
up in finite time: the goal of this section is to prove that this is not the case if we
introduce suitable restrictions on data u0, on f and Ω (see [7] for the source term as
k(t)up, p > 1 and for a more general parabolic operator). Throughout this section, the
coefficient k(t) is assumed to be a positive bounded function. First we prove that |∇u|
is bounded for all time under the conditions contained in the following theorem.
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Theorem 3.1. Let u(x, t) be a solution of (1.1) in a bounded strictly convex domain
Ω ⊂ RN , N ≥ 2, with C2+ε boundary ∂Ω. Assume that f(s) ≥ 0 satisfies the condition

∂

∂s

f(s2)

s
≥ 0, s > 0, (3.1)

and assume that the initial data u0(x) ≥ 0 is small enough in the sense of

f(G2)

G
≤ (N − 1)Kmin, (3.2)

with
G := max

Ω
|∇u0|, (3.3)

Kmin := min
∂Ω

K(x) > 0, (3.4)

where K(x) is the average curvature of ∂Ω. Moreover if

lim
t↓0
|∇u(x, t)| = |∇u0(x, t)|, (x, t) ∈ ∂Ω, (3.5)

we then conclude that

|∇u(x, t)| ≤ G, x ∈ Ω, t > 0. (3.6)

Proof. We prove that |∇u|2 satisfies a parabolic inequality. In fact, we compute

∆|∇u|2 − |∇u|2t + 2k(t)f ′(|∇u|2)(∇u,∇|∇u|2) = 2uikuik ≥ 0. (3.7)

We remark that k(t)f ′(|∇u|2)(∇u) is bounded by assumptions (3.1) and (3.3) in a time
interval [0, t1]. From the parabolic maximum principle (see [2, 8]), we have that the
maximum of |∇u|2 can be attained or at a boundary point or initially at t = 0. If we
suppose that the maximum is attained at a boundary point, by (3.2), (3.3) we reach a
contradiction (see [5,6,9]). Then the maximum is attained at t = 0, i.e., (3.6) holds.

Now we want to obtain an explicit exponential decay bound for u(x, t) by consider-
ing the set of source functions satisfying the condition

∂

∂s

(f(s)

s

)
≥ 0, s > 0. (3.8)

Note that this condition (3.8) implies (3.1).

Theorem 3.2. Let u(x, t) be a solution of problem (1.1). Assume that conditions (3.2)–
(3.5) and (3.8) hold. Moreover on ∂Ω ∈ C2+ε assume that u0 = 0 and |∇u0| is bounded.
Then

u(x, t) ≤ ϕ1(x)e−λ1t
( 1

kmH
max

Ω

ekmHu0 − 1

ϕ1

)
, (3.9)

with H :=
f(G2)

G2
, and km = max

t>0
k(t).
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Proof. First we remark that condition (3.8) implies (3.1), then the gradient is bounded.
Now the equation in (1.1) can be rewritten as

ut = ∆u+ k(t)
f(|∇u|2)

|∇u|2
|∇u|2.

By Theorem 3.1, we have

0 = ∆u+ k(t)
f(|∇u|2)

|∇u|2
|∇u|2 − ut ≤ ∆u+ kmH |∇u|2 − ut. (3.10)

Let us introduce the function ũ(x, t) = ekmHu − 1. By (3.10), ũ satisfies the inequality

∆ũ− ũt = kmH ekmHu{∆u+ kmH |∇u|2 − ut} ≥ 0

and the boundary-initial conditions

ũ(x, t) = 0, (x, t) ∈ ∂Ω× (t > 0); ũ(x, 0) = ekmHu0 − 1 ≥ 0, x ∈ Ω.

It turns out that ũ is a subsolution of the heat equation wt = ∆w, which is well known
to satisfy

w ≤
(

max
Ω

w(x, 0)

ϕ1

)
ϕ1e

−λ1t.

Then

ekmHu − 1 ≤
(

max
Ω

ekmHu0 − 1

ϕ1

)
ϕ1e

−λ1t,

i.e.,

kmH u ≤ log(1 +
(

max
Ω

ekmHu0 − 1

ϕ1

)
ϕ1e

−λ1t) ≤
(

max
Ω

ekmHu0 − 1

ϕ1

)
ϕ1e

−λ1t.

From the previous inequality, we get (3.9). This completes the proof.
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