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Abstract

The Stokes multipliers of Okubo’s confluent hypergeometric system can, in
general, not be expressed in closed form using known special functions. Instead
they may themselves be regarded as highly interesting new functions of the sys-
tem’s parameters. In this article we study their dependence on the eigenvalues of
the leading term. Doing so, we obtain several interesting representations in terms
of power series in several variables. As an application we show that the Stokes
multipliers may be obtained with help of the sum of a formal solution of a system
of difference equations whose dimension is smaller than that of the hypergeometric
one.

AMS Subject Classifications: 34A25, 34A30, 33C99.
Keywords: Stokes multipliers, hypergeometric system.

1 Introduction
The so-called hypergeometric system and its confluent form have recently been inves-
tigated in great detail – for a discussion of existing results, and for a representation
of its solutions in terms of a single (scalar) function, compare an article of B. and
Röscheisen [6], or the PhD thesis of C. Röscheisen [16]. In a very recent paper of
the author’s [5], it has been made clear that all the entries in the Stokes multipliers of
(1.1) can also be expressed explicitly in terms of one (scalar) Stokes function v that de-
pends on the parameters of the system. By choice, this function is equal to the entry v21
in the (2, 1)-position of one Stokes multiplier, and the entries in all the other multipliers
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may be expressed using the same function, evaluated for suitably permuted parameter
values.

In this publication we shall continue the study of the Stokes function v. To do so,
we denote the confluent hypergeometric system as

z x′ = A(z)x , A(z) = z Λ + A1 , Λ = diag [λ1, . . . , λn] (1.1)

and assume for the moment that the values λ1, . . . , λn are mutually distinct. In the theory
of formal and proper invariants, presented in work by Balser, Jurkat, and Lutz [1,2,15],
the diagonal elements of A1 have been shown to be so-called formal invariants, and
hence are of a special nature. Therefore, we shall always split A1 = Λ′ + A, with

Λ′ = diag [λ′1, . . . , λ
′
n] , A =


0 a12 . . . a1n

a21 0 . . . a2n... . . . ...
an1 an2 . . . 0

 . (1.2)

By choice of v, the values λ1, λ2 play a special role in our investigations. To simplify
some formulas and/or proofs, we shall not aim at covering the most general situation,
but instead shall make the following assumptions:

• Throughout this article, we assume that the matrix Λ is such that

λ1 = 0 , λ2 = 1 , λk 6∈ {0, 1} (k ≥ 3) (1.3)

without assuming that the values λ3, . . . , λn are mutually distinct.

• Concerning the values λ′1, . . . , λ
′
n, we restrict ourselves to the situation of

λ′1 = 0 . (1.4)

• Assuming that (1.3), (1.4) hold, let α, β be so that

α + β = λ′2 , α β = −a12 a21 . (1.5)

In fact, these numbers are the (not necessarily distinct) eigenvalues of the 2 × 2
matrix

A2 :=

[
0 a12

a21 λ′2

]
which for n = 2 is equal to A1. With α and β as in (1.5), we assume that neither
α nor β is equal to zero or a negative integer. In other words, we assume that1

p(j) := (j + α) (j + β) = j (j + λ′2) − a12 a21 6= 0 ∀ j ∈ N0 . (1.6)

Note that this assumption implies that neither a12 nor a21 are allowed to vanish!
1Observe that in this article N = {1, 2, . . .} denotes the set of natural numbers, while N0 = N ∪ {0}.



Okubo’s Confluent Hypergeometric System 55

Remark 1.1. Observe that some of these assumptions may be made to hold by means of
prenormalizing transformations: An exponential shift x = eλ1zx̃ together with a change
of variable z = (λ2 − λ1) ζ , provided that λ2 6= λ1, leads to a new system for which
(1.3) is satisfied. Then, the transformation x = zλ

′
1 x̃ may be used to make (1.4) hold. It

is well known that neither one of these transformations changes the Stokes multipliers,
while the effect on the parameters of the system (1.1) is easily found to be as follows:

• Given a general system (1.1), the normalizing transformations described above
lead to a new system with the same matrix A, but with new values λ̃1, . . . , λ̃n and
λ̃′1, . . . , λ̃

′
n given by λ̃1 = 0, λ̃2 = 1, λ̃′1 = 0, and

λ̃k = (λk − λ1)/(λ2 − λ1) (3 ≤ k ≤ n) ,

λ̃′k = λ′k − λ′1 (2 ≤ k ≤ n) .

In accordance with this, one can easily extend the results derived in this article to a
confluent hypergeometric system with general matrices Λ and Λ′.

Concerning the last one of the assumptions made above, note that it has been shown
in [16] that the Stokes multipliers of (1.1) are entire functions of the entries in the matrix
A. Therefore, while assumption (1.6) certainly is restrictive, most of the results that shall
be obtained in this article carry over to cases for which (1.6) is violated. We shall not
go into details about this, however.

In this article we shall, under the assumptions listed above, analyze the dependence
of v = v21 on the variables λ3, . . . , λn. Since it shall turn out later that the inverses of
the λk are the more natural variables, we shall throughout write (using superscript τ to
denote the transposed of a vector or matrix)

v = v(w) , w = (w3, . . . , wn)τ , wk = λ−1k . (1.7)

In detail, we shall show that v(w) may be expanded into a power series in the variables
wk which converges for w with ‖w‖∞ = sup{|wν | : 3 ≤ ν ≤ n} < 1. In fact, we
shall instead of v(w) analyze another function denoted as γ(w), which shall be defined
in Theorem 3.1. For the elementary relation between v(w) and γ(w), compare Theorem
3.4. As an application of our investigations, we shall show that the Stokes’ function
can be explicitly expressed in terms of a solution of an (n − 1)-dimensional system of
difference equations. This solution, in turn, can be computed as the 1-sum of a formal
solution – for details compare Theorem 5.3 and the discussion in the final section.

In the case of dimension n = 2 the set of variables w3, . . . , wn is empty, and the
(constant) entries v and γ have been computed in a paper of Balser, Jurkat, and Lutz [2]
– also compare the book of W. B. Jurkat [15]: In this situation we have, with α, β as in
(1.5),

v = 2πi e−iπλ
′
2 γ , γ =

a21
Γ(1 + α) Γ(1 + β)

. (1.8)
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In this dimension, observe that assumption (1.6) is violated if, and only if, v = γ = 0,
in which case the system (1.1) is said to be reducible. As shall follow from Theorem
4.1 for higher dimensions of n ≥ 3, the numbers v and γ are equal to the constant
terms in the power series expansion of the functions v(w) and γ(w), resp. Accordingly,
assumption (1.6) is equivalent to the constant term of v(w) and γ(w) being non-zero!

2 A Formal Power Series Solution
In what follows, we shall always assume that n ≥ 3, although our results, when properly
interpreted, stay correct even for n = 2.

Under the assumptions (1.3), (1.4), it is well understood that the system (1.1) has a
formal (vector) solution that is a power series in inverse powers of z. We here shall pay
special attention to the dependence of this solution on the vector w = (w3, . . . , wn)τ ,
and thus we state this result as follows:

Lemma 2.1. Suppose that (1.3), (1.4) hold. Then (1.1) has exactly one formal solution
of the form

x̂(z;w) =
∞∑
j=0

z−j xj(w) , x0(w) = e1 ,

with e1 denoting the first unit vector in the canonical basis of Cn. For j ≥ 1, we
choose to write xj(w) = (x1,j(w), . . . , xn,j(w))τ . The entries xν,j(w) can be recursively
computed from the identities

−j x1,j(w) =
n∑
k=2

a1k xk,j(w) (2.1)

−x2,j+1(w) = (j + λ′2)x2,j(w) +
∑

1≤k≤n
k 6=2

a2k xk,j(w) (2.2)

−xν,j+1(w) = wν
(
(j + λ′ν)xν,j(w) +

∑
1≤k≤n
k 6=ν

aνk xk,j(w)
)

(2.3)

which hold for every j ≥ 0 and 3 ≤ ν ≤ n. In particular, for j = 0 the first identity is
trivially satisfied, while we conclude from (2.2), (2.3) that

x2,1(w) = −a21 , xν,1(w) = −wν aν1 (3 ≤ ν ≤ n) . (2.4)

For j ≥ 1, each xν,j(w) is a polynomial in the variables wk (k ≥ 3) of total degree j
whenever ν 6= 2, resp. j − 1 for ν = 2.

Proof. Follows immediately by inserting the power series x̂(z;w) into (1.1) and com-
paring coefficients.
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For j ≥ 1, note that we may use (2.1) to eliminate x1,j(w) from (2.2), (2.3), and
doing so, we obtain a system of n − 1 linear difference equations for the remaining
entries xν,j(w), ν ≥ 2.

3 The Asymptotic Behaviour of the Coefficients
The following result on the asymptotic behaviour of the entries xν,j(w) for j →∞ has
been obtained earlier by R. Schäfke [17, 18] and, independently, by Balser, Jurkat, and
Lutz [3]. However, here we pay special attention to the holomorphy with respect to w
of the main term in the asymptotics.

Theorem 3.1. Suppose that (1.3), (1.4) and (1.6) hold. Then for ‖w‖∞ < 1 the limit

γ(w) := lim
j→∞

(−1)j Γ(j)

Γ(j + α) Γ(j + β)
x2,j(w)

exists, with convergence being uniform on compact subsets of the unit polydisc, and the
function γ(w) is holomorphic for ‖w‖∞ < 1 in Cn−2. Moreover, we have

(−1)j Γ(j)

Γ(j + α) Γ(j + β)
xν,j(w) = O(1/j) (j →∞) (ν = 3, . . . , n)

and for ‖w‖∞ ≤ c, with arbitrary c < 1, the O-constant may be taken independent of
w.

Proof. As was said above, the existence of the limit γ(w) has been shown before, and
analyzing the proofs in the articles mentioned, it is even possible to obtain its analyticity.
However, for convenience of the reader, we shall supply the necessary estimates here:
We set

γν,j(w) :=
(−1)j Γ(j)

Γ(j + α) Γ(j + β)
xν,j(w) (j ≥ 1 , 2 ≤ ν ≤ n)

and, with p(j) as in (1.6), use the abbreviations

rνk(j) =
pνk(j)

p(j)
, pνk(j) =

 (j + λ′ν) j − aν1 a1ν (ν = k)

j aνk − aν1 a1k (ν 6= k).
(3.1)

Observe that r22(j) ≡ 1 for all j, and that by assumption p(j) 6= 0 for all j ≥ 0. From
(2.2), (2.3), after using (2.1) to eliminate x1,j(w), we conclude that

γ2,j+1(w) = γ2,j(w) +
n∑
k=3

r2k(j) γk,j(w)

γν,j+1(w) = wν

n∑
k=2

rνk(j) γk,j(w) (3 ≤ ν ≤ n)


(j ≥ 1) . (3.2)
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Let c ∈ (0, 1) be given and restrict to ‖w‖∞ ≤ c. We may estimate for j ≥ 1

|rνk(j)| ≤

 1 + r/j (ν = k)

r/j (ν 6= k)
(3.3)

with sufficiently large r > 0. Defining aj+1 = aj + (n− 2) r bj/j and bj+1 = c [bj (1 +
r (n−2)/j)+r aj/j], beginning with a1, b1 sufficiently large and independent of w, we
may estimate (3.2) to find by induction with respect to j that (aj) and (bj) are majorant
sequences for (γ2,1(w)) and (γν,1(w)), respectively. Since a1, b1 are independent of w,
we conclude the same for aj , bj , j ≥ 2. For arbitrary j0, to be selected later, the above
recursion for aj implies that

aj = aj0 + (n− 2) r

j−1∑
`=j0

b`/` (j ≥ j0) . (3.4)

For some j ≥ j0, let b ≥ 0 be so large that b` ≤ b/` for every ` ≤ j. Such a number b
certainly exists, but we aim at showing that we can, in fact, find one that is independent
of j. To do so, we estimate the recursions to find

aj ≤ aj0 + (n− 2) r

j−1∑
`=j0

b/`2 , bj+1 ≤ c [b (1 + r (n− 2)/j) + r aj]/j .

With d so that
∞∑
`=j0

`−2 ≤ d/j0, this implies

bj+1 ≤ c [b (1 + r (n− 2)/j) + r aj0 + r2(n− 2) d b/j0 ]/j ,

and the right hand side is at most b/(j + 1) if, and only if, we have for every j ≥ j0

c [1 + r (n− 2)/j + r aj0/b+ r2(n− 2) d/j0 ] (1 + 1/j) ≤ 1 .

Using the fact that c < 1, we see that this is correct for j0 and b sufficiently large, and
thus we have shown existence of b > 0 such that bj ≤ b/j for every j ≥ 1. This then
implies, in view of (3.4), that the sequence (aj) is bounded.

Hence, summing up, we have shown that a, b > 0 exist such that

|γ2,j(w)| ≤ aj ≤ a , |γν,j(w)| ≤ bj ≤ b/j (3 ≤ ν ≤ n) (3.5)

for every j ≥ 1 and ‖w‖∞ ≤ c. From (3.2) we find, observing γ2,1(w) = γ with γ as in
(1.8) (also see Remark 3.3 below), that

γ2,j(w) = γ +
n∑
k=3

j−1∑
`=1

r2k(`) γk,`(w) (j ≥ 1) . (3.6)
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Owing to (3.3) and (3.5) we see that the series
∞∑
`=1

r2k(`) γk,`(w), for k ≥ 3, all are

absolutely convergent, and convergence is uniform for ‖w‖∞ ≤ c. Therefore, for these
w’s the limit γ(w) exists and is holomorphic at interior points. Hence the proof is
completed.

Remark 3.2. For fixed w, the identities (3.2) may be viewed as a linear system of dif-
ference equations with rational coefficients. There is a well-developed theory of formal
solutions and their multi-summability of even non-linear systems of difference equa-
tions that could be applied to prove Theorem 3.1. For the very simple situation studied
here, this theory is not needed, but it can prove very useful for more complicated sys-
tems. We refer the reader to papers of Braaksma and others [7–11] for a presentation
of this very beautiful theory that deserves to be better known among the specialists for
difference equations – also compare the last section of this article for some more details.

Remark 3.3. With γ as in (1.8) we conclude from (2.4) and the definition of γν,j(w) that

γ2,1(w) = γ , γν,1(w) = wν γ
(ν) , γ(ν) :=

aν1
Γ(1 + α) Γ(1 + β)

. (3.7)

Furthermore, we obtain from (3.6) the following representation for the limit γ(w) that
shall be very important in our investigations:

γ(w) = γ +
n∑
k=3

∞∑
j=1

r2k(j) γk,j(w) (‖w‖∞ < 1) . (3.8)

The γν,j(w) are polynomials in w and, roughly speaking, the functions

γν(t;w) :=
∞∑
j=1

(−t)j γν,j(w)

are a formal Borel-like transformation in the sense of [4, Section 5.5], corresponding to
the moment sequence

m(j) :=
Γ(j + α) Γ(j + β)

Γ(j)
,

of the formal solution x̂(z;w). This shall not be needed here, however.

The Stokes function v(w) and the limit γ(w), whose existence and analyticity has
been shown above, satisfy the following elementary relation which agrees with (1.8) in
dimension n = 2:

Theorem 3.4. Under the assumptions (1.3), (1.4), and (1.6) we have

v(w) = 2πi e−iπλ
′
2 γ(w) (‖w‖∞ < 1) . (3.9)
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Proof. The proof follows directly from [3, Proposition 3 or Corollary 1]; also compare
the PhD thesis of R. Schäfke [17].

Due to this elementary relation, we may from now on restrict our investigations to
the function γ(w). In fact, it also follows that it is not necessary to assume that the
numbers w3, . . . , wn are mutually distinct. It may even be shown that v(w), and then
by means of (3.9) the function γ(w) as well, can be analytically continued, in every
variable wν , along every path that avoids the point wν = 1. So the Stokes function is
resurgent in the sense of Ecalle’s [12, 13]. Note, however, that w = 1 is, in general, a
branch point!

4 Power Series Expansions
It follows from Lemma 2.1 that the functions γν,j(w), which differ from the coefficients
xν,j(w) by constants only, are polynomials in w3, . . . , wn. Therefore, the series (3.8)
can be used to find the power series expansion of γ(w): Let p = (p3, . . . , pn) ∈ Nn−2

0

be a multi-index, and set as usual

wp = wp33 · . . . · wpnn .

In particular, with e(ν) denoting the multi-index with entries δj,ν−2, 3 ≤ ν ≤ n, we have

we
(ν)

= wν , 3 ≤ ν ≤ n .

With |p| := p2 + . . . + pn denoting the length of p, we use (3.2) to see by means of
induction with respect to j that the polynomials γν,j(w) may be written in the form

γ2,j(w) =
∑

0≤|p|≤j−1

γ2,j,p w
p

γν,j(w) = wν
∑

0≤|p|≤j−1

γν,j,p w
p (3 ≤ ν ≤ n)

 . (4.1)

Due to (3.7) we find that γ2,1,0 = γ and γν,1,0 = γ(ν) for ν = 3, . . . , n. Inserting
(4.1) into (3.2) and comparing coefficients, we find that the other coefficients may be
recursively computed from the identity

γν,j+1,p = rν2(j) γ2,j,p +
n∑
k=3

rνk(j) γk,j,p−e(k) (2 ≤ ν ≤ n) (4.2)

observing that r22(j) ≡ 1, and for simplicity of notation setting γ2,j,p = 0 when |p| ≥ j,
and γk,j,p−e(ν) = 0 if pν = 0. In particular, we conclude for p = 0 and 2 ≤ ν ≤ n that

γν,j,0 = rν2(j − 1) γ (j ≥ 1) . (4.3)



Okubo’s Confluent Hypergeometric System 61

Check that this agrees with the above formulas in case of j = 1. For ν = 2 we have that
γ2,j,0 ≡ γ for every j ≥ 1. For general p we obtain from (4.2), setting ν = 2, that

γ2,j,p =

j−1∑
`=|p|

n∑
k=3

r2k(`) γk,`,p−e(k) (j ≥ |p|+ 1) .

This equation may be used to get a recursion formula for the remaining γν,j,p:

γν,j+1,p = rν2(j)

j−1∑
`=|p|

n∑
k=3

r2k(`) γk,`,p−e(k)

+
n∑
k=3

rνk(j) γk,j,p−e(k) (3 ≤ ν ≤ n , j ≥ |p|) . (4.4)

Observe that this identity allows recursive computation of γν,j,p, not only with respect
to j, but also the length of p. For example, we obtain for multi-indices of length 1 that

γν,j+1,e(µ) = γ
(
rνµ(j) rµ2(j − 1) + rν2(j)

j−1∑
`=1

r2µ(`) rµ2(`− 1)
)
.

In term of these entries γν,j,p we obtain the power series expansion of γ(w) as follows:

Theorem 4.1. Suppose that (1.3), (1.4) and (1.6) hold. For w with ‖w‖∞ < 1 we have
γ(w) =

∑
|p|≥0

γp w
p, with coefficients γp given by

γp = lim
j→∞

γ2,j,p =
∞∑
j=|p|

n∑
ν=3

r2ν(j) γν,j,p−e(ν) . (4.5)

In particular we obtain γ0 = γ, with the number γ as in (1.8). Furthermore, for the
coefficients of length 1 we have the representation

γe(ν) = γ

∞∑
j=0

(j+1) a2ν−a21 a1ν

(j+1+α) (j+1+β)

j aν2−aν1 a12

(j+α) (j+β)
(4.6)

for ν = 3, . . . , n.

Proof. According to the proof of Theorem 3.1, the series (3.8) converges compactly on
the unit polydisc of Cn−2, and therefore the proof follows from the Cauchy formula for
(partial) derivatives of holomorphic functions in several variables [14].
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Remark 4.2. Based on the above formula for the coefficients γp, we can find a slightly
different representation for γ(w): Define

γ(ν)(w) =
∑
|p|≥0

wp
∞∑

j=|p|+1

r2ν(j) γν,j,p (3 ≤ ν ≤ n) .

Then we obtain from the formula (4.5), through an interchange of summation and a
change of summation index p− e(ν) ↔ p, that

γ(w) = γ +
m∑
ν=3

wν γ
(ν)(w) .

5 More on the Coefficients of the Power Series
A different representation for the coefficients γp may be obtained by means of a gener-
alization of (3.8). In order to achieve this, we introduce the following numbers:

• With p as above, we define for 3 ≤ k ≤ n and j ∈ N0: %k(p; j) = r2k(j) for
p = 0, with rνk(j) as in (3.1), and for |p| ≥ 1:

%k(p; j) =
n∑
ν=3

[
%ν(p− e(ν); j + 1) rνk(j)

+ r2k(j)
∞∑

`=j+1

%ν(p− e(ν); `+ 1) rν2(`)
]
 (5.1)

with the interpretation that %ν(p − e(ν); j + 1) = %ν(p − e(ν); ` + 1) = 0 for
multi-indices p with pν = 0. Observe that by induction with respect to |p| one can
easily see that %k(p; j) = O(1/j) as j →∞, and that therefore the series in (5.1)
is absolutely convergent.

Remark 5.1. It shall be convenient to use formula (5.1) with k = 2 to define numbers
%2(p; j) for |p| ≥ 1, and in view of r22(j) ≡ 1 this equation simplifies to

%2(p; j) =
n∑
ν=3

∞∑
`=j

%ν(p− e(ν); `+ 1) rν2(`)

= %2(p; j + 1) +
n∑
ν=3

%ν(p− e(ν); j + 1) rν2(j) (j ≥ 0 , |p| ≥ 1) .

In addition we set %2(0; j) = r22(j) (≡ 1). With this definition we may rewrite (5.1) as

%k(p; j) = %2(p; j + 1) r2k(j) +
n∑
ν=3

%ν(p− e(ν); j + 1) rνk(j) (5.2)

which then holds for k = 2, . . . , n, j ≥ 1, and all multi-indices p.
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In order to understand the meaning of the numbers %k(p; j), we (formally) define
functions

yk(j;w) :=
∑
|p|≥0

wp %k(p; j) (j ≥ 0 , 2 ≤ k ≤ n) (5.3)

and prove the following result:

Lemma 5.2. Suppose that (1.3), (1.4) and (1.6) hold.

a) For every ε > 0 there exists constants C and j0 ≥ 1 such that for every multi-index
p, every j ≥ j0, and k = 3, . . . , n

|%k(p; j)| ≤ C (1 + ε)|p|/j .

b) The series (5.3) all converge absolutely for ‖w‖∞ < 1, and the functions so defined
satisfy

yk(j;w) = y2(j + 1;w) r2k(j) +
n∑
ν=3

wν yν(j + 1;w) rνk(j) (5.4)

for j ≥ 0 and 2 ≤ k ≤ n.

c) For ‖w‖∞ < 1 and k = 3, . . . , n we have yk(j;w) = O(1/j) as j → ∞, with a
O-constant that is locally uniform in w, while

lim
j→∞

y2(j;w) = 1 ,

with convergence being locally uniform in w.

Proof. Let ε > 0 be given. For |p| ≥ 1, assume that the first statement is correct for
every multi-index of length |p| − 1. This is so for |p| = 1 and arbitrary j0, due to
%k(0; j) = r2k(j) = O(1/j). Estimating (5.1), we then find for j ≥ j0 and every k

|%k(p; j)| ≤
C (1 + ε)|p|−1

j

[
1 + (n− 2) r/j + (n− 2) r2

∞∑
`=j+1

1

(`(`+ 1)

]
.

For sufficiently large j0, independent of p, the term in brackets is not larger than 1 + ε,
hence by induction with respect to |p| we obtain that a) is correct. Due to this estimate
we see that convergence of the series (5.3) follows for j ≥ j0, and using (5.1) we obtain
correctness of b) for such j. For smaller j, we may take the identity in b) as the definition
for yk(j;w), implying that all these functions are holomorphic in the unit polydisc in
C(n−2). The coefficients of their power series expansion may then be verified to satisfy
(5.1), so that b) follows for all j ≥ 0. Statement c) then can be proven using a).
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As we shall make clear in the final section, the identities (5.4) can be equivalently
written as a system of linear difference equations, and the functions yk(j;w) are the
components of a solution that is uniquely characterized by the behaviour as j →∞.

In terms of the numbers %k(p; j) we obtain the following formula for the coeffi-
cients γp:

Theorem 5.3. Assume (1.3), (1.4) and (1.6).

a) For all w with ‖w‖∞ < 1 and every m ∈ N0 we have the following generalization
of (3.8):

γ(w) =
∑
|p|≤m

γpw
p + %(m)(w)

%(m)(w) :=
∑
|p|=m

wp
n∑
k=3

∞∑
j=1

%k(p; j) γk,j(w)

 . (5.5)

b) The coefficients γp with |p| ≥ 1 are given by the formula

γp = γ %2(p; 0) = γ
n∑
ν=3

∞∑
j=0

%ν(p− e(ν); j + 1) rν2(j) (5.6)

the infinite series being absolutely convergent.

c) For all w with ‖w‖∞ < 1. the function γ(w) is given by

γ(w) = γ y2(0;w) = γ y2(1;w) +
n∑
ν=3

wν yν(1;w) γ(ν) . (5.7)

Proof. To prove a), we proceed by induction with respect to m: For m = 0, the state-
ment is correct, owing to (3.8), hence we may assume correctness for some m ≥ 0.
Inserting (3.6) into the second line in recursion (3.2), we obtain for 3 ≤ ν ≤ n and
every j ≥ 1:

γν,j+1(w) = wν γ rν2(j) +

wν

n∑
k=3

[
rνk(j) γk,j(w) + rν2(j)

j−1∑
`=1

r2k(`) γk,`(w)
]
 . (5.8)

Splitting off the term for j = 1 from the infinite series in the definition of %(m)(w) and
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observing (3.7), we can then use (5.8) to obtain

%(m)(w) =
∑
|p|=m

n∑
ν=3

wp+e
(ν)
[
γ(ν) %ν(p; 1) + γ

∞∑
j=1

%ν(p; j + 1) rν2(j)
]

+
∑
|p|=m

n∑
ν=3

wp+e
(ν)

∞∑
j=1

%ν(p; j + 1)
n∑
k=3

rνk(j) γk,j(w)

+
∑
|p|=m

n∑
ν=3

wp+e
(ν)

∞∑
j=1

%ν(p; j + 1) rν2(j)
n∑
k=3

j−1∑
`=1

r2k(`) γk,`(w) .

In the third line we may interchange summation with respect to j and `, and afterwards
rename the index ` by j and vice versa. Also, the double sums at the beginning of the
lines are equivalent to one sum over all multi-indices q := p+ e(ν) of length m+ 1, but
one has to be careful to observe that the same q can be written in more than one way in
the form p+ e(ν). Doing all this, we obtain after interchanging the sums with respect to
ν and k:

%(m)(w) =
∑
|q|=m+1

wq
n∑
ν=3

[
γ(ν) %ν(q − e(ν); 1) + γ

∞∑
j=1

%ν(q − e(ν); j + 1) rν2(j)
]

+
∑
|q|=m+1

wq
n∑
k=3

∞∑
j=1

γk,j(w)
n∑
ν=3

[
rνk(j)%ν(q − e(ν); j + 1)

+ r2k(j)
∞∑

`=j+1

%ν(q − e(ν); `+ 1) rν2(`)
]
.

Verifying that γ(ν) = −γ aν1 a12/(αβ) = γ rν2(0), we can momentarily define γq in
analogy with (5.6), and then read off that

%(m)(w) =
∑
|q|=m+1

γq w
q + %(m+1)(w) .

Since the power series expansion of %(m+1) contains only terms of total degree at least
m + 2, we conclude that the numbers γq are indeed equal to the coefficients of the
expansion of γ(w) of degree m + 1, which completes the proof of a) as well as of b).
The remaining statement then follows from the first two.

Observe that according to (5.7) the function y(0;w) is closely related to the Stokes
function. In the final section we shall say more about the computation of the sequence
y(j;w) with help of 1-summability!
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6 Another Representation of the Stokes Function

In this section we prove new identities for γ(w), which lead to a more elementary rep-
resentation of this function. To do so, we introduce a countable family of rational func-
tions of j by the following recursive definition:

• Let rνk(j) and p = (p3, . . . , pn) be as in the previous section. Starting with
rk(0; j) = r2k(j), we define for |p| ≥ 1, 3 ≤ k ≤ n, and j ∈ N0

rk(p; j) =
n∑
ν=3

[
rν(p− e(ν); j + 1) rνk(j)

− r2k(j)
j∑
`=1

rν(p− e(ν); `+ 1) rν2(`)
]
 (6.1)

with the interpretation that rν(p− e(ν); j + 1) = rν(p− e(ν); `+ 1) = 0 for multi-
indices p with pν = 0. Note in particular that for j = 0 the sum with respect to `
is empty, so that we obtain

rk(p; 0) =
n∑
ν=3

rν(p− e(ν); 1) rνk(0) (3 ≤ k ≤ n) .

Observe the strong similarity of (6.1) with (5.1); however, here there is only a
finite sum instead of an infinite series involved! Therefore, the rk(p; j) are rational
functions of j, hence much more elementary than the %k(p; j).

• For p 6= 0 and j ≥ 1 we define numbers r2(p; j) by

r2(p; j) = −
n∑
ν=3

j−1∑
`=1

rν(p− e(ν); `+ 1) rν2(`) (6.2)

= r2(p; j + 1) +
n∑
ν=3

rν(p− e(ν); j + 1) rν2(j) . (6.3)

Observe that this implies r2(p; 1) = 0, and that the definition of r2(p; j) coincides
with (6.1) for k = 2. Note that we can use (6.3) (but not (6.2)) to define

r2(p; 0) =
n∑
ν=3

rν(p− e(ν); 1) rν2(0) .

For p = 0 we set r2(0; j) = r22(j) ≡ 1.
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Remark 6.1. By induction with respect to |p| one can easily see that for every p and
every k = 3, . . . , n we have rk(p; j) = O(1/j) as j → ∞, while the sequence r2(p; j)
is convergent. We may rewrite (6.1) as

rk(p; j) = r2(p; j + 1) r2k(j) +
n∑
ν=3

rν(p− e(ν); j + 1) rνk(j) (6.4)

which then holds for k = 2, . . . , n, for j ≥ 0, and all multi-indices p.

Analogous to the previous section we define functions

ỹk(j;w) :=
∑
|p|≥0

wp rk(p; j) (j ≥ 0 , 2 ≤ k ≤ n) . (6.5)

Observe that in particular we have ỹk(1;w) ≡ 1. Convergence of the series for w near
the origin is shown in the next lemma:

Lemma 6.2. Suppose that (1.3), (1.4) and (1.6) hold. Then for all j ≥ 0 we have:

a) The power series (6.5) converge for ‖w‖∞ < r0, with some r0 independent of j.
Moreover, for these w we have

yk(j;w) = ỹk(j;w) y2(1;w) (2 ≤ k ≤ n) . (6.6)

b) The functions ỹk(j;w) can be continued meromorphically onto the unit polydisc of
Cn−2, with possible poles at places where y1(1;w) vanishes. For all other w, they
satisfy

ỹk(j;w) = ỹ2(j + 1;w) r2k(j) +
n∑
ν=3

wν ỹν(j + 1;w) rνk(j) (6.7)

for 2 ≤ k ≤ n.

c) For ‖w‖∞ < 1 with y1(1;w) 6= 0 and k = 3, . . . , n we have ỹk(j;w) = O(1/j) as
j →∞, with a O-constant that is locally uniform in w, while

lim
j→∞

ỹ2(j;w) = 1/y1(1;w) ,

with convergence being locally uniform in w.

Proof. Since even in the definition of the rk(p; j) the case of j = 0 is different from
the other ones, we first restrict ourselves to j ≥ 1: For such j, similar estimates as in
the proof of Lemma 5.2 a) show existence of c so that |rk(p; j)| ≤ c|p|/j for all p and
3 ≤ k ≤ n, from which convergence of (6.5) follows for ‖w‖∞ < 1/c =: r0 and these j
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and k. For k = 2, we then obtain convergence using (6.2). Moreover, observe that (6.6)
is equivalent to

%k(p; j) =
∑
q≤p

rk(p− q; j) %2(q; 1) (2 ≤ k ≤ n , |p| ≥ 0 , j ≥ 1) (6.8)

with q ≤ p meaning that qν ≤ pν for 3 ≤ ν ≤ n. This identity is certainly correct for
p = 0, hence let p 6= 0 be given and assume correctness for all multi-indices of length
strictly less than |p| (and all j ≥ 1 and 2 ≤ k ≤ n). Then we use the definition of
%2(p; j) together with the induction hypothesis to conclude (with q < p meaning q ≤ p
and q 6= p)

%2(p; j) = %2(p; 1) −
n∑
ν=3

j−1∑
`=1

∑
q≤p−e(ν)

rk(p− q − e(ν); `+ 1) %2(q; 1) rν2(`)

= %2(p; 1) −
∑
q<p

%2(q; 1)
n∑
ν=3

j−1∑
`=1

rk(p− q − e(ν); `+ 1) rν2(`)

= r2(0; 1) %2(p; 1) +
∑
q<p

r2(p− q; j) %2(q; 1)

(using the definition of r2(p− q; j) and the fact that r2(0; 1) = 1). This shows (6.6) for
k = 2 and j ≥ 1 (and the selected p). In the same manner one can prove correctness for
k = 3, . . . , n, using either (5.2) or (5.1). Thus, the proof of statement a) is completed,
and the other two follow from a), using (6.4) and Lemma 5.2c). In order to cover the
case j = 0, note that the definition of rk(p; 0) immediately implies convergence of (6.5)
even in this case, and then one can verify (6.7) for j = 0. From this and (5.4) we then
obtain validity of (6.6) for this j.

In terms of the entries introduced above, we show the following generalization of
(3.8):

Proposition 6.3. Assume (1.3), (1.4) and (1.6). For every integerm ≥ 0 and ‖w‖∞ < 1
we have the following representation formula for γ(w):

γ(w)
(

1 −
∑

1≤|p|≤m

αpw
p
)

= γ +
∑

1≤|p|≤m

βpw
p + r(m)(w) (6.9)

with entities of the form

αp =
n∑
ν=3

∞∑
j=1

rν(p− e(ν); j + 1) rν2(j) = − lim
j→∞

r2(p; j) (6.10)

βp =
n∑
ν=3

γ(ν) rν(p− e(ν); 1) = γ r2(p; 0) (6.11)

r(m)(w) =
∑
|p|=m

wp
n∑
k=3

∞∑
j=1

rk(p; j) γk,j(w) . (6.12)



Okubo’s Confluent Hypergeometric System 69

Proof. The proof is very much analogous with that of Theorem 5.3: Assuming correct-
ness of the statements for some m ≥ 0 (which is so when m = 0), we use (3.8) and
(3.6) to obtain

γ2,j(w) = γ(w) −
n∑
k=3

∞∑
`=j

r2k(`) γk,`(w) (j ≥ 1)

and insert this into the second line in recursion (3.2) to show for 3 ≤ ν ≤ n and every
j ≥ 1:

γν,j+1(w) = wν γ(w) rν2(j) +

wν

n∑
k=3

[
rνk(j) γk,j(w) − rν2(j)

∞∑
`=j

r2k(`) γk,`(w)
]
 . (6.13)

Splitting off the term for j = 1 in the series for r(m)(w) we can then use (6.13) to prove

r(m)(w) =
∑
|p|=m

n∑
ν=3

wp+e
(ν)
[
γ(ν) rν(p; 1) + γ(w)

∞∑
j=1

rν(p; j + 1) rν2(j)
]

+
∑
|p|=m

n∑
ν=3

wp+e
(ν)

∞∑
j=1

rν(p; j + 1)
n∑
k=3

rνk(j) γk,j(w)

−
∑
|p|=m

n∑
ν=3

wp+e
(ν)

∞∑
j=1

rν(p; j + 1) rν2(j)
n∑
k=3

∞∑
`=j

r2k(`) γk,`(w) .

In the third term we again interchange summation with respect to j and `, and afterwards
rename the index ` by j and vice versa, to obtain

r(m)(w) =
∑
|p|=m+1

wp
n∑
ν=3

[
γ(ν) rν(p− e(ν); 1)

+ γ(w)
∞∑
j=1

rν(p− e(ν); j + 1) rν2(j)
]

+
∑
|p|=m+1

wp
n∑
k=3

∞∑
j=1

γk,j(w)
n∑
ν=3

[
rνk(j)rν(p− e(ν); j + 1)

− r2k(j)
j∑
`=1

rν(p− e(ν); `+ 1) rν2(`)
]

=
∑
|p|=m+1

wp
[
αp + βp +

n∑
k=3

∞∑
j=1

rk(p; j) γk,j(w)
]
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where for the last identity we use (6.1). Inserting into (6.9) and moving the term con-
taining γ(w) over to the left hand side, we complete the proof.

Theorem 6.4. Suppose that (1.3), (1.4) and (1.6) hold. Then the power series

α(w) :=
∑
|p|≥1

αpw
p , β(w) :=

∑
|p|≥1

βpw
p

both converge for ‖w‖∞ < r0, with r0 as in Lemma 6.2 a), and for such w we have the
identities

α(w) = 1 − lim
j→∞

ỹ2(j;w) , β(w) = γ
(
ỹ2(0;w)− 1

)
(6.14)

γ(w) =
γ + β(w)

1− α(w)
= γ

ỹ2(0;w)

lim
j→∞

ỹ2(j;w)
(‖w‖∞ < r0) . (6.15)

Proof. From the estimate in the proof of Lemma 6.2 a) we conclude convergence of the
two power series. Furthermore, note that r(m)(w) omits a power series containing only
terms wp with |p| ≥ m+ 1, so that we conclude from Proposition 6.3

γp −
∑

0<q≤p

γp−q αq = βp (0 < |p| ≤ m) .

Since m is an arbitrary natural number, we obtain the first identity in (6.15), while the
remaining one and (6.14) follow using the identities for αp, βp obtained in Proposition
6.3.

7 A System of Difference Equations

In this section, we want to better understand the meaning of the sequence of functions
yk(j;w) which have been introduced before, and which have been shown to satisfy the
identity (5.4). In order to simplify this formula, we define for j ≥ 1

y1(j + 1;w) := − j−1
(
y2(j + 1;w) a21 +

n∑
ν=3

wν yν(j + 1;w) aν1
)
. (7.1)

Observe that this definition becomes meaningless for j = 0, hence the function y1(1;w)
remains undefined. With this new entry we then may reformulate (5.4), recalling the
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definition of rν,k(j) from (3.1), to obtain for j ≥ 1

p(j) y2(j;w) = j
[
y1(j + 1;w) a12 + y2(j + 1;w) (j + λ′2)

+
n∑
ν=3

wν yν(j + 1;w) aν2

]
(7.2)

p(j) yk(j;w) = j
[
y1(j + 1;w) a1k + y2(j + 1;w) a2k

+ wk yk(j + 1;w) (j + λ′k) +
∑

3≤ν≤n
ν 6=k

wν yν(j + 1;w) aνk

]
. (7.3)

These identities may best be understood using a matrix-vector notation: For ‖w‖∞ < 1
and j ≥ 1 we define

y(j;w) = [y1(j;w), y2(j;w), w3 y3(j;w), . . . , wn yn(j;w)]τ (7.4)

ignoring the fact that y1(1;w) has not yet been defined. In terms of these vectors, equa-
tions (7.1) – (7.3) are equivalent with the simple matrix identity

p(j) y(j;w)τ Λ = j y(j + 1;w)τ
(
j + A1

)
(j ≥ 1)

with Λ and A1 as in (1.1). For fixed w and all sufficiently large j, this identity may be
solved for y(j + 1;w), and then is a system of linear difference equations. Since the
first diagonal entry of Λ vanishes, one may eliminate the first component of y(j+ 1;w),
such that the system is, in fact, of dimension n− 1. Setting

y(j;w) =
Γ(j + α) Γ(j + β)

Γ(j) Γ(j + λ′2)
x(z;w) , z = j + λ′2 (7.5)

and then allowing z to vary freely in the complex plane, we can write this system in
even simpler form as

z x(z;w)τ Λ = x(z + 1;w)τ
(
z − λ′2 + A1

)
. (7.6)

Solving for x(z + 1;w) wherever possible and fixing w, we obtain a system that is a
very special case of the much more general ones treated in the articles [7–11]. Without
going into any details, we briefly explain what can be concluded from the results in said
papers:

a) The system (7.6) has a unique formal (vector) solution x̂(z;w) that is a power series
in z−1 of Gevrey order 1 and has the second unit vector e2 for its constant term. To
show this is a bit tedious, and shall not be done here.
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b) The formal Borel transform ξ(t;w) of x̂(z + 1;w) satisfies the system of Volterra-
type integral equations

ξ(t;w)τ (et Λ− I) =
(
eτ2 +

∫ t

0

ξ(u;w)τ du
)

(A1 − λ′2) . (7.7)

The singularities of this system, aside from the ones of the form 2 k π i with k ∈ Z,
are at all points of the form logwk = log |wk|+i argwk, k = 3, . . . , n. For ‖w‖ < 1,
these point all have negative real parts. The (unique) solution of this equation is
holomorphic in the largest star-shaped (with respect to the origin) region that does
not contain any one of these singularities (except for the origin which, however, is
removable) and is of exponential growth at most one as t→∞.

c) Using this information on ξ(t;w), we conclude from the theory of k-summability [4]
that the formal solution x̂(z+1;w) (and, equivalently, also x̂(z;w)) is 1-summable in
all directions d that avoid all the singular points. For ‖w‖ < 1 these include all dwith
|d| < π/2. The sum x(z + 1;w) is holomorphic for z + 1 in C \ {x+ i y : x ≤ 0},
and is Gevrey-asymptotic of order 1 to the formal series x̂(z + 1;w). Moreover,
x(z;w) is a solution of (7.6).

d) Defining y(j;w) by (7.5), we find a vector whose components satisfy the identities
(7.1) – (7.3). Because of ‖w‖ < 1 this vector is, up to a factor independent of j,
the only solution that stays bounded as j → ∞. Therefore we conclude that the
components of y(j;w) coincide with the functions yk(j;w) that we defined before.

e) For values w outside of the unit polydisc, we find that the formal solution x̂(z;w)
remains 1-summable (at least) in direction d = 0, as long as no wν is equal to a
real number larger than 1. This shows that x(z;w) as well as the yk(j;w), admit
continuation with respect to w outside of the unit polydisc.

Roughly speaking, we conclude from above, with help of (5.7), that the Stokes func-
tion γ(w) can be computed in terms of the sum of a formal solution of (7.6). While this
from a theoretical point of view is a very satisfying result, it still is not so easy to di-
rectly use this for a computation of γ(w). For such a practical approach, the results
of Section 6 are more suitable, since the entries rk(p; j) are relatively simple rational
functions of j, of which finitely many might be computed, say, with help of standard
computer algebra software.

Observe that, due to (6.6), the functions ỹk(j;w) can also be linked with a solution
x̃(z;w) of the system of difference equations (7.6), differing from x(z;w) by a constant
factor. This shall not be investigated any further in this article.
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