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Abstract

In this paper we build on the spectral theory for linear fractional differential
equations and prove that the fractional Lyapunov spectrum of solutions starting
from a unit sphere is the union of a compact interval in R<0 and at most d distinct
fractional Lyapunov exponents.
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1 Introduction
Lyapunov’s first and second methods for ordinary differential equations offer two ways
to study the stability of solutions. Whereas his second (or direct) method was originally
developed to study the stability of a fixed point of an autonomous or nonautonomous
equation, his first method linearizes a nonlinear equation along an orbit and the resulting
linear variational equation is studied by means of characteristic numbers (exponential
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growth rates of solutions, today known as Lyapunov exponents [1,11]). The stability of
the linear equation is then transferred to the nonlinear equation. In order to be able to
develop Lyapunov’s first method for fractional differential equations, it is pivotal to ex-
tend the concept of Lyapunov exponents to linear nonautonomous fractional differential
equations in such a way, such that the (fractional) Lyapunov exponents characterize the
stability properties and, in a second step, those stability properties can be transferred
locally to a nonlinearly perturbed fractional differential equation (see also [8] for the
autonomous fractional case).

Even in the ordinary differential equations case, the investigation of Lyapunov sta-
bility of nonautonomous systems is more difficult than for autonomous systems (even
if they are linear). Using Lyapunov exponents as a tool, one can show that the state
space can be decomposed into a direct sum of subspaces in which each subspace is
given as the set of all solutions corresponding to a characteristic Lyapunov exponent.
The dimensions of these subspaces are called multiplicities of the corresponding Lya-
punov exponents. The Lyapunov exponents together with their multiplicities form the
Lyapunov spectrum of this system. The qualitative behavior of a linear system, such as
stability, attractivity and hyperbolicity, can be characterized completely by its Lyapunov
spectrum and the corresponding decomposition of the state space.

For a qualitative theory of fractional differential equations, the linear theory can
also considered as the most fundamental step for the development of the other parts of
the qualitative theory such as the invariant manifold theory and the linearization theory
of nonlinear systems. Here, we would like to distinguish two distinct cases: linear
autonomous and linear nonautonomous fractional differential equations. The behavior
of solutions of linear autonomous fractional differential equations is well developed,
see [5]. Based on these results, stability of nonlinear fractional differential equations in
a neighborhood of a fixed point is also established and we refer the reader to [9] for a
survey on this topic.

In contrast to the well developed linear autonomous theory, the corresponding re-
search for linear nonautonomous fractional differential equations is still in its infancy.
Lyapunov exponents are first discussed in [7] in which the authors use the asymptotic
behavior (in comparison with the exponential function) of the fundamental matrix to
define the Lyapunov spectrum. This notion of Lyapunov spectrum is used to investigate
chaotic behavior in a class of fractional differential systems, see e.g., [4, 10].

Surprisingly, it is shown in [3] that the classical Lyapunov exponent of any solution
of a bounded linear nonautonomous fractional differential equation is always nonneg-
ative. As a consequence, many properties such as stability and attractivity of linear
fractional differential equations cannot be characterized by its Lyapunov spectrum.

Using the Mittag–Leffler function Eα(λtα), a meaningful notion of fractional Lya-
punov spectrum is developed in [3]. In comparison to the classical Lyapunov spectrum,
the fractional Lyapunov spectrum enables us to characterize the stability of linear frac-
tional differential equations.

It is worth mentioning that a scaling of the initial condition of a solution with neg-
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ative fractional Lyapunov exponent leads to a different fractional Lyapunov exponent
(cp. Remark 2.4). As a consequence, in contrast to the Lyapunov spectrum, the frac-
tional Lyapunov spectrum is, in general, different from the set of fractional Lyapunov
exponents of all solutions starting from a unit sphere. Our aim in this paper is to go one
step further than in [3] and to fully understand the second set.

The paper is organized as follows: In Section 2, we recall basic knowledge on frac-
tional analysis and linear fractional differential equations developed in [3] and refer-
ences therein. Section 3 is devoted to our main result on the structure of the set of
fractional Lyapunov exponents of solutions starting from the unit sphere.

To conclude this introductory section, we introduce notation which is used through-
out this paper. Let R≥0,R>0 and R<0 denote the set of all nonnegative, positive and
negative real numbers, respectively.

2 Preliminaries
This section is devoted to recall an abstract framework of fractional calculus and the
corresponding linear fractional differential equations. We refer the reader to some text-
books about fractional differential equations, e.g., [5, 6], for more details of this theory.

2.1 Linear Fractional Differential Equations

For α ∈ (0, 1), the Riemann–Liouville integral operator of order α for an integrable
function f : [a, b]→ R, where [a, b] ⊂ R, is defined by

Iαa+f(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ) dτ for t > a,

where the Gamma function Γ : (0,∞)→ R is defined as

Γ(α) :=

∫ ∞
0

τα−1 exp(−τ) dτ,

see, e.g., [5]. The corresponding Riemann–Liouville fractional derivative is given by

Dα
a+f(t) := (DmIm−αa+ f)(t),

where D =
d

dt
is the usual derivative and m := dαe. On the other hand, the Caputo

fractional derivative CDα
a+f of a function f ∈ Cm([a, b]), which was introduced by

Caputo (see e.g., [5]), is defined by

CDα
a+f(t) := (Im−αa+ Dmf)(t), for t > a.
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The Caputo derivative of a d–dimensional vector function f(t) = (f1(t), . . . , fd(t))
T is

defined component-wise as
CDα

0+f(t) = (CDα
0+f1(t), . . . ,

C Dα
0+fd(t))

T.

We refer the readers to [5, Chapter 2 & 3] for a discussion on differences between
building models with Caputo in comparison to Riemann–Liouville derivatives, and also
on some advantages of Caputo derivatives over Riemann–Liouville derivatives. In this
paper, we consider linear fractional differential equations involving Caputo fractional
derivative

CDα
0+x(t) = A(t)x(t), (2.1)

where α ∈ (0, 1) and A : R → Rd×d is a continuous matrix-valued function. For
any initial value x0 ∈ Rd, the integral equation which corresponds to the initial value
problem of system (2.1), x(0) = x0, is given by

x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1A(s)x(s) ds, x0 ∈ Rd, (2.2)

see, e.g., [5, Lemma 6.2, p. 86]. Using the integral form (2.2) and fixed point arguments
(see e.g., [2]), it is easy to show that the initial value problem of system (2.1), x(0) = x0,
has a unique solution x : R≥0 → Rd which is denoted by Φ(t, x0). Furthermore, by
linearity of (2.2) the map Φ(t, ·) is linear for all t ∈ R≥0, i.e.,

Φ(t, ax1 + bx2) = aΦ(t, x1) + bΦ(t, x2) for a, b ∈ R, x1, x2 ∈ Rd.

2.2 Fractional Lyapunov Exponent
In this subsection, we recall the notion of fractional Lyapunov exponent for an arbitrary
function in [3]. Let ‖ · ‖ be an arbitrary but fixed norm on Rd.

Definition 2.1. The function Eα : C→ C which is defined by

Eα(z) :=
∞∑
k=0

zk

Γ(1 + αk)

is called Mittag–Leffler function.

For any α ∈ (0, 1), the restriction Eα : R → R of the Mittag–Leffler function is
strictly monotonically increasing. Thus, the restriction of the Mittag–Leffler function
Eα on R is strictly monotonically increasing. Furthermore, using [12, Theorem 1.3, p.
32] and [12, Theorem 1.4, p. 33], we obtain that

lim
z→∞

Eα(z) =∞ and lim
z→−∞

Eα(z) = 0.

Consequently, Eα(R) = R>0 and due to continuity and monotonicity of Eα the inverse
function of the restriction function Eα : R→ R>0, which is denoted by logMα : R>0 →
R, exists.
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Definition 2.2 (Fractional Lyapunov Exponent, [3]). Let f : R≥0 → Rd be an arbitrary
function. The fractional Lyapunov exponent of order α of f is defined as

χα(f) = lim sup
t→∞

1

tα
logMα ‖f(t)‖.

The following theorem provides a practical formulation of χα(f).

Theorem 2.3. Let f : R≥0 → Rd be an arbitrary function. The following statements
hold:

(i) χα(f) > 0 if and only if χ(f) > 0 and in this case we get

χα(f) = χ(f)α = lim sup
t→∞

(
1

t
log ‖f(t)‖

)α
, (2.3)

where χ(f) := lim sup
t→∞

1

t
log ‖f(t)‖.

(ii) χα(f) < 0 if and only if lim sup
t→∞

tα‖f(t)‖ <∞ and in this case we get

χα(f) = − 1

Γ(1− α) lim supt→∞ t
α‖f(t)‖

. (2.4)

(iii) χα(f) = 0 if and only if

χ(f) ≤ 0 and lim sup
t→∞

tα‖f(t)‖ =∞,

where χ(f) is the Lyapunov exponent of f .

Proof. See [3, Theorem 9].

Remark 2.4. Note that in contrast to classical Lyapunov exponents, fractional Lyapunov
exponents of functions do not remain constant if these functions are multiplied by a
nonzero number, i.e., in general χα(f) 6= χα(cf) where c 6= 0 (cp. also [3, Lemma
3.3(i)]).

2.3 Fractional Lyapunov Spectral Theorem for Linear Fractional
Differential Equations

We recall the result on the spectral theory for linear fractional differential equations
in [3].
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Theorem 2.5. Suppose that ‖A(t)‖ ≤ M for all t ∈ R≥0. The fractional Lyapunov
spectrum of (2.1) is defined by

Σα :=
{
χα(Φ(·, x0)) : x0 ∈ Rd \ {0}

}
.

Then, the following assertions hold:

(i) Σα ⊂ (−∞,M ].

(ii) The set Σα ∩ R≥0 consists of at most d distinct elements λj < λj−1 < · · · < λ1.

(iii) If Σα ∩ R<0 6= ∅, then R<0 ⊂ Σα.

Moreover, the following sets

S := {x0 ∈ Rd : χα(Φ(·, x0)) < 0} (2.5)

and for i = 1, . . . , j
Ei := {x0 ∈ Rd : χα(Φ(·, x0)) ≤ λi}

are linear subspaces of Rd. Furthermore, we have a filtration S =: Ej+1 ( Ej (
Ej−1 ( · · · ( E1 satisfying that for i = 1, . . . , j

χα(Φ(·, x0)) = λi if and only if x0 ∈ Ei \ Ei+1. (2.6)

Proof. See [3, Theorem 12].

3 Structure of the Set of Fractional Lyapunov Expo-
nents of Solutions starting from a Unit Sphere

Throughout this section, let ‖ · ‖ be an arbitrary but fixed norm on Rd and Sd−1 = {x ∈
Rd : ‖x‖ = 1}. Suppose that

‖A(t)‖ ≤M for all t ∈ R≥0. (3.1)

Our aim in this section is to better understand the structure of the set of all fractional
Lyapunov exponents of the solution of (2.1) starting from the unit sphere. This object is
defined by

Λα :=
{
χα(Φ(·, x0)) : x0 ∈ Rd and ||x0|| = 1

}
.

Using [3, Lemma 3.4], we obtain that

Λα ⊂ [−M,M ].

In this section, we deal with the structure of the set Λα. For this purpose, we need the
following preparatory result.
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Proposition 3.1. Let S be the subspace given as in (2.5) in Theorem 2.5. Suppose that
S 6= ∅ and define

a = inf{χα(Φ(·, x)) : x ∈ S ∩ Sd−1}, b = sup{χα(Φ(·, x)) : x ∈ S ∩ Sd−1}.

Then the following statement holds:

(i) b < 0.

(ii) The map λα : S ∩ Sd−1 → R defined by

λα(x) = χα(Φ(·, x)) for x ∈ S ∩ Sd−1,

is Lipschitz continuous.

(iii) λα(S ∩ Sd−1) = [a, b].

Proof. (i) Let u1, . . . , u` be an orthonormal basis of S. We define the map g : R` → R<0

by

g(γ1, . . . , γ`) := χα

(
Φ
(
·,
∑̀
i=1

γiui

))
.

We prove that g is continuous. Indeed, for any (γ1, . . . , γ`), (γ̂1, . . . , γ̂`) ∈ R` we have

Φ
(
t,
∑̀
i=1

γiui

)
− Φ

(
t,
∑̀
i=1

γ̂iui

)
=
∑̀
i=1

(γi − γ̂i)Φ(t, ui),

which implies that

∥∥∥Φ
(
t,
∑̀
i=1

γiui

)∥∥∥ ≤ ∥∥∥Φ
(
t,
∑̀
i=1

γ̂iui

)∥∥∥+
∑̀
i=1

|γi − γ̂i|‖Φ(t, ui)‖.

Therefore,

lim sup
t→∞

tα
∥∥∥Φ
(
t,
∑̀
i=1

γiui

)∥∥∥ ≤ lim sup
t→∞

tα
∥∥∥Φ
(
t,
∑̀
i=1

γ̂iui

)∥∥∥+

∑̀
i=1

|γi − γ̂i| lim sup
t→∞

tα‖Φ(t, ui)‖.

Using Theorem 2.3, we obtain that

− 1

Γ(1− α)g(γ1, . . . , γ`)
≤ − 1

Γ(1− α)g(γ̂1, . . . , γ̂`)
−
∑̀
i=1

|γi − γ̂i|
Γ(1− α)χα(Φ(·, ui))

.
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Exchanging (γ1, . . . , γ`) and (γ̂1, . . . , γ̂`) in the above inequality, we get that∣∣∣∣ 1

g(γ1, . . . , γ`)
− 1

g(γ̂1, . . . , γ̂`)

∣∣∣∣ ≤ −∑̀
i=1

|γi − γ̂i|
χα(Φ(·, ui))

,

which proves the continuity of the function (γ1, . . . , γ`) 7→
1

g(γ1, . . . , γ`)
and therefore

the function g(γ1, . . . , γ`) is also continuous. Note that all norms on Rd are equivalent.
Thus, there exists m > 0 such that

Sd−1 ⊂
{
x ∈ Rd : ‖x‖2 ≤ m

}
,

where ‖ · ‖2 is the standard Euclidean norm. Consequently, we get

sup
{
χα(Φ(·, x)) : x ∈ S ∩ Sd−1

}
≤ sup

{
χα(Φ(·, x)) : x ∈ S, ‖x‖2 ≤ m

}
= sup

{
χα

(
Φ
(
·,
∑̀
i=1

γiui

))
:
∑̀
i=1

γ2i ≤ m
}

= sup
{
g(γ1, . . . , γ`) :

∑̀
i=1

γ2i ≤ m
}
. (3.2)

Since the set {(γ1, . . . , γ`) ∈ R` :
∑̀
i=1

γ2i ≤ m} is compact in R`, it follows together

with the continuity of g that

sup
{
g(γ1, . . . , γ`) :

∑̀
i=1

γ2i ≤ m
}
< 0,

which together with (3.2) proves that

b = sup{χα(Φ(·, x)) : x ∈ S ∩ Sd−1} < 0.

(ii) Let x, y ∈ S ∩ Sd−1, x 6= y be arbitrary. Using the triangle inequality, we obtain

||Φ(t, x)||+ ||Φ(t, y − x)|| ≥ ||Φ(t, y)|| ,

which implies that

lim sup
t→∞

tα ||Φ(t, x)||+ ||x− y|| lim sup
t→∞

tα||Φ(t, x−y
‖x−y‖)|| ≥ lim sup

t→∞
tα ||Φ(t, y)|| .

By virtue of Theorem 2.3, we have

− 1

Γ(1− α)χα(Φ(·, x))
− ||x− y||

Γ(1− α)χα(Φ(·, x−y
||x−y||))

≥ − 1

Γ(1− α)χα(Φ(·, y))
.
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This together with (i) implies that

1

χα(Φ(·, x))
− ||x− y||

|b|
≤ 1

χα(Φ(·, y))
.

Exchanging the role of x and y in the above inequality, we get that∣∣∣∣ 1

χα(Φ(·, x))
− 1

χα(Φ(·, y))

∣∣∣∣ ≤ ‖x− y‖|b|
.

Note that χα(Φ(·, x)), χα(Φ(·, y)) ∈ [−M, b]. Hence, we get that

|λα(x)− λα(y)| ≤ M2

|b|
‖x− y‖,

which completes the proof of this part.

(iii) Due to the Lipschitz continuity of the map λα and the definitions of a, b, there exist
x, y ∈ S ∩ Sd−1 such that

λα(x) = a, λα(y) = b

It remains to show that (a, b) ⊂ λα(S∩Sd−1). We define the following map h : [0, 1]→
R by

h(u) = λα

(
ux+ (1− u)y

‖ux+ (1− u)y‖

)
.

Due to the continuity of λα, the map h is also continuous. On the other hand, h(0) =
a, h(1) = b, and by the mean value theorem we get that

[a, b] ⊂ h([0, 1]) ⊂ λα(S ∩ Sd−1),

which completes the proof of this proposition.

We are now in a position to state and prove the main result in this section.

Theorem 3.2. The set Λα of all fractional Lyapunov exponents of solutions starting
from the unit sphere is given as follows

Λα = [a, b] ∪
j⋃
i=1

{λi},

where a, b is defined as in Proposition 3.1 and λ1, . . . , λj is given as in Theorem 2.5.
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Proof. According to Theorem 2.5, we get that

Λα ∩ R<0 = {χα(Φ(·, x)) : x ∈ S ∩ Sd−1}
= λα(S ∩ Sd−1),
= [a, b],

where λα is defined as in Proposition 3.1(ii). Meanwhile, the fact that

Λα ∩ R≥0 =

j⋃
i=1

{λi}

follows from Theorem 2.5(ii) and the proof is complete.
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[2] Dumitru Băleanu, Octavian G. Mustafa, and Ravi P. Agarwal. On the solu-
tion set for a class of sequential fractional differential equations. J. Phys. A,
43(38):385209, 7, 2010.

[3] Nguyen Dinh Cong, Thai Son Doan, and Hoang The Tuan. On fractional Lya-
punov exponent for solutions of linear fractional differential equations. Fract.
Calc. Appl. Anal., 17(2):285–306, 2014.

[4] L. Cveticanin and M. Zukovic. Melnikov’s criteria and chaos in systems with frac-
tional order deflection. Journal of Sound and Vibration, 326(3):768–779, 2009.

[5] Kai Diethelm. The analysis of fractional differential equations, volume 2004 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. An application-
oriented exposition using differential operators of Caputo type.

[6] Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo. Theory and appli-
cations of fractional differential equations, volume 204 of North-Holland Mathe-
matics Studies. Elsevier Science B.V., Amsterdam, 2006.



Structure of the Fractional Lyapunov Spectrum 159

[7] Changpin Li, Ziqing Gong, Deliang Qian, and Yang Quan Chen. On the
bound of the Lyapunov exponents for the fractional differential systems. Chaos,
20(1):013127, 7, 2010.

[8] Changpin Li and Yutian Ma. Fractional dynamical system and its linearization
theorem. Nonlinear Dynam., 71(4):621–633, 2013.

[9] Changping Li and Fengrong Zhang. A survey on the stability of fractional differ-
ential equations. The European Physical Journal Special Topics, 193(1):27–47,
2011.

[10] Chunguang Li and Guanrong Chen. Chaos in the fractional order chen system and
its control. Chaos, Solitons & Fractals, 22(3):549–554, 2004.

[11] V. I. Oseledec. A multiplicative ergodic theorem. Characteristic Ljapunov, expo-
nents of dynamical systems. Trudy Moskov. Mat. Obšč., 19:179–210, 1968.
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