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Abstract

It is known that to construct the stable multistep method with the higher order
of accuracy for solving integral equation is actual. For this aim here we suggest
some ways for the construction of hybrid methods for solving nonlinear Volterra
integral equations of the second kind. Thus, foundational this extends stable hy-
brid method with higher order of accuracy. Note that the hybrid methods which has
been constructed here guarantee the minimal calculation of the kernel of the inte-
gral in the Volterra integral equation. Also the concrete methods with the degree
p = 4, p = 5 and p = 6 for two mesh point has been suggested. As a consequence
of the given algorithm the hybrid methods have some preference.

AMS Subject Classifications: 65L.
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1 Introduction
Many scientists for solving integral equations, used methods from the theory of numer-
ical methods for solving ordinary differential equations. As it is known, there is a wide
arsenal of numerical methods for solving ordinary differential equations, each of which
has its own advantages and disadvantages. One of the classical methods for solving
differential equations is the Runge–Kutta and Adams methods, which developed from
Euler’s method in different directions (constructions of one-step and multistep methods
(see for example [11, 17])). Scientists in the middle of the XX century decided that
giving an advantage to one of these methods is not correct, so they decided to construct
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methods with better properties of these methods, which are called hybrids. The first hy-
brid methods of Runge–Kutta type are constructed in [6] and Adams type in [2] and [4].
The advantage of hybrid methods is shown in many papers of different authors (see,
for example [5, 7]). But the authors of [8] investigated the relation between one and
multistep methods and gave a way to construct multistep methods by using one step
and vice versa construction of one step method by using a multistep. Here, we take
into consideration the advantage of hybrid methods, by using them as an application
in solving Volterra integral equations. Also the comparison of the suggested methods
with well-known ones has been considered. By this purpose we tried to explain these
methods by chronological way.

Consider solving a nonlinear Volterra integral equation of the second kind, which
has the following form:

y(x) = g(x) +

x∫
x0

K(x, s, y(s))ds, x0 ≤ s ≤ x ≤ X. (1.1)

Sometimes correlation (1.1) is called the equation of Volterra–Uryson. Under the as-
sumption that equation (1.1) has a unique continuous solution, defined on the segment
[x0, X] we consider the determination of its approximate values at the mesh points, de-
fined as: xi = x0 + ih (i = 0, 1, ..., N). Here the quantity h > 0 is a step size dividing
the segment [x0, X] to N equal parts.

V. Volterra thoroughly investigated equation (1.1) in the case when the kernel of
integral is linear function on y, i.e., K(x, z, y) ≡ b(x, z)y. He also described a wide
range of applications of integral equations with variable boundary, which is one of the
most important factors in the development of the theory of integral equations. Naturally,
V. Volterra constructed a method for the numerical solution of integral equations and for
this purpose used the quadrature formula. Note that the method of quadrature has been
successfully applied to the solution of equation (1.1), up to this day. The basic idea
in the construction of quadrature methods, is to replace some of the integral with the
integral sum, which in the simplest case is the following:

ϑ(xn) =

xn∫
x0

K(xn, s, y(s))ds ≈ h

n∑
j=0

ajK(xn, xj, yj), (1.2)

where the quantities aj (j = 0, 1, 2, ..., n) are the coefficients of the quadrature for-
mula. It is easy to make the transition from the mesh point xn to the next point xn+1 (to
calculate ϑ(xn+1)) the integral sum is computed again, because the value K(xn, xj, yj)
is not replaced by the value K(xn+1, xj, yj), consequently in the calculation of the
quantity ϑ(xn+1) the value ϑ(xn) is not used and this is the main lack of the method
of quadratures. For the dispensation of this lack of quadrature methods, the author
of [10] suggested a method that provides the constancy volume of computational op-
eration at each mesh point. These methods are reminiscent of multistep methods with
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constant coefficients, but they have some properties which are not extrinsic to multi-
step methods. To construct methods with high accuracy in [16], the proposed multi-
step forward-jumping method with the second derivative was used. Multistep methods
such as forward-jumping methods have some advantages and disadvantages. To solve
this problem, the authors of [9] suggested a predictor-corrector scheme, which extends
the region of stability of forward-jumping methods. To construct methods with im-
proved properties, scientists investigated the numerical solution of equation (1) by using
Runge–Kutta and collocation method, spline functions, etc. (see, for example [1, 12]).
In [18], the application of different methods for the solution of equation (1.1) is ex-
amined, and in [13], by using some advantages of hybrid methods, their application
to the solution of the Volterra integral equation was investigated. This hybrid method,
constructed by Makroglou can be obtained from the following method as a special case:

k∑
i=0

αiyn+i = h
k∑
i=0

βiy
′
n+i+νi

(|νi| < 1, i = 0, 1, 2, . . . , k). (1.3)

But the authors of [15], considered the application of method (1.3) to the solution of
equation (1.1). Here we investigate the application of the following method

k∑
i=0

αiyn+i = h
k∑
i=0

βiy
′
n+i + h

k∑
i=0

γiy
′
n+i+νi

, (1.4)

to the solution of the integral equation (1.1). Now, consider the construction methods
for the solution of equation (1.1) by using formula (1.4).

2 Construction of Hybrid Methods
As noted above, we attempt to apply to the solution of equation (1.1) some of the meth-
ods from the arsenal of numerical methods constructed for solving ordinary differential
equations. To this end, consider the connection between the differential and integral
equations.

Consider the following initial value problem for ordinary differential equations of
first order:

y′ = f(x, y), y(x0) = y0, x0 6 x 6 X. (2.1)

Integrating the differential equation on the segment [x0, x], we obtain an integral equa-
tion of type (1.1) in which g(x) = y0, and the kernel of the integral is defined as:

K(x, s, y) ≡ f(s, y).

So we get that, if the kernel of the integral in equation (1.1) does not depend on the
variation x, equation (1.1) and problem (2.1) are equivalent. Using this equivalence for
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the solution of equation (1.1), we modify some of the methods used to solve the problem
(1.1). As it is known, the generalized method of rectangles can be written as:

ϑ(1)(xn) =

xn∫
x0

K(xn, s, y(s))ds = h

n−1∑
i=0

K(xn, xi+1/2, yi+1/2) +R(1)
n , (2.2)

and a generalized method of trapezoids can be written as:

ϑ(2)(xn) =

xn∫
x0

K(xn, s, y(s))ds = h
n−1∑
i=1

K(xn, xi, yi)+

+h (K(xn, x0, y0) +K(xn, xn, yn)) /2 +R(2)
n . (2.3)

Here R(1)
n and R(2)

n are the remainder term of the methods. The accuracy of these meth-
ods is the same, but the coefficients of the remaining members of these methods have
different signs. Therefore, the exact value of the integral lies between the values calcu-
lated by the method of (2.2) and (2.3). If we assume that

d3

ds3
K(xn, s, y(s)) > 0,

then we can write
ϑ(1)(xn) 6 ϑ(xn) 6 ϑ(2)(xn)

which is equivalent to the following:

ϑ(xn) ∈
[
ϑ(1)(xn), ϑ

(2)(xn)
]
.

It is known that the equation of the segment
[
ϑ(1)(xn), ϑ

(2)(xn)
]

can be written as

tϑ(1)(xn) + (1− t)ϑ(2)(xn) (0 6 t 6 1).

There exists t0 ∈ [0, 1] , for which the following holds:

ϑ(xn) = t0ϑ
(1)(xn) + (1− t0)ϑ(2)(xn). (2.4)

But, the method for finding the exact value of t0 is unknown. So scientists are develop-
ing different ways to determine a value of the quantity t0 with high order. For example,
for the methods (2.2) and (2.3) the approximate values t0 are determined in the form
t0 = 1/2. Obviously, taking into account t0 = 1/3, we obtain a new formula, which is
more accurate than formulae (2.2) and (2.3). Then, generalizing the linear combination
of (2.2) and (2.3) we can write:

xn∫
x0

K(xn, s, y(s))ds = h

n∑
i=0

aiK(xn, xi, yi)+
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+h
n∑
i=0

biK(xn, xi+νi , yi+νi) +R(3)
n (|νi| < 1; i = 0, 1, 2, . . . , n) . (2.5)

Now consider the construction methods using the values y(xn−m) (m = 1, 2, . . . , k)
for the calculation of the value y(xn). Here k is a fixed quantity. For constructing the
method, consider the following difference:

y(xn+1)− y(xn) = g(xn+1)− g(xn)+

+h

xn∫
x0

K ′x(ξn, s, y(s))ds+

xn+1∫
xn

K(xn+1, s, y(s))ds, (2.6)

where xn < ξn < xn + h.
Assume that by any method found the solution of equation (1.1), after taking into

account that, in (1.1) we obtain the identity. Then from the resulting equality, we have

y′(x) = g′(x) +K(x, x, y(x)) +

x∫
x0

K ′x(x, s, y(s))ds.

Here, if we put x = ξn, we obtain the following:

h

xn∫
x0

K ′x(ξn, s, y(s))ds = h (y′(ξn)− g′(ξn)−K(ξn, ξn, y(ξn)))−

−h
ξn∫

xn

K ′x(ξn, s, y(s))ds. (2.7)

By using equality (2.7) in equality (2.6) we obtain (see, for example [15]):

y(xn+1)− y(xn) = g(xn+1)− g(xn) + h (y′(ξn)− g′(ξn)−K(ξn, ξn, y(ξn)))+

+

ξn∫
xn

K(xn, s, y(s))ds+

xn+1∫
ξn

K(xn+1, s, y(s))ds.

By using, in this equality, some transformations (see, for example [15]), and considering
it in equality (2.5), after discarding the remainder terms, we obtain:

k∑
i=0

αiyn+i =
k∑
i=0

αign+i + h

k∑
j=0

k∑
i=0

β
(j)
i K(xn+j, xn+i, yn+i )+
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+h
k∑
j=0

k∑
i=0

γ
(j)
i K(xn+j, xn+i+νi , yn+i+νi ) (|νi| < 1, i = 0, 1, 2, . . . , k). (2.8)

Consider the case where K(x, s, y) ≡ f(s, y) and g(x) ≡ y0. Then from (2.8) we have

k∑
i=0

αiyn+i = h
k∑
i=0

βifn+i + h

k∑
i=0

γifn+i+νi , (2.9)

where the coefficients βi, γi (i = 0, 1, 2, . . . , k) satisfy the following conditions:

k∑
j=0

β
(j)
i = βi;

k∑
j=0

γ
(j)
i = γi (i = 0, 1, 2, . . . , k). (2.10)

Method (2.9) coincides with method (1.4). So we get that if we know the coefficients
of method (1.4), the coefficients of method (2.8) β(j)

i , γ
(j)
i (i, j = 0, 1, 2, . . . , k) can be

determined from system (2.10). Thus, the construction method of type (2.8) is reduced
to the construction method of type (1.4), which was studied in [14].

It is easy to verify that method (2.5))is more accurate than methods (2.2) and (2.3).
Since in the construction of method (2.9) we used formula (2.5), we can expect that
method (2.9))will be more accurate than the multistep method with constant coefficients,
which is obtained from (2.9) for γi = 0 (i = 0, 1, . . . , k). By Dahlquist’s theorem we
know that if method (2.9) is stable for γi = 0 (i = 0, 1, . . . , k) and has the degree p,
then p 6 2 [k/2] + 2 (see [3]). But if method (2.9) is stable and has the degree p, then
p 6 3k + 1. Note that in some cases the multistep method (2.9) is called the finite-
difference and in this case the quantity k is called the order of the method, therefore, to
determine the order of accuracy of the method we use the notion of the degree of the
method, which is defined in the following form.

Definition 2.1. For a sufficiently smooth function z(x), the integer quantity p > 0 is
called the degree of method (1.4), if the following holds:

k∑
i=0

(αiz(x+ ih)− hβiz′(x+ ih)− hγiz′(x+ (i+ νi)h)) =

= O(hp+1), h→ 0. (2.11)

It is known that the stability of the multistep methods is determined by the linear
part of the considered method, because stability of them is understood in the classical
sense (see, for example [3]).

As noted above, the methods of type (2.8) are based on the coefficients of method
(2.9). However, these methods can have different properties. For example, the method
of type (2.8) with the maximum degree is not unique, but the method of type (2.9) with
the maximum degree can be unique. Indeed, the method of type (2.9) for k = 1 with a
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degree p = 4 is unique, but the method of type (2.8) with a degree p = 4 is not unique.
For confirmation of this fact it is enough to recall system (2.10), by which we determine
the coefficients of the methods of type (2.8), that always has a more than one solution.
Therefore, the methods of type (2.8) with the maximum degree are not unique. Note that
the solution of (2.10) is also not unique. Usually, the coefficients of method (1.4) are
determined as the solution of the homogeneous system of nonlinear algebraic equations
(see for example [14]):

k∑
i=0

αi = 0,
k∑
i=0

iαi −
k∑
i=0

(βi + γi) = 0,

k∑
i=0

(
il

l!
αi −

il−1

(l − 1)!
βi −

(i+ νi)
l−1

(l − 1)!
γi

)
= 0 (l = 2, 3, . . . , p).

(2.12)

The homogeneous system (2.12) consists of p+1 homogeneous nonlinear equations, and
4k+4 unknowns. It is known that the homogeneous system always has the trivial (zero)
solution. But to construct a method, one must find a nontrivial (nonzero) solution. For
the existence of nontrivial solutions the inequality p+ 1 < 4k+ 4, between the number
of unknowns and equations, must hold. This implies that p 6 4k + 2.

We can prove that the condition that the coefficients of method (1.4) satisfy system
(2.12) is necessary and sufficient for method (1.4) to have degree p. Thus, we find that
for determining the degree of method (1.4), one can use the homogeneous system (2.12).
Usually for the investigation of method (1.4), we impose the following assumptions on
the coefficients:

A: The coefficients αi, βi, γi, νi (i = 0, 1, 2, . . . , k) are some real numbers. More-
over, αk 6= 0 .

B: The characteristic polynomials

ρ(λ) ≡
k∑
i=0

αiλ
i, σ(λ) ≡

k∑
i=0

βiλ
i; γ(λ) ≡

k∑
i=0

γiλ
i+νi

have no common multipliers different from the constant.

C: σ(1) + γ(1) 6= 0 and p > 1.

Now consider the construction of specific methods of type (2.8) for k = 1. Then from
system (2.12) we have:

β1 + β0 + γ1 + γ0 = α1,

β1 + l1γ1 + l0γ0 = α1/2,

β1 + l31γ1 + l30γ0 = α1/4,

β1 + l41γ1 + l40γ0 = α1/5,

β1 + l51γ1 + l50γ0 = α1/6.

(2.13)
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Solving system (2.13) for α1 = −α0 = 1, we obtain:

β0 = β1 = 1/12, γ0 = γ1 = 5/12,

l0 = 1/2−
√
5/10, l1 = 1/2 +

√
5/10.

The method with degree p = 6 has the following form:

yn+1 = yn + h(fn+1 + fn)/12+

+5h(f
n+1/2−

√
5/10

+ f
n+1/2+

√
5/10

)/12. (2.14)

For applying hybrid method to the solution of some problems, we should know some
values of the quantities y

n+1/2−
√

5/10
and y

n+1/2+
√

5/10
and the accuracy of these values

should have at least O(h6) order. Note that hybrid method (2.14) is implicit and while
applying it to the solution of initial problem (1.1) the predictor-corrector scheme that
contains even one explicit method is used. Therefore, we consider construction of an
explicit method that in one variant has the following form:

yn+1 = yn + hfn/9 + h((16 +
√
6)fn+(6−

√
6)/10+

+(16−
√
6)fn+(6+

√
6)/10)/36. (2.15)

This method is explicit and has degree p = 5. Note that in the case β0 = β1 = 0 for
k = 1, after solving system (2.13), we obtain the following steady hybrid method with
the highest accuracy p = 4:

yn+1 = yn + h(fn+1/2−α + fn+1/2+α)/2 (α =
√
3/6). (2.16)

Using the coefficients of method (2.14), the next method is used for solving equation
(1.1):

yn+1 = yn + gn+1 − gn + h(2K(xn+1, xn+1, yn+1) +K(xn+1, xn, yn)+

+K(xn, xn, yn))/24 + 5h(K(xn+1, xn+1/2−
√
5/10, yn+1/2−

√
5/10)+

+K(xn+1/2−
√
5/10, xn+1/2−

√
5/10, yn+1/2−

√
5/10)+

+K(xn+1, xn+1/2−
√
5/10, yn+1/2+

√
5/10)+

+K(xn+1/2+
√
5/10, xn+1/2+

√
5/10, yn+1/2+

√
5/10))/24.

Consequently from here, it is not difficult to construct methods for solving equation
(1.1) based on method (2.15). Therefore we recommend here the next algorithm.
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Algorithm 2.2. To approximate the solution of the initial-value problem (2.1)

y′ = f(x, y), x0 6 x 6 X, y(x0) = y0,

at (N + 1) equally spaced numbers in the interval [x0, X]:
INPUT endpoints x0, X; integer N ;
Initial values y0, y1/2.
OUTPUT approximating yi to y(xi) at the (N + 1) values of x.

Step 1. Set h = (x− x0)/N ;

Step 2. For i = 1, 2, . . . , N do Steps 3–6.

Step 3.
ŷi+1 = yi + hfi+1/2; yi+1 = yi + h(f̂i+1 + 4fi+1/2 + fi)/6;

yi+3/2 = yi+1/2 + h(7f̂i+1 − 2fi+1/2 + fi)/6.

Step 4. For α = (6−
√
6)/10, (6 +

√
6)/10 do

yi+α = yi + αhy′i + α2h((α2 − 12α + 6)fi+3/2 − (3α2 − 48α + 27)fi+1+

+(3α2 − 60α + 54)fi+1/2 − (α2 − 24α + 33)fi)/18.

Step 5.
yi+1 = yi + hfi/9 + h((16 +

√
6)fi+(6−

√
6)/10+

+(16−
√
6)fi+(6+

√
6)/10)/36.

Step 6. OUTPUT (xi+1, yi+1).

Step 7. STOP.

Numerical results are presented for four examples, all the examples are considered
in [18], and can be written as follows:

1. y(x) = 1 + x2/2 +

x∫
0

y(s)ds, 0 6 s 6 x 6 1, h = 0.1 and h = 0.02, exact

solution is y(x) = 2 exp(x)− x− 1.

2. y(x) = x +

x∫
0

sin(x− s)y(s)ds, 0 6 s 6 x 6 1, h = 0.1 and h = 0.02, exact

solution is y(x) = x+ x3/6.
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3. y(x) = e−x +

x∫
0

e−(x−s)y(s)ds, 0 6 s 6 x 6 0.1, h = 0.02, exact solution is

y(x) = 1.

4. y(x) = e−x +

x∫
0

e−(x−s)y2(s)ds, 0 6 s 6 x 6 0.1, h = 0.02, exact solution is

y(x) = 1.

The results obtained here are compared with known ones in table 2.1. Note that
in [18] a trapezoid was used, which has degree p = 2a. Method (2.16) has degree
p = 4. Therefore, the solution obtained by method (2.16) is more accurate. In [18]
using the trapezoidal method, with increasing values of the number of calls to the kernel
of the integral increases with size, but in the method (2.16) the number of calls to the
kernel of the integral does not depend on the value of and is constant at each step.

Number
example X

Maximal error
for the method
from [18]

Maximal error
for method
(2.16) h=0.02

Maximal error
for method
(2.16) h=0.1

I
0.1 7.9 E-02 2.6 E-11 1.6 E-08
0.5 7.0 E-04 1.4 E-10 9.1 E-08
1.0 7.5 E-02 3.4 E-10 2.1 E-07

II
0.1 1.0 E-03 2.2 E-06 7.9 E-05
0.4 8.0 E-03 2.5 E-04 9.8 E-05
0.6 5.0 E-03 1.0 E-02 5.6 E-04

III

0.02 1.0 E-06 3.2 E-07
0.06 2.0 E-06 9.4 E-07
0.1 9.0 E-06 1.5 E-06 3.7 E-05
0.5 5.1 E-06 1.3 E-04
1.0 6.6 E-06 1.7 E-04

IV

0.02 1.0 E-02 6.5 E-09
0.06 1.0 E-02 5.7 E-08
0.1 1.1 E-02 1.5 E-07 3.7 E-06
0.5 2.4 E-06 7.1 E-05
1.0 6.6 E-06 2.0 E-04

Table 2.1: Comparative results.

3 Conclusions
We constructed a multistep hybrid method with constant coefficients and some concrete
hybrid method with degree 4 6 p 6 6 for k = 1. It is known that for k = 1 k–step
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method with constant coefficients has maximal degree pmax = 2 that is a trapezoidal
method. But the hybrid method constructed here has maximal degree pmax = 6. On
the base of this, a method has been constructed which can be applied to the solution
of equation (1.1). Taking into account some equivalences between equation (1.1) and
problem (2.1) we suggested an algorithm for solving problem (2.1) by method (2.15).
Note that for k = 2 we constructed stable methods with degree p = 8 and p = 9.
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