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Abstract

The author develops the theory of pseudo differential equations and boundary
value problems in nonsmooth domains. A model pseudo differential equation in a
special cone is reduced to a certain integral equation.
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1 Introduction
We consider a model elliptic pseudo differential equation in a cone because it is very
important to obtain invertibility conditions for such equation according to freezing co-
efficients principle [1]. It was shown from the mathematical point of view in the papers
by M. I. Vishik and G. I. Eskin, and it was established that for the invertibility one needs
some additional conditions (for example, boundary conditions), but it is not enough, and
these conditions must correlate with the initial equation (so-called Shapiro–Lopatinskii
conditions). A manifold with nonsmooth boundary can have different kinds of singu-
larities, and the basic conclusion of this paper is the following: each type of singularity
generates a different type of general solution. Thus, we need different types of boundary
conditions for different singularities and consequently we will obtain different solvabil-
ity conditions.

In this paper we consider a special polyhedral cone.
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2 Key Concept
Let us study solvability of pseudo differential equations [3–5]

(Au+)(x) = f(x), x ∈ Ca
+, (2.1)

in the space Hs(Ca
+), where Ca

+ is the m-dimensional cone{
x ∈ Rm : x = (x1, . . . , xm−1, xm), xm >

m−1∑
k=1

ak|xk|, ak > 0, k = 1, 2, . . . ,m− 1

}
,

A is a pseudo differential operator with the symbol A(ξ), satisfying the condition

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2. (2.2)

Such symbols are elliptic and have the order α ∈ R at infinity.
By definition, the space Hs(Ca

+) consists of distributions from Hs(Rm) [1] whose
support belongs to Ca

+. The norm in the space Hs(Ca
+) is induced by the norm of

Hs(Rm). The right-hand side f is chosen from the space Hs−α
0 (Ca

+), which is a space
of distributions S ′(Ca

+), admitting the continuation on Hs−α(Rm). The norm in the
space Hs−α

0 (Ca
+) is defined by

||f ||+s−α = inf ||lf ||s−α,

where the infimum is chosen from all continuations l.
Further, let us define a special multi-dimensional singular integral by the formula

(Gmu)(x) = (2i)m−1 lim
τ→0+

∫
Rm

m−1∏
j=1

aj(xm − ym + iτ)m−2

(xj − yj)2 − a2
j(xm + ym + iτ)2

u(y)dy

(we omit some details, see, for example, [3]). Let us recall that this operator is the multi-
dimensional analogue of a one-dimensional Cauchy type integral, or Hilbert transform.

Before giving the next definition, we need some notations. The symbol
∗
Ca

+ denotes
a conjugate cone for Ca

+:
∗
Ca

+= {x ∈ Rm : x · y > 0, y ∈ Ca
+},

Ca
− ≡ −Ca

+, T (Ca
+) denotes the radial tube domain over the cone Ca

+, i.e., a domain in
the multidimensional complex space Cm of type Rm + iCa

+.
In order to describe the solvability picture for the equation (2.1), we will introduce

the following definition.

Definition 2.1. A wave factorization for the symbol A(ξ) is its representation in the
form

A(ξ) = A6=(ξ)A=(ξ),

where the factors A6=(ξ), A=(ξ) must satisfy the following conditions:
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1) A6=(ξ), A=(ξ) are defined for all admissible values ξ ∈ Rm, with the possible
exception of the points {ξ ∈ Rm : |ξ′|2 = a2ξ2

m};

2) A6=(ξ), A=(ξ) admit an analytical continuation to the radial tube domains T (
∗
Ca

+),

T (
∗
Ca
−), respectively with estimates

|A±1
6= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗
Ca

+ .

The number æ ∈ R is called the index of the wave factorization.

Everywhere below we will suppose that the mentioned wave factorization exists,
and the sign ∼ denotes the Fourier transform.

3 Main Result
Now we consider the equation (2.1) only for the case æ− s = n+ δ, n ∈ N, |δ| < 1/2.

Let T be the bijection operator transferring ∂Ca
+ into the hyperplane xm = 0, more

precisely, it is a transformation Rm −→ Rm of the following type

t1 = x1,
............

tm−1 = xm−1,

tm = xm −
m−1∑
k=1

ak|xk|,

and we introduce the operator
FTF−1 ≡ Va, (3.1)

where a = (a1, a2, . . . , am−1), and further one can construct the general solution for our
pseudo differential equation (2.1).

Theorem 3.1. A general solution of the equation (2.1) in Fourier image is given by the
formula

ũ+(ξ) = A−1
6= (ξ)Q(ξ)GmQ

−1(ξ)A−1
= (ξ)l̃f(ξ)

+A−1
6= (ξ)V−aF

(
n∑
k=1

ck(x
′)δ(k−1)(xm)

)
,

where ck(x′) ∈ Hsk(Rm−1) are arbitrary functions, sk = s − æ + k − 1/2, k =
1, 2, . . . , n, lf is an arbitrary continuation f on Hs−α(Rm), Q(ξ) is an arbitrary poly-
nomial satisfying (2.2) for α = n.
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Proof. The general solution is constructed in the following way. Let us continue the
distribution f on the whole space Rm, denote this continuation by lf , further put

u−(x) = (Au+)(x)− lf(x),

and rewrite the last identity in the form

(Au+)(x) + u−(x) = lf(x).

After wave factorization for symbol with preliminary Fourier transform, we write

A6=(ξ)ũ+(ξ) + A−1
= (ξ)ũ−(ξ) = A−1

= (ξ)l̃f(ξ).

One can see that A−1
= (ξ)l̃f(ξ) belongs to the space H̃s−æ(Rm), and if we choose the

polynomial Q(ξ) satisfying the condition

|Q(ξ)| ∼ (1 + |ξ|)n,

then Q−1(ξ)A−1
= (ξ)l̃f(ξ) belongs to the space H̃−δ(Rm).

Further, according to the theory of the multi-dimensional Riemann problem [3], we
can decompose the last function into two summands (jump problem):

Q−1A−1
= l̃f = f+ + f−,

where f+ ∈ H̃(Ca
+), f− ∈ H̃(Rm \ Ca

+), and

f+ = GmQ
−1A−1

= l̃f (3.2)

So, we have
Q−1A6=ũ+ +Q−1A−1

= ũ− = f+ + f−,

or
Q−1A6=ũ+ − f+ = f− −Q−1A−1

= ũ−.

In other words,
A6=ũ+ −Qf+ = Qf− − A−1

= ũ−.

The left-hand side of the equality belongs to the space H̃−n−δ(Ca
+), and the right-hand

side belongs to H̃−n−δ(Rm \ Ca
+). Hence

F−1(A 6=ũ+ −Qf+) = F−1(Qf− − A−1
= ũ−),

where the left-hand side belongs to H−n−δ(Ca
+), and the right-hand side belongs to

H−n−δ(Rm \ Ca
+), from which we conclude immediately that it is a distribution sup-

ported on ∂Ca
+. Then the function

TF−1(A6=ũ+ −Qf+)
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is supported on the hyperplane tm = 0 and belongs to H−n−δ(Rm). Such distribution
belongs to the subspace generated by a Dirac mass-function and its derivatives [2], and
it can be written as

n−1∑
k=0

ck(t
′)δ(k)(tm).

Therefore

TF−1(A6=ũ+ −Qf+) =
n−1∑
k=0

ck(t
′)δ(k)(tm).

Further we apply the Fourier transform

FTF−1(A6=ũ+ −Qf+) = F

(
n−1∑
k=0

ck(t
′)δ(k)(tm)

)
,

taking into account (3.1), and obtain

A6=(ξ)ũ+(ξ)−Q(ξ)f+(ξ) = V−aF

(
n−1∑
k=0

ck(t
′)δ(k)(tm)

)
,

from which, according to (3.2), we have

ũ+(ξ) = A−1
6= (ξ)Q(ξ)GmQ

−1(ξ)A−1
= (ξ)l̃f(ξ)

+A−1
6= (ξ)V−aF

(
n∑
k=1

ck(x
′)δ(k−1)(xm)

)
.

This completes the proof.

In order to explain the formula (3.1), we write

(FTu)(ξ) =

∫
Rm

e−ix·ξu(x1, . . . , xm−1, xm − a|x′|)dx

=

∫
Rm

e−iy
′ξ′e−i(ym+a|y′|)ξmu(y1, . . . , ym−1, ym)dy

=

∫
Rm−1

e−ia|y
′|ξme−iy

′ξ′û(y1, . . . , ym−1, ξm)dy′,

where û denotes the Fourier transform on the last variable, and the Jacobian is

D(x1, x2, . . . , xm)

D(y1, y2, . . . , ym)
=

∣∣∣∣∣∣∣∣∣∣
1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 1 0

· · · · · · · · · · · · · · ·
−asgn(y1) −asgn(y2) . . . .− asgn(ym−1) 1

∣∣∣∣∣∣∣∣∣∣
= 1.
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If we define a pseudo differential operator by the formula

(Au)(x) =

∫
Rm

eixξA(ξ)ũ(ξ)dξ

and the direct Fourier transform by

ũ(ξ) =

∫
Rm

e−ixξu(x)dx,

then we have, at least formally,

(FTu)(ξ) =

∫
Rm−1

e−i(a1|y1|+...+am−1|ym−1|)ξme−iy
′ξ′û(y1, . . . , ym−1, ξm)dy′. (3.3)

In other words, if we denote the (m − 1)-dimensional Fourier transform (y′ → ξ′ in
distribution sense) of the function e−i(a1|y1|+...+am−1|ym−1|)ξm by Ea(ξ′, ξm), then the for-
mula (3.3) reads

(FTu)(ξ) = (Ea ∗ ũ)(ξ),

where the sign ∗ denotes a convolution for the first m − 1 variables, and the multiplier
for the last variable ξm. Thus, Va is a combination of a convolution operator and the
multiplier with the kernel Ea(ξ′, ξm). It is a very good operator, and it is bounded in
Sobolev–Slobodetskii spaces Hs(Rm).

Notice that distributions supported on conical surface and their Fourier transforms
were considered in [2], but the author did not find the multi-dimensional analogue of
the theorem on a distribution supported in a single point in all issues of this book.

4 Simple Boundary Value Problem
Here we consider the very simple case when f ≡ 0, a1 = . . . = am−1 = 1, n = 1.
Then the formula from Theorem 3.1 takes the form

ũ+(ξ) = A−1
6= (ξ)V−1c̃0(ξ′).

We consider separately the following construction. According to the Fourier transform,
our solution is

u+(x) = F−1{A−1
6= (ξ)V−1c̃0(ξ′)}.

(Here we write V1 in the case a1 = . . . = am−1 = 1).
Let us suppose we choose the Dirichlet boundary condition on ∂C1

+ for unique iden-
tification of an unknown function c0, i.e.,

(Pu)(y) = g(y),
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where g is a given function on ∂C1
+, P is a restriction operator on a boundary, so we

know the solution on the boundary ∂C1
+. Thus,

Tu(x) = TF−1{A−1
6= (ξ)V−1c̃0(ξ′)},

so we have

FTu(x) = FTF−1{A−1
6= (ξ)V−1c̃0(ξ′)} = V1{A−1

6= (ξ)V−1c̃0(ξ′)}, (4.1)

and we know (P ′Tu)(x′) ≡ v(x′), where P ′ is the restriction operator on the hyperplane
xm = 0. The relation between the operators P ′ and F is well known [1]:

(FP ′u)(ξ′) =

+∞∫
−∞

ũ(ξ′, ξm)dξm.

Returning to the formula (4.1), we obtain

ṽ(ξ′) =

+∞∫
−∞

{V1{A−1
6= (ξ)V−1c̃0(ξ′)}}(ξ′, ξm)dξm, (4.2)

where ṽ(ξ′) is a given function. Hence, the equation (4.2) is an integral equation for
determining c0(x′).

One can consider other types of boundary conditions by the same way, but one needs
to take into account that the analogue of the equation (4.2) will not be as simple.

5 Integral Equation
Let us consider the particular case f ≡ 0, n = 1. The formula for a general solution of
the equation (2.1) takes the form

ũ+(ξ)) = A−1
6= (ξ)V−1F{c0(x′)δ(0)(xm)},

and further after Fourier transform (for simplicity we write c̃ instead of V−1c̃0)

ũ+(ξ) = A−1
6= (ξ)c̃(ξ′), (5.1)

or, equivalently, the solution is

u+(x) = F−1{A−1
6= (ξ)c̃(ξ′)}.

Then we apply the operator T to formula (5.1)

(Tu+)(t) = TaF
−1{A−1

6= (ξ)c̃(ξ′)}
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and the Fourier transform

(FTu+)(ξ) = FTF−1{A−1
6= (ξ)c̃(ξ′)}.

If the boundary values of our solution u+ are known on ∂Ca
+, then it means that the

following function is given:
+∞∫
−∞

(FTu+)(ξ)dξm.

So, if we denote
+∞∫
−∞

(FTu+)(ξ)dξm ≡ g̃(ξ′),

then for determining c̃(ξ′), we have

+∞∫
−∞

(FTF−1){A−1
6= (ξ)c̃(ξ′)}dξm = g̃(ξ′), (5.2)

This is an equation like a convolution, and evaluating the inverse Fourier transform
ξ′ → x′, we obtain the conical analogue of layer potential.

Now we will try to determine the form of the operator FTaF−1 (see Section 3). We
write

(FTF−1ũ)(ξ) = (FTu)(ξ) =

∫
Rm−1

e−i(a1|y1|+...+am−1|ym−1|)ξme−iy
′·ξ′û(y′, ξm)dy′,

(5.3)
where y′ = (y1, . . . , ym−1), û is the Fourier transform of u on the last variable ym.

Let us denote the convolution operator with symbol A−1
6= (ξ) by letter a, so that by

definition
(a ∗ u)(x) =

∫
Rm

a(x− y)u(y)dy,

or, for Fourier images,
F (a ∗ u)(ξ) = A−1

6= (ξ)ũ(ξ).

As above, we denote by â(x′, ξm) the Fourier transform of the convolution kernel a(x)
on the last variable xm. The integral in (5.2) takes the form (according to (5.3))∫

Rm−1

e−i(a1|y1|+...+am−1|ym−1|ξme−iy
′·ξ′(â ∗ c)(y′, ξm)dy′.

Taking into account the properties of convolution operator and the Fourier transform,
we have the representation (see Section 3)

Ea ∗ (A−1
6= (ξ)c̃(ξ′)),
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or, in enlarged notation,∫
Rm−1

Ea(ξ
′ − η′, ξm)A−1

6= (η′, ξm)c̃(η′)dη′.

Then the equation (5.2) will take the form∫
Rm−1

Wa(η
′, ξ′ − η′)c̃(η′)dη′ = g̃(ξ′), (5.4)

where Wa(η
′, ξ′ − η′) =

+∞∫
−∞

Ea(ξ
′ − η′, ξm)dξm
A6=(η′, ξm)

. The equation (5.4) is an integral

equation for determining of the unknown function c. If we solve this integral equation,
then we can find the solution of our boundary value problem by the formula (5.1).

Thus, we obtain the following result.

Theorem 5.1. The boundary value problem consisting of the equation (2.1) and the
Dirichlet condition is equivalent to the integral equation (5.4).

5.1 Possible Simplification
In case when the kernel of the integral equation is degenerated, one can obtain some
simplifications. Let

Wa(η
′, ξ′ − η′) ≡ b(η′)K(ξ′ − η′).

Further, we apply the inverse Fourier transform to (5.4) and obtain

k(x′)

∫
Rm−1

B(x′ − y′)c(y′)dy′ = g(x′), (5.5)

and if k(x′) 6= 0, ∀x′ ∈ Rm−1, then∫
Rm−1

B(x′ − y′)c(y′)dy′ = k−1(x′)g(x′),

where B(x′) is the Fourier transform for b(η′), and k(x′) is the Fourier transform for
K(η′). The equation (5.5) is easily solvable.

If the restriction of u+ on ∂Ca
+ is given as

u+|∂Ca
+

= v(x′, xm),

then it means that the function

Ta(u+|∂Ca
+

) = v1(x′)
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is given.
The equation (5.4) and the formula (5.5) can be rewritten after change of variables

as integral over ∂Ca
+ (because the integral is considered over Rm−1). It seems, it will

be the special analogue of classical double layer potential. More precisely, the Fourier
transform in the formula (5.5) gives

b(ξ′)c̃(ξ′) = (K−1 ∗ g̃)(ξ′),

or
c̃(ξ′) = b−1(ξ′)(K−1 ∗ g̃)(ξ′), (5.6)

if b(ξ′) 6= 0, ∀ξ′ ∈ Rm−1. Substituting (5.6) into (5.1), we obtain

ũ+(ξ) = A−1
6= (ξ)b−1(ξ′)(K−1 ∗ g̃)(ξ′),

Further, if we denote A−1
6= (ξ)b−1(ξ′) ≡ d(ξ), and D(x) the kernel of convolution opera-

tor with the symbol d(ξ), then the last formula can be rewritten as

ũ+(ξ) = d(ξ)(K−1 ∗ g̃)(ξ′),

and finally,

u+(x′, xm) =

∫
Rm−1

D(x′ − y′, xm)k−1(y′)g(y′)dy′.

This is a certain analogue of the double layer potential, more precisely, Poisson integral
for the half-space.

6 Conclusion
Earlier the author considered a plane case, and for general homogeneous boundary con-
ditions obtained an equivalent system of linear difference equations [6]. This system is
very complicated, and even for simplest boundary conditions it is very hard to solve [7].
It may be the case that the integral equations approach will be more convenient for
solving these boundary value problems, at least by numerical methods.
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