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Abstract
In this paper we consider the nonlinear difference equation of the form:

m—1

A™y(n) + Y pr(n)AFy(n) = f(n,y(n), Ay(n),..., A" y(n)),
k=0

where m >2, nelN,, p:N,—-R £k=0,1,...,m—1and
f Ny, x R™ — R, and associated with it the linear difference equation

m—1

Ax(n) + Z pr(n)AFz(n) = 0.
k=0

We prove in some comparison theorems how to estimate solutions of the nonlinear
difference equation by solutions of the associated linear difference equation. This
paper is the continuation of our research on qualitative properties of the above
equation.
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1 Introduction

In this paper we are concerned with the estimation of solutions of the nonlinear differ-
ence equation of the form:

m—1

A™y(n) + Y pr(n)Afy(n) = f(n,y(n), Ay(n), ..., A" y(n)), (1.1)

k=0
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wherem > 2,ne N, ,pr : N,y 2 R, k=0,1,...,m—1and f : N, x R" — R,
and associated with it the linear difference equation

m—1

A"x(n) + Z pr(n)AFz(n) = 0. (1.2)

k=0

As usual for any function u : N,,, — R we define the forward difference operators as

follows
m

A%(n) = u(n), A™u(n) = ij(—mmi( , )u(n +i)

7

for m > 1, and for all n € N we have

s

Zu(n)zo, Hu(n)zl for s <.

n=r

By a solution of (1.1) we mean a nontrivial sequence y satisfying (1.1) on N,,,. Through-
out, we assume that there exists a function w : N,,; x R" — R, nondecreasing with
respect to last m arguments such that

|f(n,a1,a2, s 7am)’ < w<n7 |CL1|, |CL2|, Tt |a’m|) (13)

forn € N, anda, e R(k=1,2,...,m).
Let xx, k =0,1,...,m — 1 be linearly independent solutions of (1.2). We denote

—_

m—

m—1
z(n) = Zcixi(n), ¢ € R, Z leil =c¢#0 (1.4)
=0

7=

and
ar(n) = max{|Afz;(n)| : i =0,1,...,m — 1},

where k =0,1,.... m—1,ne N,.
Moreover, let

zo(n) ri(n) ... Ti—1(n)
Axo(n) Azy(n) ... Axp_1(n)
W(n) = (1.5)
Am_ll'o(n) Am_ll‘l (n) c. Am_lxm_l(n)
be the Casoratian of the solutions z;, « = 0,1,...,m — 1. Without the loss of the

generality we may assume that W (n) > 0 forn € N,,,.
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We also denote

wo(s) ri(s) ... Tm-1(s)
Azo(s)  Awzi(s) ... Az i(s)
Vi(n, s) = : Lo : (1.6)
A 250(s) AT 2xy(s) ... AT 2z, o (s)
Afzg(n)  AFzi(n) ... AFz,_i(n)

where ng < s < n.
The purpose of this paper is to give an estimation of solutions of (1.1), which would
be dependent on solutions of (1.2). We will need the following lemma.

Lemma 1.1. Consider the following difference inequality

n—1
k=ng
and the difference equation
n—1
w(n) =w(ng) + Y _ H(k,|lw(k)|) for neN,,
k=ng

where H : N, x Ry — R, is a nondecreasing function with respect to the second
argument. If u(ng) < w(ng), then u(n) < w(n) forn € N,,.

Proof. The proof follows immediately from [4, Theorem 1.6.2]. [

2 Main Results

Theorem 2.1. Let p be a solution of the first order initial value problem

oty = ! [ G lotmlan(n) Jo o). ..o oo+ ),

p(ng) = c. 2.1
Then every solution y of (1.1) satisfies the following inequality

|AFy(n)| < ap(n)|p(n)|, for n > nq. (2.2)
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Proof. First, we notice that any solution y of (1.1) satisfies the equation

AFy(n) Z V’“ (n, Ana 1 Sy, Ay(D), ..., A" (D)), > ng. (2.3)
In view of (1.3) and (1.4), we have

Aky(n)] < |Aka(n Z 'V’“ il |\f(l y(1), Ay(D). ..., A™ 1y (1)

m—1

Vie(n, 1+ 1)| m—

< 3 leytay ) |+Z'k S DL 1D A0
=0

n—1
[Vi(n, 1+ 1) m—1
< _ . .
Notice that
m—1
Vie(n, L+ 1) <Y (1) | AR (0) || M | < Z | M1,
=0

where M,, ;11 1s the minor obtained from V' by the emission of the mth row and the
(5 + 1)st column. Then

m—1

Vi(n, 1+ 1) < ag(n) > (m—Dlag(l+ Dar(l+1) -+ ol + 1)

j=0

= ag(n)m! [T ar(1+1). (2.5)

Comparing (2.4) and (2.5) we obtain

|AFy(n)| < ak(n)[c—l—m!x

. ZH%W, yOLIAYO ... [A™ D] 26
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Denote for n > nyg

n—1 m—2
Oér —
() =c+m > ] e L 1Ayl [A D). @7)
l=ng r=0
Then

Using now the above inequality in (2.7), we derive

u(n) < c+mlx

n—1 m—2

X ZH;‘VTH” (1, co(Du(l), an (Du(l), . . ., oy (Du(l)).  (2.9)

I=ng r=0

Let p be a solution of (2.1) with the initial condition p(ny) = c. Then from (2.8) and
(2.9), by Lemma 1.1, we have

u(n) < p(n), n > ng, (2.10)
and, by (2.8), we get
|AFy(n)| < ai(n)|p(n)], n>mng, k=0,1,....,m—1,
which completes the proof. [

Corollary 2.2. If all solutions of equations (1.2) and (2.1) are bounded, then every
solution of (1.1) is also bounded.

Corollary 2.3. If every solution of (2.1) is bounded and every solution of (1.2) belongs
to [P, then every solution of (1.1) belongs to [”.

Theorem 2.4. Suppose that there exists a continuous nondecreasing function B :
[e,00) — Ry such that

w(n, Aay, Aag, ..., Aay) < B(Aw(n,ar,as, ..., any), (2.11)
> d
forA>e>0,a, R, i=1,...,m) and/ WS) = o0. Then any solution y of
. s
(1.1) has the property
Aky(n)| < an(n)Gx
n—1 m—2
a(l+1
[ m'lz 11) o l+1 w(l, ao(l), .,am,l(z))] (2.12)
ng r=

forn € N, where G~ denotes the inverse of the function G defined by

G(w):/ew%, w>¢e > 0.
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Proof. Using the same arguments like in the proof of Theorem 2.1 we obtain that

n—1 m—2
ar m—
(n)=c+m > ] s W w(l, [y 1Ay @), -, [A™ Ty (D))
= ng r—= 0

Then |A*y(n)| < ag(n)u(n). From (2.8) and (2.11) we obtain

n—1 m—2

u(n) < e+m! ] IO‘V w(l, o (Du(l), oq (Du(l), . .., cm_r(Du(l))

l=ng =0

< c—i—m'ZB %w(l,ao(l),al(l),...,am1([)).

l=ng r=0

Denoting the right-hand side of the above inequality by z(n) we get u(n) < z(n),
z(ng) = c and

Az(n) =m!B(u(n)) H ;;EZ 1)w(n, apg(n),a;(n), ..., an,_1(n))
< B(z(n))m!l:[ E‘VEZi 1y aa(n), on(n). . s ()

Dividing both sides of this inequality by B(z(n)) and next summing from ng to n — 1
we obtain

8 T el
Z B(z()) <m > ] mw%ao(l),oq(l), (D). (2.13)

In view of the nondecreasing character of z and B we obtain

z(n) p ne1 z(1+1) p el . z(1+1) ne1 A (l)
S S z
- <N~ [ ds= L Q14)
(/) B~ 2 /) B = 2 BG0) /) 2 BL0)

From (2.13) and (2.14), we deduce

n—1 m—2 r(l
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and

—_
[\')

3

m—

2(n) < G~ ( al+l) o a0<z),a1(z),...,am_l(Z))). (2.15)

no r=0

~

Therefore |A*y(n)| < ap(n)u(n) < ai(n)z(n), which combining with (2.15) com-
pletes the proof of the theorem. 0

Corollary 2.5. If every solution x of (1.2) is bounded and
> H w(l, ap(D), 01 (1), ..., am_1(1)) < oo,
l=ng r=0

then every solution y of (1.1) is bounded.
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