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Abstract

A control problem for delay partial differential equations is considered. The
Fourier method and special functions, called the delayed sine and delayed cosine
functions, are used for solving.
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1 Introduction
Partial functional differential equations arise from various problems in biology, medi-
cine, control theory, climate modelling, and many others, which are characterized by
both spatial and temporal variables and exhibit various spatio-temporal patterns [17].
Despite of their wide range of applications, the systematic study of such equations began
in the 70s [4], but still there are no general methods for obtaining solutions for partial
functional differential equations or solving control problems for them. Some results
on controllability properties of systems of linear ordinary differential equations with
a constant delay were obtained in [6, 12]. In the mentioned articles, the authors used
special delayed matrix functions, and analogues of some of these functions will be used
in the present paper. Controllability of linear discrete systems of ODE with constant
coefficient and a pure delay was considered in [7], where results were obtained using the
delayed matrix exponential. Also it might be useful to provide some references on the
solutions for different types of delay equations obtained using the spacial delay matrix
functions [2, 5, 11]. Some results on control problems for delay PDE using semigroups
theory were obtained in [1, 3]. The control problem for the delay parabolic equation
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was solved in [13], and these results were extended to a more general class of equations
in [9].

In this paper, a control problem is solved for a wave equation with a single delay

∂2ξ(x, t)

∂t2
= a2

∂2ξ(x, t− τ)

∂x2
+ cξ (x, t− τ) + u (x, t) (1.1)

with initial conditions

ξ (x, t) = ϕ (x, t) , (x, t) ∈ [0, l]× [−τ, 0],

ξ′ (x, t) = ϕ′ (x, t) , (x, t) ∈ [0, l]× [−τ, 0]
(1.2)

and boundary conditions

ξ (0, t) = µ1 (t) , t ∈ [−τ, T ],

ξ (l, t) = µ2 (t) , t ∈ [−τ, T ],
(1.3)

where τ > 0, τ =const, a, c ∈ R, l, T ∈ R+, functions µi : [−τ, T ] → R, i = 1, 2,
ϕ : [0, l]× [−τ, 0]→ R are twice continuously differentiable such that

µ1 (t) = ϕ (0, t) , µ2 (t) = ϕ (l, t) , t ∈ [−τ, 0].

The functions
ξ, u : [0, l]× [−τ, T ]→ R

are twice continuously differentiable with respect to x and t for (x, t) ∈ [0, l]× [−τ, T ].
We want to find a control function u (x, t) such that the solution ξ (x, t) of the first

boundary value problem (1.1), (1.2), (1.3) at a set moment of time t = T will achieve
the set condition

ξ (x, T ) = Ω (x) , (1.4)

where Ω : [0, l]→ R, µ1 (T ) = Ω (0), µ2 (T ) = Ω (l).
The purpose of this paper is to describe a method of constructing the control function

and to give a formal solution of the control problem. The results on existence, unique-
ness and convergence of solutions of the wave equation with delay obtained in the form
of Fourier series were discussed in [10] and references therein. To find a solution of the
wave equation with delay, we need to provide some preliminary results from the theory
of ordinary delay differential equations. That is done in Section 2. The delayed sine
and delayed cosine functions (defined in Section 2 together with the description of their
main properties) is used in order to analytically solve auxiliary initial problems arising
when the Fourier method is applied for ordinary linear differential equations of the sec-
ond order with a single delay. The control problem for delay hyperbolic equations is
solved in Section 3.
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2 Preliminaries: Second-order Ordinary DDE
Before solving the hyperbolic equation with a delay, we must recall some results from
the theory of ordinary delay differential equations. A solution of the equation (1.1)
satisfying all boundary and initial conditions (1.2), (1.3) will be constructed by the clas-
sical method of separation of variables (Fourier method) [16]. Nevertheless, due to
delayed arguments, complications arise in solving analytically auxiliary initial Cauchy
problems for second-order linear differential equations with a single delay. We over-
come this circumstance by using special functions called the delayed sine and delayed
cosine functions [8]. Here we give a definition of the delayed sine and delayed cosine
functions, their basic properties, and solutions of the initial problems for second-order
homogeneous and nonhomogeneous linear differential equations with a single delay.
It must be mentioned that the delayed sine and delayed cosine functions can be used
for the representation of solutions only for certain class of linear DDE, in other case a
method proposed in [14] could be used.

2.1 Definition of Delayed Sine and Cosine Functions
Here we introduce the special functions called the delayed sine and delayed cosine func-
tions.

It is well known that trigonometrical functions sin bt and cos bt can be represented
in the form of power series

sin bt = b
t

1!
− b3 t

3

3!
+ b5

t5

5!
− . . .+ (−1)k bk+1 t2k+1

(2k + 1)!
+ . . .

cos bt = 1− b2 t
2

2!
+ b4

t4

4!
− . . .+ (−1)k b2n

t2k

(2k + 1)!
+ . . .

We introduce “similar” functions represented not by series but by partial sums.

Definition 2.1. Let b ∈ R. The delayed cosine function cosτ{b, t} : R→ R is a function
defined as

cosτ{b, t} =



0, if −∞ < t < −τ,
1, if −τ ≤ t < 0,

1− b2 t
2

2!
, if 0 ≤ t < τ,

. . .

1− b2 t
2

2!
+ b4

(t− τ)4

4!
+ · · ·

+(−1)kb2k
[t− (k − 1)τ ]2k

(2k)!
, if (k − 1) τ ≤ t < kτ,

. . .
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a 2k-degree polynomial on intervals (k−1)τ < t ≤ kτ “merged” in points t = kτ, k =
0, 1, 2, . . ..

Definition 2.2. Let b ∈ R. The delayed sine function sinτ{b, t} : R → R is a function
defined as

sinτ{b, t} =



0, if −∞ < t < −τ,
b(t+ τ), if −τ ≤ t < 0,

b(t+ τ)− b3 t
3

3!
, if 0 ≤ t < τ,

. . .

b(t+ τ)− b3 t
3

3!
+ · · ·

+(−1)kb2k+1 [t− (k − 1)τ ]2k+1

(2k + 1)!
, if (k − 1)τ ≤ t < kτ,

. . .

a (2k + 1)-degree polynomial on intervals (k − 1)τ < t ≤ kτ “merged” in points
t = kτ, k = 0, 1, 2, . . ..

2.1.1 Properties of Delayed Sine and Cosine Functions

Lemma 2.3. Within intervals (k − 1) τ < t < kτ , k = 0, 1, 2, . . ., the rule of differenti-
ation for the delayed cosine function can be formulated as

d

dt
cosτ {b, t} = −b sinτ {b, t− τ} ,

d2

dt2
cosτ {b, t} = −b2 cosτ {b, t− τ} .

Lemma 2.4. Within intervals (k − 1) τ < t ≤ kτ , k = 0, 1, 2, . . ., the rule of differen-
tiation for the delayed sine function can be formulated as

d

dt
sinτ {b, t} = b cosτ {b, t− τ} ,

d2

dt2
sinτ {b, t} = −b2 sinτ {b, t− τ} .

Lemma 2.5. Within intervals (k − 1) τ < t < kτ , k = 0, 1, 2, . . ., the rules of integra-
tion hold: ∫ t

0

cosτ {b, s} ds =
1

b
{sinτ {b, t} − sinτ {b, 0}} ,

∫ t

0

sinτ {b, s} ds = −1

b
{cosτ {b, t+ τ} − cosτ {b, τ}} .



Control in Systems of Delay Hyperbolic Equations 203

2.2 Second-Order Linear Differential Equations with a Singe Delay

Let us consider a homogeneous linear DDE

x′′(t) + b2x (t− τ) = 0, (2.1)

where b ∈ R, τ > 0 together with the initial Cauchy conditions

x(t) = β(t), x′(t) = β′(t), t ∈ [−τ, 0]. (2.2)

From Lemma 2.3, it follows that the delayed cosine function cosτ{b, t} is a solution of
the initial Cauchy problems (2.1), (2.2) when β(t) ≡ 1, t ∈ [−τ, 0]. Moreover, from
Lemma 2.4, we can conclude that the delayed sine function sinτ{b, t} is a solution of
(2.1), (2.2) when β(t) ≡ b(t+ τ), t ∈ [−τ, 0].

Based on these results, the following theorem is given.

Theorem 2.6 (See [8]). Let β : [−τ, 0] → R be a twice continuously differentiable
function. Then the unique solution of the initial Cauchy problems (2.1), (2.2) can be
represented as

x(t) = β (0) cosτ {b, t− τ}+
1

b
β′(0) sinτ {b, t− τ}−b

∫ 0

−τ
sinτ {b, t− 2τ − s} β(s)ds,

(2.3)
where t ∈ [−τ,∞].

Next we recall some results on a nonhomogeneous linear DDE

x′′(t) + b2x (t− τ) = f(t), (2.4)

where b ∈ R, τ > 0, f : [0,∞]→ R. For our further calculations, we need to consider
the Cauchy problem only with zero initial conditions

x(t) = 0, x′(t) = 0, t ∈ [−τ, 0]. (2.5)

Theorem 2.7 (See [8]). The unique solution of the problems (2.4), (2.5) is given by the
formula

x(t) =
1

b

∫ t

0

sinτ {b, t− τ − s} f(s)ds, (2.6)

where t ∈ [−τ,∞].

Now, having these results, we can consider the control problem for the delay wave
equation.
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3 Hyperbolic Delay Equation
To find the control function for which the linear homogeneous delay partial differential
equation with a single delay (1.1) with initial (1.2) and boundary (1.3) conditions has a
solution, which satisfies the condition (1.4) at t = T , first we need to find an analytical
solution ξ(x, t) for the boundary value problem (1.1), (1.2), (1.3) which depends on the
control function u(x, t).

3.1 Constructing a Solution of (1.1)

We construct a solution in the form of sum

ξ (x, t) = ξ0 (x, t) + ξ1 (x, t) + µ1 (t) +
x

l
[µ2 (t)− µ1 (t)] , (3.1)

where (x, t) ∈ [0, l]× [−τ, T ], ξ0 (x, t) is a solution of a homogeneous equation

∂2ξ(x, t)

∂t2
= a2

∂2ξ(x, t− τ)

∂x2
+ cξ (x, t− τ) (3.2)

with zero boundary conditions

ξ0 (0, t) = 0, ξ0 (l, t) = 0, t ∈ [−τ, T ] (3.3)

and nonzero initial conditions

ξ0 (x, t) = Φ (x, t) , ξ′0t (x, t) = Φ′ (x, t) , (x, t) ∈ [0, l]× [−τ, T ], (3.4)

where
Φ (x, t) = ϕ (x, t)− µ1 (t)− x

l
[µ2 (t)− µ1 (t)] ; (3.5)

ξ1 (x, t) is a solution of nonhomogeneous equation

∂2ξ(x, t)

∂t2
= a2

∂2ξ(x, t− τ)

∂x2
+ cξ (x, t− τ) + F (x, t) , (3.6)

where

F (x, t) =c
{
µ1 (t− τ) +

x

l
[µ2 (t− τ)− µ1 (t− τ)]

}
− µ′′1 (t)− x

l
[µ′′2 (t)− µ′′1 (t)] + u(x, t)

(3.7)

with zero boundary conditions

ξ1 (0, t) = 0, ξ1 (l, t) = 0, t ∈ [−τ, T ] (3.8)

and zero initial conditions

ξ1 (x, t) = 0, ξ′1 (x, t) = 0, (x, t) ∈ [0, l]× [−τ, 0]. (3.9)
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3.1.1 Solving a Homogeneous DPDE (3.2)

For finding a solution ξ = ξ0 (x, t) of (3.2), (3.3), (3.4), we will use the method of
separation of variables. The solution ξ0(x, t) is seen as the product of two unknown
functions X(x) and T (t), that is,

ξ0 (x, t) = X (x)T (t) . (3.10)

Substituting (3.10) into the equation (3.2), we get

X (x)T ′′ (t) = a2X ′′ (x)T (t− τ) + cX (x)T (t− τ) .

Separating variables, we obtain

T ′′ (t)− cT (t− τ)

a2T (t− τ)
=
X ′′ (x)

X (x)
= −ω2,

where ω is a constant. We consider two differential equations

T ′′(t) +
(
a2ω2 − c

)
T (t− τ) = 0, X ′′ (x) + ω2X (x) = 0. (3.11)

Nonzero solutions of the second equation of (3.11) that satisfy zero boundary conditions

X (0) = 0, X (l) = 0,

exist for
ω2 = ω2

n =
(πn
l

)2
, n = 1, 2, . . . , (3.12)

and are defined as

X(x) = Xn (x) = An sin
πn

l
x, n = 1, 2, . . . , (3.13)

where An are arbitrary constants. Now we consider the first equation of (3.11) with
ω = ωn

T ′′n (t) + k2nTn (t− τ) = 0, (3.14)

kn =

√
(ωa)2 − c =

√(πn
l
a
)2
− c, n = 1, 2, . . . . (3.15)

Each of the equations of (3.14) represents a linear second-order delay differential equa-
tion with constant coefficients. We will specify initial conditions for each of them. To
obtain such initial conditions, we expand the corresponding initial condition Φ (x, t) and
its derivative (see (3.5)) into Fourier series

Φ (x, t) =
∞∑
n=1

Φn (t) sin
πn

l
x, (x, t) ∈ [0, l]× [−τ, 0],

Φ′t (x, t) =
∞∑
n=1

Φ′n (t) sin
πn

l
x, (x, t) ∈ [0, l]× [−τ, 0],

(3.16)
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Φn (t) =
2

l

∫ l

0

ϕ (s, t) sin
πn

l
sds− 2

πn
[µ1 (t) + (−1)n µ2 (t)] , t ∈ [−τ, 0],

Φ′n (t) =
2

l

∫ l

0

ϕ′ (s, t) sin
πn

l
sds− 2

πn
[µ′1 (t) + (−1)n µ′2 (t)] , n = 1, 2, . . . .

(3.17)

We will find an analytical solution of the Cauchy initial problem for each of the equa-
tions (3.14) with conditions (3.16). That is, we will find an analytical solution of the
Cauchy initial problem

T ′′n (t) + k2nTn (t− τ) = 0,

Tn(t) = Φn(t), T ′n(t) = Φ′n(t), t ∈ [−τ, 0],
(3.18)

for every n = 1, 2, . . . . Using the results from Section 2, we will solve the problem
(3.18). According to the formula (2.3), we get

Tn(t) =Φn (0) cosτ {kn, t− τ}+
1

kn
Φ′n(0) sinτ {kn, t− τ}

− kn
∫ 0

−τ
sinτ {kn, t− 2τ − s}Φn(s)ds.

(3.19)

Thus, the solution ξ0 (x, t) of the homogeneous equation (3.2) that satisfies zero bound-
ary conditions (3.3) and nonzero initial conditions (3.4) (to satisfy (3.4) we chose An =
1, n = 1, 2, . . . ) is

ξ0 (x, t) =
∞∑
n=1

{
Φn (0) cosτ {kn, t− τ}+

1

kn
Φ′n(0) sinτ {kn, t− τ}

−kn
∫ 0

−τ
sinτ {kn, t− 2τ − s}Φn(s)ds

}
sin

πn

l
x,

(3.20)

where kn defined in (3.15), Φn in (3.17), and (x, t) ∈ [0, l]× [−τ, T ].

3.1.2 Solving a Nonhomogeneous DPDE (3.6)

Further, we will consider the nonhomogeneous equation (3.6) with zero boundary con-
ditions (3.8) and zero initial conditions (3.9). We will try to find the solution in the form
of an expansion

ξ1 (x, t) =
∞∑
n=1

T 0
n (t) sin

πn

l
x, (3.21)

where (x, t) ∈ [0, l]× [−τ, T ], and T 0
n : [−τ, T ]→ R are unknown functions. Substitut-

ing (3.21) into (3.6) and equating the coefficients of the same functional terms, we will
obtain a system of equations(

T 0
n

)′′
(t) +

[(πn
l
a
)2
− c
]
T 0
n (t− τ) = fn (t) + un(t), (3.22)
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where fn : [−τ, T ]→ R are Fourier coefficients of the function F (x, t) (see (3.7)), that
is,

fn (t) =
2

l

∫ l

0

F (s, t) sin
πn

l
sds

=
2

l

∫ l

0

{
c
[
µ1 (t− τ) +

s

l
[µ2 (t− τ)− µ1 (t− τ)]

]
−µ′′ (t)− s

l
[µ′′2 (t)− µ′′1 (t)] + u(x, t)

}
sin

πn

l
sds

=
2

πn
(c {(−1)n µ2 (t− τ) + µ1 (t− τ)} − {(−1)n µ′′2 (t) + µ′′1 (t)}) ,

(3.23)

un(t) is Fourier coefficients of the control function

u (x, t) =
∞∑
n=1

un (t) sin
πn

l
x, (3.24)

In accordance with (3.9), we assume zero initial conditions

T 0
n(t) = 0, t ∈ [−τ, 0], n = 1, 2, . . . (3.25)

for every equation (3.22). Then, by formula (2.6), a solution of each of problems (3.22),
(3.25) can be written as

T 0
n (t) =

1

kn

∫ t

0

sinτ {kn, t− τ − s} (fn (s) + un(s)) ds, t ∈ [−τ, T ], n = 1, 2, . . . ,

(3.26)
where kn are defined in (3.15).

Hence, the solution of the nonhomogeneous equation (3.6) with zero boundary con-
ditions (3.8) and zero initial conditions (3.9) is

ξ1 (x, t) =
∞∑
n=1

{
1

kn

∫ t

0

sinτ {kn, t− τ − s} (fn (s) + un(s)) ds

}
sin

πn

l
x, (3.27)

where fn is given by the formula (3.23), un in (3.24).

3.1.3 Formal Solution of the Boundary Value Problem

Using all above results, since the solutions ξ0(x, t) and ξ1(x, t) are formally twice dif-
ferentiable with respect to x and t, functions µ1(t), µ2(t) are twice differentiable, we
conclude that a formal solution of the boundary value problem (1.1), (1.2), (1.3) can be
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represented as a sum of solutions of separate problems

ξ (x, t) =
∞∑
n=1

{
Φn (−τ) cosτ {kn, t}+

1

kn
Φ′n (−τ) sinτ {kn, t}

+
1

kn

∫ 0

−τ
sinτ {kn, t− τ − s}Φ′′n (s) ds+

1

kn

∫ t

0

sinτ {kn, t− τ − s} fn (s) ds

+
2

πn
[(−1)n µ2 (t) + µ1 (t)] +

1

kn

∫ t

0

sinτ {kn, t− τ − s}un (s) ds

}
sin

πn

l
x,

(3.28)

where (x, t) ∈ [0, l] × [−τ, T ], coefficients Φn are defined in (3.5), fn in (3.23), un in
(3.24), and the numbers kn in (3.15).

Results on existence, uniqueness and convergence of solutions of the wave equation
with delay can be found in [10].

3.2 Control of Hyperbolic Delay Equations
We construct a control function u(x, t) for the problem (1.1), (1.2), (1.3) in the form
(3.24), for which a solution (3.28) in the moment of time t = T will satisfy the condition
(1.4).

We denote the combined initial and boundary conditions (they are all known func-
tions) by

Θn (t) =Φn (−τ) cosτ {kn, t}+
1

kn
Φ′n (−τ) sinτ {kn, t}

+
1

kn

∫ 0

−τ
sinτ {kn, t− τ − s}Φ′′n (s) dξ

+

∫ t

0

sinτ {kn, t− τ − s} fn (s) ds+
2

πn
[(−1)n µ1 (t)− µ2 (t)] .

(3.29)

Then the solution ξ (x, t) (3.28) can be rewritten as

ξ (x, t) =
∞∑
n=1

[
Θn (t) +

∫ t

0

sinτ {kn, t− τ − s}un (s) ds

]
sin

πn

l
x.

We expand the final function Ω (x) into the Fourier series

Ω (x) =
∞∑
n=1

Ωn sin
πn

l
x, Ωn =

2

l

∫ l

0

Ω (s) sin
πn

l
sds. (3.30)

Each of the harmonic components un (s), n = 1, 2, . . . can be obtained from the integral
equations

Θn (t) +

∫ t

0

sinτ {kn, t− τ − s}un (s) ds = Ωn, n = 1, 2, . . . . (3.31)
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For t = T > 0, equations (3.31) have no unique solutions, and we consider two possible
approaches to obtain un (t).

I. Let Ω(x) = ϕ(x, 0), which means that the function ξ(x, t) already behaves in
desirable way and we need to “maintain” this behaviour on [0, T ], so we need to
solve (3.31) for t ∈ [−τ, T ]. It is possible to use the Laplace transform to find
the solutions of integral equations (3.31) [15]. We denote the Laplace transform
operator as L{f(x), p} = f̃(p), and the inverse operator as L−1, then applying
the Laplace transform to the equation (3.31), we have

L

{∫ t

0

sinτ {kn, t− τ − s}un (s) ds, p

}
=

Ωn

p
− L {Θn(t), p} ,

using the convolution property, we get

s̃inτ {kn, p− τ} ũn (p) =
Ωn

p
− Θ̃n(p).

Therefore,

ũn (p) =
Ωn

p s̃inτ {kn, p− τ}
− Θ̃n(p)

s̃inτ {kn, p− τ}
.

Applying the inverse transform, we obtain

un(t) = L−1

{
Ωn

p s̃inτ {kn, p− τ}
, t

}
− L−1

{
Θ̃n(p)

s̃inτ {kn, p− τ}
, t

}
, (3.32)

where t ∈ [−τ, T ] n = 1, 2, . . . .

II. Let Ω(x) 6= ϕ(x, 0). We choose the functions un = un (T ), as coefficients, which
depend on t = T , like on parameter. Then,

Θn (T ) +

∫ T

0

sinτ {kn, T − τ − s}un (T ) ds = Ωn, n = 1, 2, . . . ,

un(T ) can be removed from the integral

un (T )

∫ T

0

sinτ {kn, T − τ − s} ds = Ωn −Θn (T ) .

From Lemma 2.5, we know that∫ T

0

sinτ {kn, T − τ − s} ds = − 1

kn
[cosτ {kn, T} − 1] ,

so, coefficients un (T ) are

un(T ) = −kn [Ωn −Θn(T )]

cosτ {kn, T} − 1
, n = 1, 2, . . . . (3.33)
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The control function u (x, t) for the equation (1.1) with initial (1.2) and boundary (1.3)
conditions can be found in the form

u (x, t) =
∞∑
n=1

un (t) sin
πn

l
x,

where un defined in (3.33) or (3.32) depend on the values of initial, boundary and finite
functions.
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