
Advances in Dynamical Systems and Applications
ISSN 0973-5321, Volume 9, Number 1, pp. 97–108 (2014)
http://campus.mst.edu/adsa

Periodic Solutions in Shifts δ±
for a Dynamic Equation on Time Scales
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Abstract

Let T ⊂ R be a periodic time scale in shifts δ± associated with the initial point
t0 ∈ T∗. We use Brouwer’s fixed point theorem to show that the initial value
problem

x∆(t) = p(t)x(t) + q(t), t ∈ T, x(t0) = x0

has a periodic solution in shifts δ±. We extend and unify periodic differential,
difference, h-difference and especially q-difference equations and more by a new
periodicity concept on time scales.

AMS Subject Classifications: 39A12, 34C25, 34N05, 34K13, 35B10.
Keywords: Periodic time scale, periodic solution, shift operator, time scale.

1 Introduction
The existence problem of periodic solutions is an important topic in qualitative analysis
of ordinary differential equations. The time scales approach unifies differential, differ-
ence, h-difference, q-differences equations and more under dynamic equations on time
scales. The theory of dynamic equations on time scales was introduced by Stefan Hilger
in his Ph.D. thesis in 1988 [8].

In 1950, Massera [13] proved the relationship between the boundedness of the so-
lutions and the existence of periodic solutions to ordinary differential equations. Since
then, many researchers obtained existence results on periodic solutions; see [4,11,14,15]
and references therein. There is only a few results concerning periodic solutions of dy-
namic equations on time scales such as in [9, 12]. In these papers, authors considered
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the existence of periodic solutions for dynamic equation on time scales satisfying the
condition

“there exists a ω > 0 such that t± ω ∈ T for all t ∈ T”. (1.1)

Under this condition all periodic time scales are unbounded above and below. However,
there are many time scales such as qZ = {qn : n ∈ Z} ∪ {0} and

√
N = {

√
n : n ∈ N}

which do not satisfy the condition (1.1). M. Adıvar introduced a new periodicity concept
on time scales which does not oblige the time scale to be closed under the operation t±ω
for a fixed ω > 0. He defined this concept with the aid of shift operators δ± which are
first defined in [2] and then generalized in [3].

Let t0 ∈ T and T be a periodic time scale in shifts δ± with period P ∈ (t0,∞)T. In
this paper we are concerned with the existence of periodic solutions in shifts δ± for the
linear dynamic equation on time scales

x∆(t) = p(t)x(t) + q(t), t ∈ T, (1.2)

with the initial condition

x(t0) = x0, (1.3)

where p, q : T→ R are ∆-periodic functions in shifts δ± with the period T ∈ [P,∞)T,
p ∈ R and q is rd-continuous.

Hereafter, we use the notation [a, b]T to indicate the time scale interval [a, b] ∩ T.
The intervals [a, b)T, (a, b]T and (a, b)T are similarly defined.

In Section 2, we will state some facts about exponential function on time scales,
the new periodicity concept for time scales and some important theorems which will be
needed to show the existence of a periodic solution in shifts δ±. In Section 3, we will
give some lemmas about the exponential function and the graininess function with shift
operators. Finally, we present our main result in Section 4 by using Brouwer’s fixed
point theorem.

2 Preliminaries
In this section, we mention some definitions, lemmas and theorems from calculus on
time scales which can be found in [5, 6]. Next, we state some definitions, lemmas and
theorems about the shift operators and the new periodicity concept which can be found
in [1].

Definition 2.1 (See [5]). A function p : T → R is said to be regressive provided
1 + µ(t)p(t) 6= 0 for all t ∈ Tκ, where µ(t) = σ(t) − t. The set of all regressive
rd-continuous functions p : T→ R is denoted byR.
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Let p ∈ R for all t ∈ T. The exponential function on T is defined by

ep(t, s) = exp

(∫ t

s

ζµ(r)(p(r))∆r

)
(2.1)

where ζµ(s) is the cylinder transformation given by

ζµ(r)(p(r)) :=


1

µ(r)
log(1 + µ(r)p(r)), if µ(r) > 0;

p(r), if µ(r) = 0.
(2.2)

The exponential function y(t) = ep(t, s) is the solution to the initial value problem
y∆ = p(t)y, y(s) = 1. Other properties of the exponential function are given in the
following lemma.

Lemma 2.2 (See [5]). Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii)
1

ep(t, s)
= e	(t, s), where 	p(t) = − p(t)

1 + µ(t)p(t)
;

(iv) ep(t, s) =
1

ep(s, t)
= e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii)
ep(t, s)

eq(t, s)
= ep	q(t, s);

(viii)
(

1

ep(·, s)

)∆

= − p(t)

eσp(·, s)
.

Theorem 2.3 (See [5]). Let t0 ∈ T, y0 ∈ R and assume that q is rd-continuous, and
that p ∈ R. The unique solution of the initial value problem

y∆(t) = p(t)y(t) + q(t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +

∫ t

t0

ep(t, σ(s))q(s)∆s.

The following definitions, lemmas, corollaries and examples are about the shift op-
erators and new periodicity concept which can be found in [1].
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Definition 2.4 (See [1,2]). Let T∗ be a non-empty subset of the time scale T including a
fixed number t0 ∈ T∗ such that there exist operators δ± : [t0,∞)T×T∗ → T∗ satisfying
the following properties:

(P.1) The functions δ± are strictly increasing with respect to their second arguments,
i.e., if

(T0, t), (T0, u) ∈ D± := {(s, t) ∈ [t0,∞)T × T∗ : δ∓(s, t) ∈ T∗},

then
T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u),

(P.2) If (T1, u), (T2, u) ∈ D− with T1 < T2, then δ−(T1, u) > δ−(T2, u), and if
(T1, u), (T2, u) ∈ D+ with T1 < T2, then δ+(T1, u) < δ+(T2, u),

(P.3) If t ∈ [t0,∞)T, then (t, t0) ∈ D+ and δ+(t, t0) = t. Moreover, if t ∈ T∗,
then (t0, t) ∈ D+ and δ+(t0, t) = t holds,

(P.4) If (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t, respectively,

(P.5) If (s, t) ∈ D± and (u, δ±(s, t)) ∈ D∓, then (s, δ∓(u, t)) ∈ D± and
δ∓(u, δ±(s, t)) = δ±(s, δ∓(u, t)), respectively.

Then the operators δ− and δ+ associated with t0 ∈ T∗ (called the initial point) are said
to be backward and forward shift operators on the set T∗, respectively. The variable
s ∈ [t0,∞)T in δ±(s, t) is called the shift size. The value δ+(s, t) and δ−(s, t) in T∗
indicate s units translation of the term t ∈ T∗ to the right and left, respectively. The sets
D± are the domains of the shift operator δ±, respectively. Hereafter, T∗ is the largest
subset of the time scale T such that the shift operators δ± : [t0,∞)T × T∗ → T∗ exist
(see [1]).

Example 2.5 (See [1]). We give different time scales with their corresponding shift
operators.

1. T = R, t0 = 0, T∗ = R, δ−(s, t) = t− s and δ+(s, t) = t+ s.

2. T = Z, t0 = 0, T∗ = Z, δ−(s, t) = t− s and δ+(s, t) = t+ s.

3. T = qZ ∪ {0}, t0 = 1, T∗ = qZ, δ−(s, t) =
t

s
and δ+(s, t) = ts.

4. T = N
1
2 , t0 = 0, T∗ = N

1
2 , δ−(s, t) =

√
t2 − s2 and δ+(s, t) =

√
t2 + s2.

Definition 2.6 (Periodicity in shifts, see [1]). Let T be a time scale with the shift op-
erators δ± associated with the initial point t0 ∈ T∗. The time scale T is said to be
periodic in shifts δ± if there exists a p ∈ (t0,∞)T∗ such that (p, t) ∈ D± for all t ∈ T∗.
Furthermore, if

P := inf{p ∈ (t0,∞)T∗ : (p, t) ∈ D±, ∀t ∈ T∗} 6= t0,

then P is called the period of the time scale T.
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Example 2.7 (See [1]). The following time scales are not periodic in the sense of the
condition (1.1) but periodic with respect to the notion of shift operators given in Defini-
tion 2.6.

1. T1 = {±n2 : n ∈ Z}, δ±(P, t) =


(
√
t±
√
P )2, t > 0;

±P, t = 0;
−(
√
−t±

√
P )2, t < 0;

P = 1, t0 = 0.

2. T2 = qZ, δ±(P, t) = P±1t, P = q.

3. T3 = ∪n∈Z[22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1.

4. T4 =

{
qn

1 + qn
: q > 1 is constant and n ∈ Z

}
∪ {0, 1}.

δ±(P, t) =
q

(
ln( t

1−t)±ln( P
1−P )

ln q

)

1 + q

(
ln( t

1−t)±ln( P
1−P )

ln q

) , P =
q

1 + q
.

Notice that the time scale T4 is bounded above and below and

T∗4 =

{
qn

1 + qn
: q > 1 is constant and n ∈ Z

}
.

Remark 2.8 (See [1]). Let T be a time scale that is periodic in shifts with the period P .
Thus, by P.4 of Definition 2.4 the mapping δP+ : T∗ → T∗ defined by δP+(t) = δ+(P, t)
is surjective. On the other hand, by P.1 of Definition 2.4 shift operators δ± are strictly
increasing in their second arguments. That is, the mapping δP+(t) = δ+(P, t) is injective.
Hence, δP+ is an invertible mapping with the inverse (δP+)−1 = δP− defined by δP−(t) :=
δ−(P, t).

We assume that T is a periodic time scale in shifts δ± with period P . The operators
δP± : T∗ → T∗ are commutative with the forward jump operator σ : T → T given by
σ(t) := inf{s ∈ T : s > t}. That is, (δP± ◦ σ)(t) = (σ ◦ δP±)(t) for all t ∈ T∗.

Lemma 2.9 (See [1]). The mapping δP+ : T∗ → T∗ preserves the structure of the points
in T∗. That is,

σ(t) = t implies σ(δ+(P, t)) = δ+(P, t),

σ(t) > t implies σ(δ+(P, t)) > δ+(P, t).

Corollary 2.10 (See [1]). δ+(P, σ(t)) = σ(δ+(P, t)) and δ−(P, σ(t)) = σ(δ−(P, t))
for all t ∈ T∗.
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Definition 2.11 (Periodic function in shifts δ±, see [1]). Let T be a time scale that is
periodic in shifts δ± with the period P . We say that a real value function f defined on
T∗ is periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± and f(δT±(t)) = f(t) for all t ∈ T∗ (2.3)

where δT± := δ±(T, t). The smallest number T ∈ [P,∞)T∗ such that (2.3) holds is called
the period of f .

Definition 2.12 (∆-periodic function in shifts δ±, see [1]). Let T be a time scale that is
periodic in shifts δ± with the period P . We say that a real-valued function f defined on
T∗ is ∆-periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± for all t ∈ T∗, (2.4)
the shifts δT± are ∆-differentiable with rd-continuous derivatives (2.5)

and

f(δT±(t))δ∆T
± = f(t) for all t ∈ T∗, (2.6)

where δT± := δ±(T, t). The smallest number T ∈ [P,∞)T∗ such that (2.4)–(2.6) hold is
called the period of f .

Notice that Definition 2.11 and Definition 2.12 give the classic periodicity defini-
tion on time scales whenever δT± := t ± T are the shifts satisfying the assumptions of
Definition 2.11 and Definition 2.12.

Now, we give three theorems concern the composition of two functions. The first
theorem is the chain rule on time scales.

Theorem 2.13 (Chain Rule, see [5]). Assume that υ : T→ R is strictly increasing and
T̃ := υ(T) is a time scale. Let w : T̃→ R. If ν∆(t) and w∆̃ exist for t ∈ Tκ, then

(w ◦ v)∆ = (w∆̃ ◦ ν)ν∆.

Let T be a time scale that is periodic in shifts δ±. If we take ν(t) = δ±(T, t), then
we have ν(T) = T and [f(ν(t))]∆ = (f∆ ◦ ν(t))ν∆(t).

The second theorem is the substitution rule on time scales.

Theorem 2.14 (Substitution, see [5]). Assume υ : T→ R is strictly increasing and T̃ :=
υ(T) is a time scale. If g : T → R is an rd-continuous function and υ is differentiable
with rd-continuous derivative, then for a, b ∈ T∫ b

a

g(s)υ∆(s)∆s =

∫ υ(b)

υ(a)

g(υ−1(s))∆̃s. (2.7)
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The third theorem is an application of the substitution rule where υ(t) = δT±(t).

Theorem 2.15 (See [1]). Let T be a time scale that is periodic in shifts δ± with period
P ∈ [t0,∞)T∗ and f a ∆-periodic function in shifts δ± with the period T ∈ [P,∞)T∗ .
Suppose that f ∈ Crd(T), then∫ t

t0

f(s)∆s =

∫ δT±(t)

δT±(t0)

f(s)∆s. (2.8)

Our work is mainly based on the following theorem.

Theorem 2.16 (Brouwer’s Fixed Point Theorem, see [7]). Let D ⊂ R be a nonempty
compact convex set and F : D → D be continuous. Then F has a fixed point.

3 Some Lemmas

In this section, we show some interesting properties of the exponential function ep(t, t0)
and shift operators on time scales.

Lemma 3.1. Let T be a time scale that is periodic in shifts δ± with the period P .
Suppose that the shifts δT± are ∆-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ . Then
the graininess function µ : T→ [0,∞) satisfies

µ(δT±(t)) = δ∆T
± (t)µ(t).

Proof. Since δT± are ∆-differentiable at t, from the calculus on time scales we know

µ(t)δ∆T
± (t) = δT±(σ(t))− δT±(t).

Then by using Corollary 2.10 we have

µ(t)δ∆T
± (t) = σ(δT±(t))− δT±(t)

= µ(δT±(t)).

Thus, the proof is complete.

Lemma 3.2. Let T be a time scale that is periodic in shifts δ± with the period P .
Suppose that the shifts δT± are ∆-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ and
p ∈ R is ∆-periodic in shifts δ± with the period T . Then

ep(δ
T
±(t), δT±(t0)) = ep(t, t0) for t, t0 ∈ T∗.
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Proof. Assume that µ(τ) 6= 0. Set f(τ) =
1

µ(τ)
log(1 + p(τ)µ(τ)). Using Lemma 3.1

and ∆-periodicity of p in shifts δ± we get

f(δT±(τ))δ∆T
± (τ) =

δ∆T
± (τ)

µ(δT±(τ))
log(1 + p(δT±(τ))µ(δT±(τ)))

=
δ∆T
± (τ)

µ(δT±(τ))
log(1 + p(δT±(τ))δ∆T

±
1

δ∆T
±

µ(δT±(τ)))

=
1

µ(τ)
log(1 + p(τ)µ(τ))

= f(τ).

Thus, f is ∆-periodic in shifts δ± with the period T . By using Theorem 2.15 we have

ep(δ
T
±(t), δT±(t0)) =


exp

(∫ δT±(t))

δT±(t0))

1

µ(τ)
log(1 + p(τ)µ(τ))∆τ

)
, if µ(τ) 6= 0;

exp

(∫ δT±(t))

δT±(t0))

p(τ)∆τ

)
, if µ(τ) = 0,

=


exp

(∫ t

t0

1

µ(τ)
log(1 + p(τ)µ(τ))∆τ

)
, if µ(τ) 6= 0;

exp

(∫ t

t0

p(τ)∆τ

)
, if µ(τ) = 0,

= ep(t, t0).

Lemma 3.3. Let T be a time scale that is periodic in shifts δ± with the period P .
Suppose that the shifts δT± are ∆-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ and
p ∈ R is ∆-periodic in shifts δ± with the period T . Then

ep((δ
T
±)n(t0), t0) = (ep(δ

T
±(t0), t0))n for n ∈ N and t0 ∈ T∗.

Proof. From Lemma 1.2 (v.) and Lemma 3.2, we see that

ep(δ
T
±(δT±(t0)), t0) = ep(δ

T
±(δT±(t0)), δT±(t0))ep(δ

T
±(t0), t0)

= ep(δ
T
±(t0), t0)ep(δ

T
±(t0), t0)

= (ep(δ
T
±(t0), t0))2.

The proof can be finished by induction.

Lemma 3.4. Let T be a time scale that is periodic in shifts δ± with the period P .
Suppose that the shifts δT± are ∆-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ and
p ∈ R is ∆-periodic in shifts δ± with the period T . Then

ep(δ
T
±(t), σ(δT±(s))) = ep(t, σ(s)) =

ep(t, s)

1 + µ(t)p(t)
for t, s ∈ T∗.
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Proof. From Corollary 2.10, we know σ(δT±(s)) = δT±(σ(s)). By Lemma 3.1 and
Lemma 2.2 we obtain

ep(δ
T
±(t), σ(δT±(s))) = ep(δ

T
±(t), δT±(σ(s))) = ep(t, σ(s)) =

ep(t, s)

1 + µ(t)p(t)
.

The proof is complete.

4 Main Result
In this section, we consider the linear initial value problem (1.2)–(1.3). Firstly, we
give a definition of a bounded solution. Hereafter, we denote the solution of (1.2) by
x(t, t0, x0).

Definition 4.1. A solution of (1.2) is bounded if there exists a real number M > 0 such
that |x(t, t0, x0)| < M for t ∈ T.

Theorem 4.2. The linear initial value problem (1.2)–(1.3) has a periodic solution in
shifts δ± with period T if and only if it has a bounded solution in T.

Proof. Let x(t) be a periodic solution in shifts δ± with period T . Since, x(t) = x(δT+(t))
for all t ∈ T∗ and x(t) is continuous, the necessity is obvious.

Now we show the sufficiency using Brouwer’s fixed point theorem. Let x(t) be a
bounded solution of (1.2). Then there exists a constant M > 0 such that |x(t)| ≤M for
t ∈ T. We take x0 := x(t0) ∈ R and define the set D ⊂ R by

D := {x0 ∈ R : |x0| ≤M, |x(t, t0, x0)| ≤M, t ∈ T} ⊂ R

where x(t, t0, x0) is the unique solution of (1.2) through (t0, x0).
Since x0 ∈ D, D is nonempty. We show that D is a compact convex set in R. It is

easy to see from the definition of D that D is closed and bounded. Thus, D is compact.
For any x1, x2 ∈ D and α ∈ [0, 1], we have

|αx1 + (1− α)x2| ≤ α|x1|+ (1− α)|x2| ≤M.

Moreover, by Theorem 2.3 we get

αx(t, t0, x1) + (1− α)x(t, t0, x2) = αep(t, t0)x1 + α

∫ t

t0

ep(t, σ(s))q(s)∆s

+ (1− α)ep(t, t0)x2 + (1− α)

∫ t

t0

ep(t, σ(s))q(s)∆s

= x(t, t0, αx1 + (1− α)x2).

So we have for t ≥ t0

|x(t, t0, αx1 + (1− α)x2)| ≤ α|x(t, t0, x1)|+ (1− α)|x(t, t0, x2)| ≤M.
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We define a mapping F : D → R by

Fx0 = x(δT+(t0), t0, x0) = ep(δ
T
+(t0), t0)x0 +

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s.

Because of δT+(t0) ∈ T, for any x0 ∈ D, we get |x(δT+(t0), t0, x0)| ≤ M . By Lemma
3.1, Lemma 3.2, Lemma 3.3 and Theorem 2.3, we have

F (Fx0) = x(δT+(t0), t0, x(δT+(t0), t0, x0))

= ep(δ
T
+(t0), t0)x(δT+(t0), t0, x0) +

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s

= ep(δ
T
+(t0), t0)

(
ep(δ

T
+(t0), t0)x0 +

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s

)

+

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s

= (ep(δ
T
+(t0), t0))2x0 + (ep(δ

T
+(t0), t0) + 1)

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s

= ep(δ
T
+(δT+(t0)), t0)x0 + (ep(δ

T
+(t0), t0) + 1)

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s.

Substituting υ(s) = δT+(s) and g(s) = ep(δ
T
+(δT+(t0)), σ(δT+(s)))q(δT+(s)) in (2.7) and

taking q is ∆-periodic in shifts δ± into account we have

x (δT+(δT+(t0)), t0, x0) = ep(δ
T
+(δT+(t0)), t0)x0 +

∫ δT+(δT+(t0))

t0

ep(δ
T
+(δT+(t0)), σ(s))q(s)∆s

= ep(δ
T
+(δT+(t0)), t0)x0 +

∫ δT+(t0)

t0

ep(δ
T
+(δT+(t0)), σ(s))q(s)∆s

+

∫ δT+(δT+(t0))

δT+(t0)

ep(δ
T
+(δT+(t0)), σ(s))q(s)∆s

= ep(δ
T
+(δT+(t0)), t0)x0 +

∫ δT+(t0)

t0

ep(δ
T
+(δT+(t0)), δT+(t0))ep(δ

T
+(t0), σ(s))q(s)∆s

+

∫ δT+(t0)

t0

ep(δ
T
+(δT+(t0)), σ(δT+(s)))q(δT+(s))δT∆

+ (s)∆s

= ep(δ
T
+(δT+(t0)), t0)x0 +

∫ δT+(t0)

t0

ep(δ
T
+(t0), t0)ep(δ

T
+(t0), σ(s))q(s)∆s

+

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s

= ep(δ
T
+(δT+(t0)), t0)x0 + (ep(δ

T
+(t0), t0) + 1)

∫ δT+(t0)

t0

ep(δ
T
+(t0), σ(s))q(s)∆s.
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Therefore, we have F (Fx0) = x(δT+(δT+(t0)), t0, x0). Also, since δT+(δT+(t0)) ∈ T and
|x(δT+(δT+(t0)), t0, x0)| ≤ M we obtain Fx0 ∈ D which means that FD ⊂ D and F is
compact. By the continuous dependence of solutions of dynamic systems on time scales
with respect to initial values (see [10]), F is continuous. Thus F has a fixed point in D
by Brouwer’s fixed point theorem. That is x(δT+(t), t0, x0) = x0. So

x(δT+(t), t0, x0) = x(t, t0, x0), t ∈ T

is a periodic solution in shifts δ± with period T of (1.2). The proof is complete.
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