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Abstract

In this paper, we study the existence and asymptotic stability in the pth-moment
of mild solutions of nonlinear impulsive stochastic partial functional integro-dif-
ferential equations with delays. We suppose that the linear part possesses a resol-
vent operator in the sense given by Grimmer in [9], and the nonlinear terms are
assumed to be Lipschitz continuous. A fixed point approach is used to achieve
the required result. An example is provided to illustrate the abstract results in this
work.
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1 Introduction

In recent years, existence, uniqueness, stability, and other quantitative and qualitative
properties of solutions to stochastic partial differential equations have been extensively
investigated by several authors. Many important results have been reported, for instance,
in [5,8]. In particular, Caraballo extended in [3] the results from Haussmann [11]; Mao
proved in [18] the mean-square exponential stability for the strong solutions of linear
stochastic delay equations with finite constant delay, by using the method developed
in [11, 12]. Following the ideas of Haussmann [11] and Ichikawa [12], Caraballo and
Real [5] considered the stability of the strong solutions of semilinear stochastic delay
evolution equations.

In the case of delay differential equations, in particular when we are concerned with
mild solutions of stochastic partial differential equations, the Lyapunov second method,
despite being a powerful technique in proving stability theorems, is not as appropriate
as in the non-delay case. A difficulty is that mild solutions do not have stochastic dif-
ferentials, so that one cannot apply Ito’s formula in a straightforward way. Following
Ichikawa [12], Liu [16] solved this problem by introducing approximating systems and
then using a limiting argument. Caraballo and Liu [4] have also solved the problem
by using the properties of the stochastic convolution integral, a method employed in
Yor [21] and Khas’minskii [14] to study the exponential stability of the mild solutions
of semilinear stochastic evolution equations. Very recently, Burton has successfully
utilized in [2] the fixed-point theory to investigate the stability of deterministic sys-
tems; Luo in [17] and Appleby in [1] have applied this valuable method for the stability
of stochastic differential equations. Following the ideas of Burton [2], Luo [17] and
Appleby [1], by employing the contraction mapping principle and stochastic analysis,
some sufficient conditions ensuring the exponential stability in pth-moment (p ≥ 2)
and almost sure exponential stability for mild solution of stochastic partial differential
equations with delays were obtained in [17], which did not comprise the monotone de-
creasing behavior of the delays.

Motivated by the facts stated in the above discussion, in this paper we aim to study
the stability problem for a class of stochastic partial integro-differential equations with
delays. We prove that the mild solution to a class of stochastic partial integro-differential
equations with delays exists, is unique and also pth-moment exponentially stable, by
using a fixed point argument. Due to the presence of the integro-differential term in our
equation, we need to use the theory of resolvent operators as developed by Grimmer [9]
instead of using strongly continuous semigroups. The advantage of using this method
is that one can prove at the same time not only the existence and uniqueness of solution
of the problem, but also the exponential stability in the pth moment. It is worth noticing
that for this reason, the set of assumptions that we have to impose may seem more
restrictive than the ones which might be sufficient to ensure the existence and uniqueness
of solution, but as we are interested in the stability of solutions we prefer to state all the
assumptions needed for that at one stage.



Stochastic Partial Integro-Differential Equations with Delays 135

The paper is organized as follows. In Section 2, we summarize several important
and helpful working tools on the Wiener process and deterministic integro-differential
equations that will be used to develop our results. Section 3 is devoted to the existence
and exponential stability of mild solutions. An example is provided in Section 4 to
illustrate our main abstract results.

2 Preliminaries

2.1 Wiener Process
Let (Ω,F ,P) be a complete probability space equipped with some filtration {Ft}t≥0 sat-
isfying the usual conditions, i.e., the filtration is right continuous and F0 contains all P-
null sets. Let H,K be two real separable Hilbert spaces and we denote by 〈., .〉H, 〈., .〉K
their inner products and by ‖.‖H, ‖.‖K their vector norms, respectively. We denote by
L(K,H) the set of linear bounded operators from K into H , equipped we the usual op-
erator norm ‖.‖. In this paper, we will always use the same symbol ‖.‖ to denote norms
of operators regardless of the spaces potentially involved, when no confusion may arise.
Let τ > 0 and let D := D ([−τ, 0] ;H) denote the family of all right-continuous func-
tions with left-hand limits ϕ from [−τ, 0] to H. The space D ([−τ, 0] ;H) is equipped
with the norm ‖ϕ‖D = sup

−τ≤θ≤0
‖ϕ(θ)‖H. We also use the space Db

F0

(
[−τ, 0];H

)
to

denote the family of all almost surely bounded, F0-measurable, D ([−τ, 0] ;H)-valued
random variables.

Let {W (t), t ≥ 0} be a K-valued {Ft}t≥0-Wiener process defined on (Ω,F ,P) with
covariance operator Q, i.e., E〈W (t), x〉K〈W (t), y〉K = (t ∧ s)〈Qx, y〉K for all x, y ∈
K, where Q is a positive, self-adjoint, trace class operator on K. In particular, we shall
call such W (t), t ≥ 0, a K-valued Q-Wiener process with respect to {Ft}t≥0.

In order to define stochastic integrals with respect to the Q-Wiener process W (t),
we introduce the subspace K0 = Q1/2(K) of K, which, endowed with the inner product

〈u, v〉K0 = 〈Q−
1
2u,Q−

1
2v〉K

is a Hilbert space. Let L0
2 := L2(K0,H) denote the space of all Hilbert-Schmidt opera-

tors from K0 into H which turns out to be a separable space, equipped with the norm

‖Ψ‖2L02 = tr((ΨQ1/2)(ΨQ1/2)∗)

for any Ψ ∈ L0
2. Clearly, for any bounded operator Ψ ∈ L(K,H), this norm reduces to

‖Ψ‖2L02 = tr(ΨQΨ∗).
For arbitrary given T ≥ 0, let J(t, ω), t ∈ [0, T ], be an Ft-adapted, L0

2-valued
process, and we define the following norm for arbitrary t ∈ [0, T ],

|J |t =
{
E
∫ t

0

tr((J(s, ω)Q
1
2 )(J(s, ω)Q

1
2 )∗)ds

}1/2
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In particular, we denote by U2([0, T ] ;L0
2) the set of all L0

2-valued predictable processes

J satisfying |J |T < ∞. The stochastic integral
∫ t

0

J(s, ω)dW (s) ∈ H, t ≥ 0, can be

defined for all J(s, ω) ∈ U2([0, T ] ;L0
2) by∫ t

0

J(s, ω)dW (s) = L2 − lim
n→+∞

n∑
i=1

∫ t

0

√
λiJ(s, ω)eidB

i
s, t ∈ [0, T ] ,

where W (t) =
+∞∑
i=1

√
λiB

i
tei. Here {λi ≥ 0, i ∈ N} are the eigenvalues of Q and

{ei, i ∈ N} are the corresponding eigenvectors,
{
Bi
t, i ∈ N

}
are independent standard

real-valued Brownian motions. The reader is referred to [10] for a systematic theory
about stochastic integral of this type.

2.2 Partial Integro-Differential Equations in Banach Spaces
In the present section, we recall some definitions, notations and properties needed in the
sequel. Let Z1 and Z2 denote two Banach spaces. We denote by L(Z1, Z2) the Banach
space of bounded linear operators from Z1 into Z2 endowed with the operator norm and
we abbreviate this notation to L(Z1) when Z1 = Z2.

In what follows, H will denote a Banach space, A and B(t) are closed linear oper-
ators on H. Y represents the Banach space D(A), the domain of operator A, equipped
with the graph norm

|y|Y := |Ay|+ |y| for y ∈ Y.
The notationC([0,+∞);Y ) denotes the space of all continuous functions from [0,+∞)
into Y . We then consider the following Cauchy problem v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ H.
(2.1)

Definition 2.1 (See [9]). A resolvent operator for Eq. (2.1) is a bounded linear operator
valued function R(t) ∈ L(H) for t ≥ 0, satisfying the following properties:

(i) R(0) = I and |R(t)| ≤ Neβt for some constants N and β.

(ii) For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.

(iii) For x ∈ Y, R(·)x ∈ C1([0,+∞);H) ∩ C([0,+∞);Y ) and

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds for t ≥ 0.
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For additional details on resolvent operators, we refer the reader to [9, 19]. The
resolvent operator plays an important role to study the existence of solutions and to
establish a variation of constants formula for nonlinear systems. For this reason, we
need to know when the linear system (2.1) possesses a resolvent operator. Theorem 2.2
below provides a satisfactory answer to this problem.

In what follows we suppose the following assumptions:

(H1) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on H.

(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y, | · |Y ) into (H, | · |H).
Moreover, there exists an integrable function c : [0,+∞)→ R+ such that for any
y ∈ Y , y 7→ B(t)y belongs to W 1,1([0,+∞),H) and∣∣∣∣ ddtB(t)y

∣∣∣∣
H
≤ c(t)|y|Y for y ∈ Y and t ≥ 0.

Theorem 2.2 (See [7]). Assume that hypotheses (H1) and (H2) hold. Then Eq. (2.1)
admits a resolvent operator (R(t))t≥0.

Theorem 2.3 (See [15]). Assume that hypotheses (H1) and (H2) hold. Let T (t) be a
compact operator for t > 0. Then, the corresponding resolvent operator R(t) of Eq.
(2.1) is continuous for t > 0 in the operator norm, namely, for all t0 > 0, it holds that
lim
h→0
‖R(t0 + h)−R(t0)‖ = 0.

In the sequel, we recall some results on the existence of solutions for the following
integro-differential equation v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ q(t) for t ≥ 0,

v(0) = v0 ∈ H,
(2.2)

where q : [0,+∞[→ H is a continuous function.

Definition 2.4 (See [9]). A continuous function v : [0,+∞) → H is said to be a strict
solution of Eq. (2.2) if

(i) v ∈ C1([0,+∞);H) ∩ C([0,+∞);Y ),

(ii) v satisfies Eq. (2.2) for t ≥ 0.

Remark 2.5. From this definition we deduce that v(t) ∈ D(A), and the function B(t−
s)v(s) is integrable, for all t > 0 and s ∈ [0,+∞).

Theorem 2.6 (See [9]). Assume that (H1)–(H2) hold. If v is a strict solution of Eq. (2.2),
then the following variation of constants formula holds

v(t) = R(t)v0 +

∫ t

0

R(t− s)q(s)ds for t ≥ 0. (2.3)
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Accordingly, we can establish the following definition.

Definition 2.7 (See [9]). A function v : [0,+∞)→ H is called a mild solution of (2.2),
for v0 ∈ H, if v satisfies the variation of constants formula (2.3).

The next theorem provides sufficient conditions ensuring the regularity of solutions
of Eq. (2.2).

Theorem 2.8 (See [9]). Let q ∈ C1([0,+∞);H) and v be defined by (2.3). If v0 ∈
D(A), then v is a strict solution of Eq. (2.2).

Consider the following semilinear stochastic partial integro-differential equation
with delays

dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s)ds+ F (t, x(t− ρ(t)))

]
dt

+G(t, x(t− δ(t)))dW (t) for t ≥ 0,

x(θ) = φ(θ) for θ ∈ [−τ, 0], where φ ∈ Db
F0

([−τ, 0];H), τ > 0.

(2.4)

The mappings F : R+ × D ([−τ, 0] ;H) → H, G : R+ × D ([−τ, 0] ;H) → L0
2(K,H)

are both Borel measurable, ρ : R+ → [0, τ ], δ : R+ → [0, τ ] are continuous.

Definition 2.9. A stochastic process {x(t), t ∈ [0, T ]}, (0 < T < +∞), is called a mild
solution of (2.4) if

(i) x(t) is Ft-adapted;

(ii) x(t) ∈ H, possesses càdlàg paths on t ∈ [0, T ] almost surely, and for arbitrary
0 ≤ t ≤ T ,

x(t) = R(t)φ(0) +

∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

+

∫ t

0

R(t− s)G(s, x(s− δ(s))dW (s) (2.5)

(iii) and x(θ) = φ(θ) for θ ∈ [−τ, 0], where φ ∈ Db
F0

([−τ, 0];H).

For our stability interest, we can assume, without loss of generality, that

F (t, 0) ≡ 0 and G(t, 0) ≡ 0 for any t ≥ 0. (2.6)

Then (2.4) obviously possesses the trivial solution when the initial value is φ ≡ 0.
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Definition 2.10. Let p ≥ 2 be an integer. The trivial solution of Eq. (2.4) is said to be
exponentially stable in the pth mean, if for any initial value φ ∈ Db

F0

(
[−τ, 0];H

)
, there

exists a pair of positive constants λ,C > 0 (λ independent of φ) such that

E‖x(t)‖pH ≤ C sup
−τ≤s≤0

E‖φ(s)‖pHe
−λt, t ≥ 0. (2.7)

In order to set our problem, we always assume that the following conditions hold:

‖R(t)‖H ≤ Me−γt ∀t ≥ 0, where M ≥ 1 and γ > 0, (2.8)
‖F (t, x)− F (t, y)‖H ≤ C1‖x− y‖H ∀t ≥ 0, x, y ∈ H, where C1 > 0, (2.9)
‖G(t, x)−G(t, y)‖L02 ≤ C2‖x− y‖H ∀t ≥ 0, x, y ∈ H, where C2 > 0.(2.10)

3 Main Results
In this section, we will consider existence, uniqueness and exponential stability in the
pth mean of mild solutions of (2.4) by means of the fixed-point theory. As we already
emphasized at the Introduction, one advantage of using this method is that one can
prove at the same time the existence, uniqueness and the exponential stability in the
pth moment of the solutions. For this reason we impose the whole set of assumptions
needed for the complete analysis. An alternative way could be to prove first the existence
and uniqueness of solutions under less restrictive assumptions, and later on to add some
additional ones ensuring the stability. But, as our primary interest is the stability analysis
we prefer to do everything at the same time.

Now we can finally state and prove our main result.

Theorem 3.1. Assume that conditions (2.8)–(2.10) hold and that, for p ≥ 2,

3p−1Mp(Cp
1γ

1−p + Cp
2 (p(p− 1)/2)p/2(2γ(p− 1)/(p− 2))1−p/2) < γ. (3.1)

Then, for any initial value φ ∈ Db
F0

(
[−τ, 0],H

)
, there exists a unique mild solution to

Equation (2.5) defined for t ≥ 0, and the trivial solution to this equation is exponentially
stable in the pth mean.

Proof. Fix an initial value φ ∈ Db
F0

(
[−τ, 0],H

)
, and denote by S the space of all Ft-

adapted and càdlàg processes x(t, ω) : [−τ,+∞)×Ω→ H satisfying x(s, ω) = φ(s, ω)
for s ∈ [−τ, 0], ω ∈ Ω, and eαtE‖x(t, ω)‖pH → 0 as t → +∞, where α is a positive
constant such that 0 < α < γ and

3p−1Mp(Cp
1γ

1−p + Cp
2 (p(p− 1)/2)p/2(2γ(p− 1)/(p− 2))1−p/2)/(eατ/(γ − α)) < 1.

(3.2)
Observe that such an α exists thanks to condition (3.1).

The space S endowed with the norm ‖x‖pS := sup
t≥0

E ‖x(t)‖pH is a Banach space

(see [6] for more details).
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Define now a mapping π on S by

π(x)(t) =



φ(t) for t ∈ [−τ, 0]

R(t)φ(0) +

∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

+

∫ t

0

R(t− s)G(s, x(s− δ(s)))dW (s) for t ≥ 0,

:=
3∑
i=1

Ii(t).

(3.3)

In order to obtain our result, it is enough to show that the operator π has a fixed point
in S. First, is not difficult to see that the right hand side of (3.3) defines an Ft-adapted
and càdlàg process. Arguing in a similar way as it is done in Luo [17], to prove the
exponential stability it is enough to show that the operator π possesses a fixed point in
S. To this end, we use the contraction mapping principle (see [20]), what requires that
first we verify the continuity in the pth mean of π on [0,+∞).

Let x ∈ S, t1 ≥ 0, and |r| be sufficiently small, then

E‖(πx)(t1 + r)− (πx)(t1)‖pH ≤ 3p−1
3∑
i=1

E‖Ii(t1 + r)− Ii(t1)‖pH.

It is easy to check that

E‖Ii(t1 + r)− Ii(t1)‖pH → 0, i = 1, 2, as r → 0.

Furthermore, by using Hölder’s inequality and [10, Lemma 7.7], we obtain

‖I3(t1 + r)− I3(t1)‖pH

≤ 2p−1E
∥∥∥∥∫ t1

0

(R(t1 + r − s)−R(t1 − s))G(s, x(s− δ(s)))dW (s)

∥∥∥∥p
H

+2p−1E
∥∥∥∥∫ t1+r

t1

R(t1 + r − s)G(s, x(s− δ(s)))dW (s)

∥∥∥∥p
H

≤ 2p−1cp

(∫ t1

0

(E‖(R(t1 + r − s)−R(t1 − s))G(s, x(s− δ(s)))‖pL02)
2/pds

)p/2
+2p−1cp

(∫ t1+r

t1

(E‖R(t1 + r − s)G(s, x(s− δ(s)))‖pL02)
2/pds

)p/2
→ 0

as r → 0, where cp = (p(p − 1)/2)p/2. Thus, π is indeed continuous in pth mean on
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[0,+∞). Next, we show that π(S) ⊂ S. It follows from (3.3) that

eαtE‖(πx)(t)‖pH ≤ 3p−1eαtE‖R(t)φ(0)‖pH

+3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

∥∥∥∥p
H

+3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)G(s, x(s− δ(s)))dW (s)

∥∥∥∥p
H
. (3.4)

Now we estimate the terms on the right-hand side of (3.4). First, from condition (2.8)
we obtain

3p−1eαtE‖R(t)φ(0)‖pH ≤ 3p−1Mpe−pγeαt sup
−τ≤s≤0

E‖φ(s)‖pH → 0 as t→ +∞. (3.5)

Secondly, Hölder’s inequality and (2.8) yield

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

∥∥∥∥p
H

≤ 3p−1eαtE
[∫ t

0

‖R(t− s)F (s, x(s− ρ(s)))‖Hds
]p

≤ 3p−1eαtE
[∫ t

0

Me−γ(t−s)‖F (s, x(s− ρ(s)))‖Hds
]p

≤ 3p−1MpCp
1e
αtE

[∫ t

0

e−γ(t−s)‖x(s− ρ(s))‖Hds
]p

= 3p−1MpCp
1e
αtE

[∫ t

0

e−(γ(p−1)/p)(t−s)e−(γ/p)(t−s)‖x(s− ρ(s))‖Hds
]p

≤ 3p−1MpCp
1e
αt

[∫ t

0

e−γ(t−s)ds

]p−1 [∫ t

0

e−γ(t−s)E‖x(s− ρ(s))‖pHds
]

≤ 3p−1MpCp
1 (1/γ)p−1eαt

∫ t

0

e−γ(t−s)E‖x(s− ρ(s))‖pHds

= 3p−1MpCp
1 (1/γ)p−1eαt

∫ t

0

e−γ(t−s)e−α(s−ρ(s))eα(s−ρ(s)E‖x(s− ρ(s))‖pHds

≤ 3p−1MpCp
1γ

1−peατe−(γ−α)t
∫ t

0

e(γ−α)seα(s−ρ(s))E‖x(s− ρ(s))‖pHds. (3.6)

For any x ∈ S and any ε > 0, there exists a t1 such that eα(s−ρ(s))E‖x(s− ρ(s))‖pH < ε
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for s ≥ t1. Thus, from (3.6),

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

∥∥∥∥p
H

≤ 3p−1MpCp
1γ

1−peατe−(γ−α)t
∫ t1

0

e(γ−α)seα(s−ρ(s))E‖x(s− ρ(s))‖pHds

+3p−1MpCp
1γ

1−peατe−(γ−α)t
∫ t

t1

e(γ−α)seα(s−ρ(s))E‖x(s− ρ(s))‖pHds

≤ 3p−1MpCp
1γ

1−peατe−(γ−α)t
∫ t1

0

e(γ−α)seα(s−ρ(s))E‖x(s− ρ(s))‖pHds

+3p−1MpCp
1γ

1−p(eατ/(γ − α))ε. (3.7)

As e−(γ−α)t → 0 as t → +∞, thanks to condition (2.7), we can claim that there exists
t2 ≥ t1 such that, for any t ≥ t2, we have

3p−1MpCp
1γ

1−peατe−(γ−α)t
∫ t1

0

e(γ−α)seα(s−ρ(s))E‖x(s− ρ(s))‖pHds

≤ ε− 3p−1MpCp
1γ

1−p(eατ/(γ − α))ε. (3.8)

From the above arguments and (3.7) we obtain, for any t ≥ t2,

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

∥∥∥∥p
H
< ε.

In other words,

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)F (s, x(s− ρ(s)))ds

∥∥∥∥p
H
→ 0 as t→ +∞. (3.9)

As for the third term on the right-hand side of (3.4), for any x(t) ∈ S, t ∈ [−τ,+∞),
we have, for p > 2,

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)G(s, x(s− δ(s)))dW (s)

∥∥∥∥p
H

(3.10)

≤ 3p−1eαtcpM
p
{∫ t

0

(e−γp(t−s)E‖G(s, x(s− δ(s)))‖pL02)
2/pds

}p/2
≤ 3p−1eαtcpM

pCp
2

{∫ t

0

(e−γp(t−s)E‖x(s− δ(s)))‖pH)2/pds
}p/2

= 3p−1eαtcpM
pCp

2

{∫ t

0

(e−γ(p−1)(t−s)e−γ(t−s)E‖x(s− δ(s)))‖pH)2/pds
}p/2

≤ 3p−1eαtcpM
pCp

2

{∫ t

0

e−
2(p−1)γ(t−s)

p−2

} p
2
−1
∫ t

0

e−γ(t−s)E‖x(s− δ(s))‖pHds

≤ 3p−1cpM
pCp

2 (2γ(p− 1)/(p− 2))1−p/2eαt
∫ t

0

e−γ(t−s)E‖x(s− δ(s)))‖pHds
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where cp = (p(p− 1)/2)p/2. We remark that if p = 2, then inequality (3.10) also holds
with 00 := 1. Hence we have for p ≥ 2,

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)G(s, x(s− δ(s)))dW (s)

∥∥∥∥p
H

(3.11)

≤ 3p−1cpM
pCp

2 (2γ(p− 1)/(p− 2))1−p/2eαt
∫ t

0

e−γ(t−s)E‖x(s− δ(s)))‖pHds.

Similar to the proof of (3.9), from (3.11) we obtain

3p−1eαtE
∥∥∥∥∫ t

0

R(t− s)G(s, x(s− δ(s)))dW (s)

∥∥∥∥p
H
→ 0 as t→ +∞. (3.12)

Thus, from (3.4), (3.5), (3.9) and (3.12) we deduce that eαtE‖(πx)(t)‖pH → 0 as t →
+∞. Since the Ft-measurability of (πx)(t) is easily verified, it follows that π is well
defined. Thus, we conclude that π(S) ⊂ S.

Finally, we will show that π is a contraction. For x, y ∈ S, and proceeding as we
did previously, we can obtain

sup
t∈[0,T ]

E‖(πx)(t)− (πy)(t)‖pH (3.13)

≤ 2p−1 sup
t∈[0,T ]

E‖
∫ t

0

R(t− s)(F (s, x(s− ρ(s)))− F (s, x(s− ρ(s))))ds‖pH

+2p−1 sup
t∈[0,T ]

E
∥∥∥∥∫ t

0

R(t− s)(G(s, x(s− δ(s)))−G(s, x(s− δ(s))))dW (s)

∥∥∥∥p
H

≤ sup
t∈[0,T ]

E‖x(t)− y(t)‖pH ×

×2p−1Mp

[
Cp

1γ
1−p + Cp

2

(
p(p− 1)

2

) p
2
(

2γ(p− 1)

p− 2

)1− p
2

]
(eατ/(γ − α)).

As thanks to (3.1) we managed to choose α small enough such that the constant appear-
ing in the last line of (3.13) is less than one, then π is a contraction mapping and, by the
contraction mapping principle in [20], π possesses a unique fixed point x(t) in S, which
is a solution of (2.5) with x(s) = φ(s) on [−τ, 0] and eαtE‖x(t)‖pH → 0 as t → ∞,
moreover x(t) is exponentially stable in the pth-moment. This completes the proof.



144 T. Caraballo, M. A. Diop, and A. S. Ndoye

4 Application

To illustrate our theory, we consider the following model

∂

∂t
u(t, ξ) =

∂2

∂ξ2
u(t, ξ) +

∫ t

0

b(t− s) ∂
2

∂ξ2
u(s, ξ)ds

+f(t, u(t− τ1, ξ))dt+ g(t, u(t− τ2, ξ))dW (t) for t ≥ 0

u(t, 0) = 0 for t ≥ 0

u(t, π) = 0 for t ≥ 0

u(θ, ξ) = φ(θ, ξ) for − τ < θ ≤ 0 and 0 ≤ ξ ∈ π,

(4.1)

where τ = max (τ1, τ2) , f, g : R+×R→ R and b : R+ → R are continuous functions,
φ : [−τ, 0]× [0, π]×Ω→ R is a given càdlàg function such that φ(·) is F0-measurable
and satisfies E ‖φ‖2 <∞.

Let H = L2([0, π]) and let en :=

√
2

π
sin(nx) (n = 1, 2, 3, · · · ) denote the com-

plete orthonormal basis in H. Let W (t) :=
∞∑
n=1

√
λnβn(t)en (λn > 0), where βn(t) are

one dimensional standard Brownian motions mutually independent on a usual complete
probability space (Ω,F , {Ft}t≥0,P).

Define A : D(A) ⊂ H→ H by A =
∂2

∂z2
, with domain

D(A) = H2([0, π]) ∩H1
0 ([0, π]).

It is well known that A is the infinitesimal generator of a strongly continuous semigroup
{T (t)}t≥0 on H, which is given by

T (t)φ =
∞∑
n=1

e−n
2t < φ, en > en, φ ∈ D(A).

Let B : D(A) ⊂ H→ H be the operator defined by

B(t)(z) = b(t)Az for t ≥ 0 and z ∈ D(A).

We suppose that

(i) For t ≥ 0, f(t, 0) = g(t, 0) = 0.
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(ii) There exist positive constants C1, C2 such that

|f(t, ζ1)− f(t, ζ2)| ≤ C1|ζ1 − ζ2| for t ≥ 0 and ζ1, ζ2 ∈ R. (4.2)

|g(t, ζ1)− g(t, ζ2)| ≤ C2|ζ1 − ζ2| for t ≥ 0 and ζ1, ζ2 ∈ R. (4.3)

Let D = D([−τ, 0],H) and define the operators F,G : R+ ×H→ H by

F (t, u)(ξ) = f(t, u(t− τ1, ξ)) for ξ ∈ [0, π] and u ∈ H,

G(t, u)(ξ) = g(t, u(t− τ1, ξ)) for ξ ∈ [0, π] and u ∈ H.

We put {
x(t)(ξ) = x(t, ξ) for t ≥ 0 and ξ ∈ [0, π]
x(θ)(ξ) = φ(θ, ξ) for θ ∈ [−τ, 0] and ξ ∈ [0, π].

Then Eq. (4.1) takes the following abstract form

dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s)ds+ F (t, x(t− τ1))
]
dt

+G(t, x(t− τ2))dW (t) for t ≥ 0,

x0(·) = φ ∈ Db
F0

([−τ, 0];H).

Moreover, if b is bounded and a continuously differentiable function such that b′ is
bounded and uniformly continuous, then (H1) and (H2) are satisfied and hence, by The-
orem 2.2, Eq. (4.1) possesses a resolvent operator (R(t))t≥0 on H. As a consequence of
the continuity of f and g and assumption (i) it follows that F and G are continuous. By
assumption (ii), one can see, for all u1, u2 ∈ H,

‖F (t, u1)− F (t, u2)‖ ≤ C1 ‖u1 − u2‖ ,

and
‖G(t, u1)−G(t, u2)‖ ≤ C2 ‖u1 − u2‖ .

Moreover, if we suppose that b is small enough, then one can ensure (see [9]) that there
exists a > 0 and N ≥ 1 such that

‖R(t)‖ ≤ Ne−at for t ≥ 0.

Then all the assumptions of Theorem 3.1 are fulfilled. Therefore, Equation (4.1) pos-
sesses a unique mild solution which is exponentially stable in pth-moment (p ≥ 2)
provided that

3p−1Np(Cp
1a

1−p + Cp
2 (p(p− 1)/2)p/2(2a(p− 1)/(p− 2))1−p/2) < a.
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