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Abstract

In the present work, we study a class of nonautonomous singularly perturbed
discrete systems formulated as initial value problems. We develop a convergent
iterative method to obtain asymptotic solutions. This method generalizes the per-
turbation method that is valid for perturbed difference equations and improves the
singular perturbation method.
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1 Introduction
Many physical problems are described by discrete dynamical models, as in chemistry or
electrical engineering where many small components or parasitic parameters increase
the dynamic order of their mathematical representation and complicate their stability
analysis. A system in which the suppression of a small parameter involves the degener-
ation of its dimension is said to be singularly perturbed. Such a system generates error
accumulation in computing numerical solutions and claims a large computation time
because of its high dimension. The first characteristic of these systems is the lack of
a single model characterizing all the possible mechanisms of order reduction. Several
model structures can be considered in the study of singularly perturbed discrete systems,
the C-model and the R-model where the small parameter is located, respectively, on a
column and on a row of the system matrix, see [8–10, 12], and the standard model or
fast sampling model that results from a discretization of a general continuous-time sin-
gularly perturbed system, see [1,3]. Many researchers studied these kinds of systems for
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the autonomous case, they used the singular perturbation approach for stability investi-
gations by reducing the order of the problems and separating the time scale. This formal
technique is similar to the method for continuous-time systems, it consists of obtaining
the approximate solution in terms of an outer solution and a boundary layer correction
solution, see [2, 5–7, 9, 11]. The perturbation method used in [13] and [14] is straight-
forward and does not need boundary layer correction terms, moreover it is valid for
nonautonomous (time-varying) systems and the asymptotic approximations converge to
the exact solution. This paper is aimed at exploiting this approach in an effective new
way for the analysis of nonautonomous standard singularly perturbed discrete system
formulated as initial value problem. We consider the system

(
xk+1

yk+1

)
=

(
I + εA11(k) εA12(k)
A21(k) A22(k)

)(
xk
yk

)
, k = 0, . . . , N − 1, (1.1)

where xk ∈ Rn and yk ∈ Rm are the state vectors at the kth discrete time, and the
overall system is of dimension n + m; Aij (k), i, j = 1, 2, k = 0, . . . , N − 1, are
constant matrices with appropriate dimensions, and ε is a small real parameter. We
suppose given the initial values

(
x0
y0

)
=

(
α
β

)
, (1.2)

with α and β in Rn and Rm, respectively. We denote the problem (1.1)–(1.2) by P (ε).
The autonomous case of problem P (ε), i.e., the matrix system does not depend on the
discrete time k, was studied in [1] and [3] using the singular perturbation method.

The paper is organized as follows. In Section 2, we give the main result. We develop
the perturbation method for problem P (ε). We write its solution as a convergent series
in the small parameter ε and we give an algorithm to find its coefficients. Section 3 is
devoted to show how we extend our procedure to the case of a nonhomogeneous system
said shift-invariant singularly perturbed system [4].

2 Main Result

In this section, we develop the perturbation method for problem P (ε) to obtain asymp-
totic approximate solutions at all orders. This iterative method converges to the exact
solution, it offers a time scale decomposition with decoupled state variables satisfying
subsystems of reduced order. Moreover, it is straightforward and gives considerable
reduction and simplicity in computation compare to the singular perturbation method
because it does not need to compute boundary layer correction terms.
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2.1 Formal Asymptotic Solution
The solution (xk(ε), yk(ε))

′, k = 0, . . . , N , of problem P (ε) is assumed as a power
series in the small parameter ε:

xk =
∞∑
j=0

εjx
(j)
k , yk =

∞∑
j=0

εjy
(j)
k , k = 0, . . . , N. (2.1)

Using this expansion in (1.1)–(1.2), and equating the terms of order ε0, we find the
equations

x
(0)
0 = α, x

(0)
k+1 = x

(0)
k , k = 0, . . . , N − 1, (2.2)

it means the state x(0)k remains fixed at the initial value α for all k = 0, . . . , N , then
equations (2.2) are equivalent to

x
(0)
k = α, k = 0, . . . , N. (2.3)

The resulting equations for the state y(0)k are

y
(0)
0 = β, (2.4)

and
y
(0)
k+1 = A21(k)x

(0)
k + A22(k)y

(0)
k , k = 0, . . . , N − 1. (2.5)

Substituting (2.3) in (2.5) yields

y
(0)
k+1 = A21(k)α + A22(k)y

(0)
k , k = 0, . . . , N − 1. (2.6)

Equating the terms of order εj , j ≥ 1, we have the equations

x
(j)
0 = 0, (2.7)

x
(j)
k+1 = A11(k)x

(j−1)
k + A12(k)y

(j−1)
k , k = 0, . . . , N − 1, (2.8)

and
y
(j)
0 = 0, (2.9)

y
(j)
k+1 = A21(k)x

(j)
k + A22(k)y

(j)
k , k = 0, . . . , N − 1. (2.10)

The system described by (2.3) and (2.4)–(2.6) is the reduced problem of P (ε), it results
by suppressing the small parameter ε in (1.1)–(1.2). The equations (2.4)–(2.6) define an
initial value problem for the state y(0)k regardless of the state x(0)k which remains fixed
to its initial value. It is seen that the reduced problem offers the advantage of order
reduction, time scale separation and decoupled state variables.

For the jth-order approximation, the equation (2.7) sets the value of x(j)0 and the
algebraic equation (2.8) defines the coefficients x(j)k , k = 1, . . . , N , where the values
x
(j−1)
k and y(j−1)k , k = 0, . . . , N − 1 are determined from the previous step, i.e., the

approximation of order j − 1. The initial value problem (2.9)–(2.10) determines the se-
quence y(j)k , k = 0, . . . , N where the terms x(j)k , k = 1, . . . , N , are previously computed
from (2.8).
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2.2 Convergence of the Asymptotic Solution
In this section, we present the main result of this paper, we prove the convergence of the
series (2.1). The following theorem includes this result. Suppose

v = (x0, y0, x1, y1, . . . , xN , yN)
′ . (2.11)

We consider the norm in R(n+m)(N+1)

‖v‖ = max (|x0|, |y0|, |x1|, |y1|, . . . , |xN |, |yN |) ,

and for a matrix A = (aij), the associated matrix norm

‖A‖ = sup
‖v‖=1

‖Av‖ = max
k=0,...,(n+m)(N+1)

(n+m)(N+1)∑
j=0

|aij|

 .

Theorem 2.1. There exists a positive real number ε0, for all ε such that |ε| < ε0, the
solution (xk(ε), yk(ε))

′, k = 0, . . . , N , of problem P (ε) satisfies (2.1) uniformly for
0 ≤ k ≤ N , where x(0)k , y(0)k , x(j)k , y(j)k ,k = 0, . . . , N, are the solutions of (2.3), (2.4)–
(2.6), (2.7)–(2.8) and (2.9)–(2.10), respectively. More precisely, for all k = 0, . . . , N ,
we have ∣∣∣∣∣xk(ε)−

n∑
j=0

εjx
(j)
k

∣∣∣∣∣ ≤ C
(|ε|/ε0)n+1

1− |ε|/ε0
,∣∣∣∣∣yk(ε)−

n∑
j=0

εjy
(j)
k

∣∣∣∣∣ ≤ C
(|ε|/ε0)n+1

1− |ε|/ε0
,

(2.12)

where C is a positive constant.

Proof. We write the system (2.2)–(2.4)–(2.5) in the matrix form

A0v
(0) = f, (2.13)

where v(0) and f are defined in R(n+m)(N+1) by

v(0) :=
(
x
(0)
0 , y

(0)
0 , x

(0)
1 , y

(0)
1 , . . . , x

(0)
N , y

(0)
N

)′
, (2.14)

f := (α, β, 0, 0, . . . , 0, 0)′ , (2.15)

and the matrix A0 is the triangular matrix

In 0 0 0 . . . 0
0 Im 0 0
In 0 −In 0

A21(0) A22(0) 0 −Im
... . . . ...

In 0 −In 0
0 . . . A21(N − 1) A22(N − 1) 0 −Im


.
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The matrix A0 is nonsingular, we denote

ε0 :=
1

‖UA−10 ‖
, C := ‖A−10 ‖‖f‖. (2.16)

We write the system (2.7)–(2.8)–(2.9)–(2.10) in the form

A0v
(j) = −Uv(j−1); v(j) :=

(
x
(j)
0 , y

(j)
0 , x

(j)
1 , y

(j)
1 , . . . , x

(j)
N , y

(j)
N

)′
, (2.17)

where U is the matrix

U =



0 0 0 0 . . . 0
0 0 0 0

A11(0) 0 A12(0) 0
0 0 0 0
0 0 A11(1) A12(1)
... . . . ...

A11(N − 1) A12(N − 1) 0 0
0 . . . 0 0 0 0


.

Hence the problem P (ε) defined by (1.1)–(1.2) can be written in the matrix form

Aεv = f, (2.18)

where v and f are given by (2.11) and (2.15), respectively, and Aε is defined by the
combination

Aε = A0 + εU.

Since |ε| < ε0, from (2.16) we have ‖εUA−10 ‖ < 1, and we can write

A−10

∞∑
j=0

(
−εUA−10

)j
= A−10

(
I + εUA−10

)−1
= A−1ε . (2.19)

The condition |ε| < ε0 ensures the existence and uniqueness of the solution v (ε) of
system (2.18), it is given by

v (ε) = A−1ε f. (2.20)

From (2.19) and (2.20), we have

v (ε) =
∞∑
j=0

ε(j)v(j); v(j) = A−10

(
−UA−10

)j
f. (2.21)

From (2.13) and (2.17), for j ≥ 1, we infer from (2.14) and (2.15) that the components
x
(0)
k ,y(0)k , x(j)k , and y(j)k are the solutions of the problems (2.2), (2.4), (2.5), (2.7)–(2.8)
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and (2.9)–(2.10), respectively. Notice that the equations (2.2) and (2.5) are equivalent
to (2.3) and (2.6), respectively, which concludes the first part of the proof.

Now we evaluate the remainder of the series. We have∥∥∥∥∥A−1ε − A−10

∞∑
j=0

(
−εUA−10

)(j)∥∥∥∥∥ ≤ ∥∥A−10

∥∥ ∞∑
j=n+1

‖εUA−10 ‖j

=
‖A−10 ‖‖εUA−10 ‖n

1− ‖εUA−10 ‖
≤ ‖A−10 ‖

(|ε|/ε0)n+1

1− |ε|/ε0
.

(2.22)

From (2.19) and (2.22), it follows

‖v (ε)−
∞∑
j=0

εjv(j)‖ ≤ ‖A−1ε − A−10

n∑
j=0

(
−εUA−10

)j ‖‖f‖
≤ ‖A−10 ‖‖f‖

(|ε|/ε0)n+1

1− |ε|/ε0
.

(2.23)

The chosen norm and (2.16) give us the result (2.12). This concludes the proof.

2.3 Algorithm
An algorithm is given to indicate the sequence of various steps involved in the actual
working of the perturbation method.

Zeroth-order solution

• Step 1. Fix x(0)k = α, for all k = 0, . . . , N . Set y(0)0 = β, and solve (2.6) to obtain

y
(0)
k for k = 1, . . . , N , hence determine

(
x
(0)
k , y

(0)
k

)′
, for k = 0, . . . , N .

First-order solution

• Step 2. Fix x
(1)
0 = 0, then determine x(1)k from (2.8) for k = 1, . . . , N . Set

y
(1)
0 = 0, and solve (2.10) to obtain y

(1)
k for k = 1, . . . , N , hence determine(

x
(0)
k , y

(0)
k

)′
+ ε

(
x
(1)
k , y

(1)
k

)′
, for k = 0, . . . , N .

Jth-order solution

• Step 3. Fix x
(j)
0 = 0, then determine x(j)k from (2.8) all k = 1, . . . , N . Set

y
(j)
0 = 0, and solve (2.10) to obtain y

(j)
k for k = 1, . . . , N , hence determine(

x
(0)
k , y

(0)
k

)′
+ ε

(
x
(1)
k , y

(1)
k

)′
+ . . .+ εj

(
x
(j)
k , y

(j)
k

)′
, for k = 0, . . . , N .
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3 Shift-Invariant Singularly Perturbed System
Consider the linear shift-invariant singularly perturbed discrete system proposed in [4](

xk+1

yk+1

)
=

(
I + εA11 εA12

A21 A22

)(
xk
yk

)
+

(
εB1

B2

)
uk, (3.1)

where xk ∈ Rn and yk ∈ Rm are the state vectors, uk ∈ Rr is the control vector or the
input, k = 0, . . . , N − 1; Aij , Bi, i, j = 1, 2, are constant matrices with appropriate
dimensions, and ε is a small real parameter. We suppose given the initial values(

x0
y0

)
=

(
α
β

)
. (3.2)

The system (3.1) is known as the fast sampling model and results from the discretiza-
tion of the singularly perturbed continuous-time system. In paper [4], a zeroth order
approximation of the solution is expressed using a boundary layer method or the singu-
lar perturbation method. In this section, we give an algorithm to determine the asymp-
totic solutions of the initial value problem (3.1)–(3.2). We show how to compute the
coefficients of the power series

xk =
∞∑
j=0

εjx
(j)
k , yk =

∞∑
j=0

εjy
(j)
k , k = 0, . . . , N. (3.3)

Suppose the coefficients of ε0 in the series (3.3) satisfy the following problems. The
algebraic equation

x
(0)
k = α, k = 0, . . . , N, (3.4)

and the initial value problem
y
(0)
0 = β, (3.5)

y
(0)
k+1 = A21α + A22y

(0)
k +B2uk, k = 0, . . . , N − 1. (3.6)

For the coefficients of ε, they satisfy the initial value problems

x
(1)
0 = 0, (3.7)

x
(1)
k+1 = x

(1)
k + A11α + A12y

(0)
k +B1uk, k = 0, . . . , N − 1, (3.8)

and
y
(1)
0 = 0,

y
(1)
k+1 = A21x

(1)
k + A22y

(1)
k , k = 0, . . . , N − 1. (3.9)

The coefficients of εj , j ≥ 2, satisfy the algebraic equations

x
(j)
0 = 0, (3.10)
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x
(j)
k+1 = x

(j)
k + A11x

(j−1)
k + A12y

(j−1)
k , k = 0, . . . , N − 1, (3.11)

and the initial value problem
y
(j)
0 = 0, (3.12)

y
(j)
k+1 = A21x

(j)
k + A22y

(j)
k , k = 0, . . . , N − 1. (3.13)

It is easy to prove the following result.

Theorem 3.1. There exists a positive real number ε0, for all ε such that |ε| < ε0, the
solution (xk(ε), yk(ε))

′, k = 0, . . . , N of problem (3.1)–(3.2) satisfies (3.3) uniformly
for 0 ≤ k ≤ N , where x(0)k , y(0)k , x(j)k , y(j)k are the solutions of (3.10), (3.11), (3.5),
(3.6), (3.12) and (3.13), respectively. More precisely, for all k = 0, . . . , N , we have∣∣∣∣∣xk(ε)−

n∑
j=0

εjx
(j)
k

∣∣∣∣∣ ≤ C
(|ε|/ε0)n+1

1− |ε|/ε0
,∣∣∣∣∣yk(ε)−

n∑
j=0

εjy
(j)
k

∣∣∣∣∣ ≤ C
(|ε|/ε0)n+1

1− |ε|/ε0
.

(3.14)

Proof. We only give a brief proof because it is similar to that of Theorem 2.1. We write
the problem (3.1)–(3.2) in the matrix form

Aεv = f (ε) ,

where

f (ε) = (α, β,−εB1u0,−εB2u0, . . . ,−εB1uN−1,−εB2uN−1)
′ , (3.15)

and the value of Aε is easy to find. We write Aε = A0 + εU , and

f (ε) = f (0) + εf (3.16)

where
f (0) = (α, β, 0, 0, . . . , 0, 0)′ ,

f = (0, 0,−B1u0,−B2u0, . . . ,−B1uN−1,−B2uN−1)
′ .

(3.17)

The remainder of the proof is routine and left to the reader.

3.1 Algorithm
Zeroth-order approximation

• Step 1. Fix x(0)k = α, for all k = 0, . . . , N . Set y(0)0 = β, and solve (3.6) to obtain

y
(0)
k for k = 1, . . . , N , hence determine

(
x
(0)
k , y

(0)
k

)′
, for k = 0, . . . , N .
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First-order approximation

• Step 2. Fix x
(1)
0 = 0, then determine x(1)k from (3.8) for k = 1, . . . , N . Set

y
(1)
0 = 0, and solve (3.9) to obtain y(1)k for k = 1, . . . , N , hence determine(
x
(0)
k , y

(0)
k

)′
+ ε

(
x
(1)
k , y

(1)
k

)′
, for k = 0, . . . , N .

Jth-order approximation

• Step 3. Fix x
(j)
0 = 0, then determine x(j)k from (3.11) for k = 1, . . . , N . Set

y
(j)
0 = 0, and solve (3.13) to obtain y

(j)
k for k = 1, . . . , N , hence determine(

x
(0)
k , y

(0)
k

)′
+ ε

(
x
(1)
k , y

(1)
k

)′
+ . . .+ εj

(
x
(j)
k , y

(j)
k

)′
, for k = 0, . . . , N .

4 Conclusion
A method has been developed for a class of nonautonomous (homogeneous) discrete
singularly perturbed systems called standard models. Besides the advantage of remov-
ing the time scale and the decomposition in subsystems of reduced order with decoupled
state variables, there is no need to compute the boundary layer correction terms as for
the singular perturbation method. We extended the proposed method for a nonhomoge-
neous system known in the theory of control as the linear shift-invariant singularly per-
turbed system. For both problems, convergent algorithms have been provided showing
the sequence of the various steps of the actual application of the method. Notice that
the perturbation method can be extended to all important classes of linear singularly
perturbed problems resulting from optimal control. This will be indicated separately.
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