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Abstract

We prove a DuBois–Reymond necessary optimality condition and a Noether
symmetry theorem to the recent quantum variational calculus of Cresson. The
results are valid for problems of the calculus of variations with functionals defined
on sets of nondifferentiable functions. As an application, we obtain a constant of
motion for a linear Schrödinger equation.
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1 Introduction
Quantum calculus, sometimes called “calculus without limits”, is analogous to tra-
ditional infinitesimal calculus without the notion of limits [17]. Several dialects of
quantum calculus are available in the literature, including Jackson’s quantum calcu-
lus [17, 22], Hahn’s quantum calculus [6, 18, 19], the time-scale q-calculus [5, 21], the
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power quantum calculus [1], and the symmetric quantum calculi [7–9]. Here we con-
sider the recent quantum calculus of Cresson.

Motivated by Nottale’s theory of scale relativity without the hypothesis of spacetime
differentiability [23, 24], Cresson introduced in 2005 his quantum calculus on a set of
Hölder functions [11]. This calculus attracted attention due to its applications in physics
and the calculus of variations, and has been further developed by several different au-
thors – see [2, 10, 12] and references therein. Cresson’s calculus of 2005 [11] presents,
however, some problems, and in 2011 Cresson and Greff improved it [13, 14]. It is this
new version of 2011 that we consider here, a brief review of it being given in Section 2.
Along the text, by Cresson’s calculus we mean this quantum version of 2011 [13, 14].

There is a close connection between quantum calculus and the calculus of variations.
For the state of the art on the quantum calculus of variations we refer the reader to the
recent book [20]. With respect to Cresson’s approach, the quantum calculus of varia-
tions is still in its infancy: see [3, 4, 13–16]. In [13] a Noether type theorem is proved
but only with the momentum term. In [14] nondifferentiable Euler–Lagrange equa-
tions are used in the study of PDEs. It is proved that nondifferentiable characteristics
for the Navier–Stokes equation correspond to extremals of an explicit nondifferentiable
Lagrangian system, and that the solutions of the Schrödinger equation are nondifferen-
tiable extremals of the Newton Lagrangian. Euler–Lagrange equations for variational
functionals with Lagrangians containing multiple quantum derivatives, depending on a
parameter, or containing higher-order quantum derivatives, are studied in [3]. Varia-
tional problems with constraints, with one and more than one independent variable, of
first and higher-order type, are investigated in [4]. Recently, Hamilton–Jacobi equa-
tions were obtained [15] and problems of the calculus of variations and optimal control
with time delay were considered [16]. Here we extend the available nondifferentiable
Noether’s theorem of [13] by considering invariance transformations that also change
the time variable, and thus obtaining not only the generalized momentum term of [13]
but also a new energy term. For that we first obtain a new necessary optimality condition
of DuBois–Reymond type.

The text is organized as follows. In Section 2 we recall the notions and results of
Cresson’s quantum calculus needed in the sequel. Our main results are given in Sec-
tion 3: the nondifferentiable DuBois–Reymond necessary optimality condition (Theo-
rem 3.7) and the nondifferentiable Noether type symmetry theorem (Theorem 3.8). We
end with an application of our results to the linear Schrödinger equation (Section 4).

2 Cresson’s Quantum Calculus

We briefly review the necessary concepts and results of the quantum calculus [14]. Let
Xd denote the set Rd or Cd, d ∈ N, and I be an open set in R with [t1, t2] ⊂ I , t1 < t2.
Denote by G

(
I,Xd

)
the set of functions f : I → Xd and by C0

(
I,Xd

)
the subset of

functions of G
(
I,Xd

)
that are continuous.
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Definition 2.1 (The ε-left and ε-right quantum derivatives [14]). Let f ∈ C0
(
I,Rd

)
.

For all ε > 0, the ε-left and ε-right quantum derivatives of f , denoted respectively by
∆−ε f and ∆+

ε f , are defined by

∆−ε f(t) =
f(t)− f(t− ε)

ε
and ∆+

ε f(t) =
f(t+ ε)− f(t)

ε
.

Remark 2.2. The ε-left and ε-right quantum derivatives of a continuous function f cor-
respond to the classical derivative of the ε-mean function fσε defined by

fσε (t) =
σ

ε

∫ t+σε

t

f(s)ds, σ = ±.

The next operator generalizes the classical derivative.

Definition 2.3 (The ε-scale derivative [14]). Let f ∈ C0
(
I,Rd

)
. For all ε > 0, the

ε-scale derivative of f , denoted by
�εf
�t

, is defined by

�εf
�t

=
1

2

[(
∆+
ε f + ∆−ε f

)
+ iµ

(
∆+
ε f −∆−ε f

)]
,

where i is the imaginary unit and µ = {−1, 1, 0,−i, i}.

Remark 2.4. If f is differentiable, then one can take the limit of the scale derivative

when ε goes to zero. We then obtain the classical derivative
df

dt
of f .

We also need to extend the scale derivative to complex valued functions.

Definition 2.5 (See [14]). Let f ∈ C0
(
I,Cd

)
be a continuous complex valued function.

For all ε > 0, the ε-scale derivative of f , denoted by
�εf
�t

, is defined by

�εf
�t

=
�εRe(f)

�t
+ i
�εIm(f)

�t
,

where Re(f) and Im(f) denote the real and imaginary part of f , respectively.

In Definition 2.3, the ε-scale derivative depends on ε, which is a free parameter
related to the smoothing order of the function. This brings many difficulties in applica-
tions to physics, when one is interested in particular equations that do not depend on an
extra parameter. To solve these problems, the authors of [14] introduced a procedure to
extract information independent of ε but related with the mean behavior of the function.

Definition 2.6 (See [14]). Let C0
conv

(
I × (0, 1),Rd

)
⊆ C0

(
I × (0, 1),Rd

)
be such that

for any function f ∈ C0
conv

(
I × (0, 1),Rd

)
the lim

ε→0
f(t, ε) exists for any t ∈ I; and



182 G. S. F. Frederico and D. F. M. Torres

E be a complementary of C0
conv

(
I × (0, 1),Rd

)
in C0

(
I × (0, 1),Rd

)
. We define the

projection map π by

π : C0
conv

(
I × (0, 1),Rd

)
⊕ E → C0

conv(I ×
(
0, 1),Rd

)
fconv + fE 7→ fconv

and the operator 〈·〉 by

〈·〉 : C0
(
I × (0, 1),Rd

)
→ C0

(
I,Rd

)
f 7→ 〈f〉 : t 7→ lim

ε→0
π(f)(t, ε).

The quantum derivative of f without the dependence of ε is introduced in [14].

Definition 2.7 (See [14]). The quantum derivative of f in the space C0
(
I,Rd

)
is given

by the rule
�f
�t

=

〈
�εf
�t

〉
. (2.1)

The scale derivative (2.1) has some nice properties. Namely, it satisfies a Leibniz
and a Barrow rule. First let us recall the definition of an α-Hölderian function.

Definition 2.8 (Hölderian function of exponent α [14]). Let f ∈ C0
(
I,Rd

)
. We say

that f is α-Hölderian, 0 < α < 1, if for all ε > 0 and all t, t′ ∈ I there exists a constant
c > 0 such that |t−t′| 6 ε implies ‖f(t)−f(t′)‖ 6 cεα, where ‖·‖ is a norm in Rd. The
set of Hölderian functions of Hölder exponent α, for some α, is denoted by Hα(I,Rd).

In what follows, we frequently use � to denote the scale derivative operator
�
�t

.

Theorem 2.9 (The quantum Leibniz rule [14]). Let α + β > 1. For f ∈ Hα
(
I,Rd

)
and g ∈ Hβ

(
I,Rd

)
, one has

�(f · g)(t) = �f(t) · g(t) + f(t) ·�g(t). (2.2)

Remark 2.10. For f ∈ C1
(
I,Rd

)
and g ∈ C1

(
I,Rd

)
, one obtains from (2.2) the classi-

cal Leibniz rule: (f · g)′ = f ′ · g + f · g′. For convenience of notation, we sometimes
write (2.2) as (f · g)�(t) = f�(t) · g(t) + f(t) · g�(t).

Theorem 2.11 (The quantum Barrow rule [14]). Let f ∈ C0([t1, t2],R) be such that
�f/�t is continuous and

lim
ε→0

∫ t2

t1

(
�εf
�t

)
E

(t)dt = 0. (2.3)

Then, ∫ t2

t1

�f
�t

(t) dt = f(b)− f(a). (2.4)
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The next theorem gives the analogous of the derivative of a composite function for
the quantum derivative.

Theorem 2.12 (See [14]). Let f ∈ C2
(
Rd × I,R

)
and x ∈ Hα(Rd, I) with

1

2
≤ α < 1.

Then,

�f
�t

(x(t), t) =
∂f

∂t
(x(t), t) +∇xf(x(t), t) · ∇�x(t)

+
d∑

k=1

d∑
j=1

1

2

∂2f

∂xkxj
(x(t), t) ak,j(x(t)),

where

∇�x(t) =

(
�x1

�t
(t), . . . ,

�xn
�t

(t)

)T
and ak,j(x(t)) denotes〈

π
( ε

2

((
∆+
ε xk(t)

) (
∆+
ε xk(t)

)
(1 + iµ)−

(
∆−ε xk(t)

) (
∆−ε xk(t)

)
(1− iµ)

))〉
.

3 Main Results
The classical Noether’s theorem is valid along extremals q which are C2-differentiable.
The biggest class where a Noether type theorem has been proved for the classical prob-
lem of the calculus of variations is the class of Lipschitz functions [25]. In this work we
prove a more general Noether type theorem, valid for nondifferentiable scale extremals.

In [14] the calculus of variations with scale derivatives is introduced and respective
Euler–Lagrange equations derived without the dependence of ε. In this section we obtain
a formulation of Noether’s theorem for the scale calculus of variations. The proof of our
Noether’s theorem is done in two steps: first we extend the DuBois–Reymond condition
to problems with scale derivatives (Theorem 3.7); then, using this result, we obtain
the scale/quantum Noether’s theorem (Theorem 3.8). The problem of the calculus of
variations with scale derivatives is defined as

I[q(·)] =

∫ b

a

L (t, q(t),�q(t)) dt −→ min (3.1)

under given boundary conditions q(a) = qa and q(b) = qb, (q(·),�q(·)) ∈ H2α,
0 < α < 1. The Lagrangian L is assumed to be a C1-function with respect to all
its arguments.
Remark 3.1. In the case of admissible differentiable functions q(·), functional I[q(·)] in
(3.1) reduces to the classical variational functional of the fundamental problem of the
calculus of variations:

I[q(·)] =

∫ b

a

L (t, q(t), q̇(t)) dt.
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Theorem 3.2 (Nondifferentiable Euler–Lagrange equations [14]). Let 0 < α, β < 1
with α+β > 1. If q ∈ Hα

(
I,Rd

)
satisfies�q ∈ Hα

(
I,Rd

)
and L (t, q(t),�q(t))·h(t)

satisfies condition (2.3) for all h ∈ Hβ
(
I,Rd

)
, then function q satisfies the following

nondifferentiable Euler–Lagrange equation:

∂2L (t, q(t),�q(t))−�∂3L (t, q(t),�q(t)) = 0. (3.2)

It is worth to mention that the Euler–Lagrange equation (3.2) can be generalized in
many different ways: see [3] for the cases when the Lagrangian L contains multiple
scale derivatives, depends on a parameter, or contains higher-order scale derivatives.

Definition 3.3 (Nondifferentiable extremals). The solutions q(·) of the nondifferentiable
Euler–Lagrange equation (3.2) are called nondifferentiable extremals.

Definition 3.4. Functional (3.1) is said to be invariant under the s-parameter group of
infinitesimal transformations{

t̄ = t+ sτ(t, q) + o(s),

q̄(t) = q(t) + sξ(t, q) + o(s),
(3.3)

if

0 =
d

ds

∫
t̄(I)

L

[
t+ sτ(t, q(t)), q(t) + sξ(t, q(t)),

�q(t) + s�ξ(t, q(t))
1 + s�τ(t, q(t))

]
(1 + s�τ(t, q(t))) dt

∣∣∣
s=0

(3.4)

for any subinterval I ⊆ [a, b], where τ, ξ ∈ Hα.

Lemma 3.5 establishes a necessary condition of invariance for (3.1). Condition (3.5)
will be used in the proof of our Noether type theorem.

Lemma 3.5 (Necessary condition of invariance). If functional (3.1) is invariant under
the one-parameter group of transformations (3.3), then∫ tb

ta

[
∂1L (t, q(t),�q(t)) τ + ∂2L (t, q(t),�q(t)) · ξ

+ ∂3L (t, q(t),�q(t)) · (�ξ −�q(t)�τ) + L (t, q(t),�q(t))�τ
]
dt = 0. (3.5)

Proof. Without loss of generality, we take I = [ta, tb]. Equality (3.5) follows directly
from condition (3.4).

Definition 3.6 (Nondifferentiable constants of motion). A quantity C(t, q(t),�q(t))
is a nondifferentiable constant of motion if C(t, q(t),�q(t)) is constant along all the

nondifferentiable extremals q(·) ∈ Hα(I,Rd),
1

2
≤ α < 1 (cf. Definition 3.3).
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Theorem 3.7 generalizes the classical DuBois–Reymond optimality condition

∂1L (t, q(t), q̇(t)) =
d

dt
{L (t, q(t), q̇(t))− ∂3L (t, q(t), q̇(t)) · q̇(t)}

for Cresson’s quantum problems of the calculus of variations.

Theorem 3.7 (Nondifferentiable DuBois–Reymond necessary optimality condition).
Let

1

2
≤ α < 1. If q ∈ Hα

(
I,Rd

)
with �q ∈ Hα

(
I,Rd

)
, then any nondifferentiable

extremal q satisfies the following DuBois–Reymond necessary condition:

�
�t

{
L

(
t, q,
�q
�t

)
− ∂3L

(
t, q,
�q
�t

)
· �q
�t

}
= ∂1L

(
t, q,
�q
�t

)
. (3.6)

Proof. Using the linearity of the quantum derivative operator, Theorems 2.9 and 2.12,
and the nondifferentiable Euler–Lagrange equation (3.2), we can write that

�
{
L(t,q,�q)− ∂3L(t, q,�q) ·�q

}
= ∂1L(t, q,�q) + ∂2L(t, q,�q) ·�q + ∂3L(t, q,�q) ·��q
−�∂3L(t, q,�q) ·�q − ∂3L(t, q,�q) ·��q

= ∂1L(t, q,�q) +�q · (∂2L(t, q,�q)−�∂3L(t, q,�q))

= ∂1L(t, q,�q).

This concludes the proof.

Our main result is the following.

Theorem 3.8 (Nondifferentiable Noether’s theorem). If functional (3.1) is invariant in
the sense of Definition 3.4, then

C(t, q(t),�q(t)) = ∂3L(t, q,�q)) · ξ(t, q)

+
(
L(t, q,�q)− ∂3L(t, q,�q) ·�q

)
τ(t, q) (3.7)

is a nondifferentiable constant of motion (cf. Definition 3.6).

Proof. Noether’s nondifferentiable constant of motion (3.7) follows by using the scale
DuBois–Reymond condition (3.6), the nondifferentiable Euler–Lagrange equation (3.2)
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and Theorem 2.9, into the necessary condition of invariance (3.5):

0 =

∫ tb

ta

[
∂1L (t, q(t),�q(t)) τ + ∂2L (t, q(t),�q(t)) · ξ

+ ∂3L (t, q,�q) · (�ξ −�q�τ) + L�τ
]
dt

=

∫ tb

ta

[
τ�(L (t, q,�q)− ∂3L (t, q,�q) ·�q)

+ (L (t, q,�q)− ∂3L (t, q,�q) ·�q)�τ

+ ξ ·�∂3L (t, q,�q) + ∂3L (t, q,�q) ·�ξ
]
dt

=

∫ tb

ta

�
�t

{
∂3L (t, q,�q) · ξ + (L (t, q,�q)− ∂3L (t, q,�q) ·�q)τ

}
dt.

(3.8)

Using formula (2.4) and having in mind that (3.8) holds for an arbitrary [ta, tb] ⊆ [a, b],
we conclude that L (t, q,�q) · ξ+

(
L (t, q,�q)− ∂3L (t, q,�q) ·�q

)
τ is constant.

If the admissible functions q are differentiable, then the nondifferentiable constant
of motion (3.7) reduces to classical Noether’s constant of motion

C(t, q, q̇) = ∂3L (t, q, q̇) · ξ(t, q) + (L(t, q, q̇)− ∂3L (t, q, q̇) · q̇) τ(t, q).

For this reason, the term ∂3L(t, q,�q)) can be seen as the momentum while the term
L(t, q,�q)− ∂3L(t, q,�q) ·�q can be interpreted as energy.

4 An Application
In [14, §3], a linear Schrödinger equation, with particular interest in quantum mechanics,
is studied. It is proved that, under certain conditions, solutions of the linear Schrödinger
equation coincide with the extremals of a certain functional (3.1) of Cresson’s quantum
calculus of variations. In this section we use our nondifferentiable Noether’s theorem
to find constants of motion for the problem studied in [14, §3]. Precisely, consider the
following linear Schrödinger equation:

ih̄
∂Ψ(t, q)

∂t
+

h̄2

2m

d∑
j=1

∂2Ψ(t, q)

∂q2
j

= U(q)Ψ(t, q), (4.1)

where h̄ =
h

2π
, h is the Planck constant, m > 0 the mass of particle, U : R −→ R,

Ψ : Rd × R −→ C is the wave function associated to the particle on C2(Rd × R,C),
subject to the condition

�qk(t)
�t

= −i2γ ∂ ln(Ψ(t, q))

∂qk
, k = 1, . . . , d,
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with γ =
h̄

2m
∈ R. In [14, Theorem 9] it is shown that the solutions q(·) of (4.1)

coincide with Euler–Lagrange extremals of functional (3.1) with Lagrangian

L(t, q,�q) =
1

2
m (�q)2 − U(q).

The functional

I[q(·)] =
1

2

∫ b

a

m(−i2γ d∑
k=1

∂ ln(Ψ(t, q))

∂qk

)2

− 2U(q)

 dt
is invariant in the sense of Definition 3.4 under the symmetries (τ, ξ) = (ck, 0), where
ck is an arbitrary constant. It follows from our Theorem 3.8 that

2m

(
γ

d∑
k=1

∂ ln(Ψ(t, q))

∂qk

)2

+ U(q) =
1

8m

(
h

π

d∑
k=1

∂ ln(Ψ(t, q))

∂qk

)2

+ U(q) (4.2)

is a nondifferentiable constant of motion: (4.2) is preserved along all solutions q(t) of
the linear Schrödinger equation (4.1).
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[2] R. Almeida and D. F. M. Torres, Hölderian variational problems subject to integral
constraints, J. Math. Anal. Appl. 359 (2009), no. 2, 674–681.



188 G. S. F. Frederico and D. F. M. Torres

[3] R. Almeida and D. F. M. Torres, Generalized Euler-Lagrange equations for vari-
ational problems with scale derivatives, Lett. Math. Phys. 92 (2010), no. 3, 221–
229.

[4] R. Almeida and D. F. M. Torres, Nondifferentiable variational principles in terms
of a quantum operator, Math. Methods Appl. Sci. 34 (2011), no. 18, 2231–2241.

[5] M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser Boston,
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