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Abstract

In Slater’s 1960 standard work on confluent hypergeometric functions, also
called Kummer functions, a number of asymptotic expansions of these functions
can be found. We summarize expansions derived from a differential equation for
large values of the a-parameter. We show how similar expansions can be derived
by using integral representations, and we observe discrepancies with Slater’s ex-
pansions.
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1 Introduction
Large parameter problems can be presented in the form of integrals or differential equa-
tions, or both, but we also encounter finite sums, infinite series, difference equations, and
implicit algebraic equations. In this paper we use integral representations of the conflu-
ent hypergeometric functions, also called Kummer functions, and we derive expansions
of the Kummer functions 1F1(a; b; z) and U(a, b, z) for large positive and negative val-
ues of a. The expansions are in terms of the modified Bessel functions Iν(z) and Kν(z),
and they are valid for bounded values of z and b.
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In the next section we summarize similar results given in Slater’s standard work [7]
on Kummer functions, results which are derived by using Kummer’s differential equa-
tion. After we have derived our results for 1F1(a; c; z) and U(a, c, z) in subsequent sec-
tions by using integral representations, we can compare the results of both approaches.

We observe that Slater’s large a-expansions of the U -function is not in agreement
with our result for this function, and the question arises which result is correct, and why
certain steps leading to wrong results can be explained.

We also mention other large a-expansions of Kummer functions available in the
literature. For information on the Kummer functions we refer to Adri Olde Daalhuis’
chapter on these functions [2]1 in the NIST Handbook of Mathematical Functions [4],
and we quote some of the formulas that are relevant in our analysis.

2 Slater’s Results

Slater’s expansions for large a are given in [7, §4.6.1], and are in terms of the large
parameter a written in the form

a = 1
4
u2 + 1

2
b, (2.1)

where u > 0 if a and b are real with a >
1

2
b. Then,

e−
1
2
z2zb1F1

(
a
b

; z

)
= Γ(b)u1−b2b−1 ×(

zIb−1(uz)
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+
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1

u2N
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1
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=

22−bub−1
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×(
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O
(
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,

(2.3)

1See also http://dlmf.nist.gov/13.



Remarks on Slater’s Asymptotic Expansions of Kummer Functions 367

where Iν(z) and Kν(z) are the modified Bessel functions and the coefficients are given
by A0 = 1 and

Bs(z) = −1
2
A′s(z) +

∫ z

0

(
1
2
t2As(t)−

b− 1
2

t
A′s(t)

)
dt,

As+1(z) =
b− 1

2

z
Bs − 1

2
B′s(z) +

∫
1
2
t2Bs(t) dt+Ks,

(2.4)

and Ks is chosen so that As+1(z)→ 0 as z → 0.
In fact2,

A0(z) = 1,

B0(z) = 1
6
z3,

A1(z) = 1
6
(b− 2)z2 + 1

72
z6,

B1(z) = −1
3
b(b− 2)z − 1

15
z5 + 1

216
z9,

A2(z) = − 1
120

(5b− 12)(b+ 2)z4 + 1
6480

(5b− 52)z8 + 1
31104

z12,

B2(z) = 1
90

(5b− 12)(b+ 2)(b+ 1)z3 − 1
45360

(175b2 − 350b− 1896)z7+

− 7
12960

z11 + 1
933120

z15.

(2.5)

Slater claims that these expansions are valid uniformly with respect to z in bounded
domains. In the next sections we derive expansions of 1F1(a; b; z) and U(a, b, z) for
large a and compare these results with Slater’s expansions.

It will appear that the expansion for the U -function is not correct; see (3.39).

3 Expansions for a→ +∞
We derive the expansions of 1F1(a; b; z) and U(a, b, z) by using integral representations.
Because we want to compare our results with those of Slater we use for a the form given
in (2.1) and replace z with z2.

3.1 Expansion of U(a, b, z)

We summarize results from [9], but we use the notation used by Slater as in §2. We start
with

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1 dt, (3.1)

2In Slater’s formula (4.6.46) the x should be a z.
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valid for <a > 0 and <z > 0. By writing t/(1 + t) = e−s we obtain after a few steps

U
(
a, b, z2

)
=
e

1
2
z2

Γ(a)

∫ ∞
0

e−
1
4
u2s−z2/ss−bf(s) ds, (3.2)

where

f(s) = ez
2µ(s)

(
s/2

sinh(s/2)

)b
, µ(s) =

1

s
− 1

es − 1
− 1

2
. (3.3)

The function f is analytic in the strip |=s| < 2π and it can be expanded for |s| < 2π
into a Maclaurin expansion. We write an expansion with a remainder in the form

f(s) =
K−1∑
k=0

cks
k + sKrK(s), K = 0, 1, 2, , . . . . (3.4)

The coefficients ck are combinations of Bernoulli numbers and Bernoulli polynomials3.
We have (

s/2

sinh(s/2)

)b
= e

1
2
bs

(
s

es − 1

)b
=
∞∑
k=0

Bb
k(b/2)

k!
sk, (3.5)

and

µ(s) = −
∞∑
k=1

B2k

(2k)!
s2k−1. (3.6)

The first ck are

c0 = 1, c1 = − 1

12
z2,

c2 =
1

288

(
z4 − 12b

)
,

c3 =
z2

51840

(
72 + 180b− 5z4

)
,

c4 =
1

2488320

(
5z8 − (288 + 360b)z4 + 864b+ 2160b2

)
.

(3.7)

We substitute the expansion in (3.4) into (3.2) and obtain

U
(
a, b, z2

)
=
e

1
2
z2

Γ(a)

K−1∑
k=0

ckΦk +RK(a, b, z), (3.8)

where

RK(a, b, z) =
e

1
2
z2

Γ(a)

∫ ∞
0

e−
1
4
u2s−z2/ssK−brK(s) ds, (3.9)

3http://dlmf.nist.gov/24
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and, in terms of the modified Bessel function Kν(z),

Φk =

∫ ∞
0

e−
1
4
u2s−z2/ssk−b ds = 2

(
2z

u

)k−b+1

Kk−b+1(uz). (3.10)

This representation follows from4

Kν(z) = 1
2
(1
2
z)ν
∫ ∞
0

e−t−z
2/(4t) dt

tν+1
, |ph z| < 1

4
π, (3.11)

which is an even function of ν.
In [9] we have constructed a bound for the remainder RK and we have shown that

the sequence {Φk} constitutes an asymptotic sequence for u→ +∞ in the sense that

Φk

Φk−1
= O

(
1 + uz

u2

)
, u→ +∞, (3.12)

uniformly in bounded b-intervals and bounded z-intervals (z > 0), but these intervals
can be extended to complex domains. This shows the asymptotic nature of the expansion
in (3.8).

We can obtain an expansion with only two Bessel functions by using the recursion

Kν+1(z) = Kν−1(z) +
2ν

z
Kν(z) (3.13)

and rearranging the expansion. A more direct way follows from writing

f(s) = α0 + β0s+ s2g(s), α0 = c0, β0 = c1. (3.14)

Substituting this in (3.2) we obtain after integrating by parts

U
(
a, b, z2

)
=
e

1
2
z2

Γ(a)

(
α0Φ0 + β0Φ1 +

1

u2

∫ ∞
0

e−
1
4
u2s−z2/ss−bf1(s) ds

)
, (3.15)

where
f1(s) = 4sbez

2/s d

ds

(
e−z

2/ss2−bg(s)
)
. (3.16)

Considering the behavior of f (defined in (3.3)) at infinity, and that of g1 and successive
gn, fn, we observe that f(s) = O(exp(−bs/2)) as s→∞ when <b < 0; when <b ≥ 0,
f is bounded. It follows that the integrated term at infinity will vanish if <(u2s) > 0
and u is large enough. When u is complex, we may turn the path of integration into the

complex plane over an angle θ with |θ| < 1

2
π. This is possible if −π + δ ≤ ph(u2) ≤

π − δ, with δ a small positive number.

4http://dlmf.nist.gov/10.32.E10
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At the origin f and g1 (and successive fn and gn) are analytic, and the integrated
term will vanish if <(z2/s) > 0. Again, when z is complex, we may achieve this
by integrating from the origin in a suitable direction, and deform the contour to get a
suitable direction at infinity.

The integration by parts procedure can be continued, and we obtain

U
(
a, b, z2

)
=
e

1
2
z2

Γ(a)

(
Φ0

N−1∑
n=0

αn
u2n

+ Φ1

N−1∑
n=0

βn
u2n

+

1

u2N

∫ ∞
0

e−
1
4
u2s−z2/ss−bfN(s) ds

)
,

(3.17)

where the Φk are defined in (3.10) and αn, βn, fn follow from the recursive scheme

fn(s) = αn + βns+ s2gn(s),

fn+1(s) = 4sbez
2/s d

ds

(
e−z

2/ss2−bgn(s)
)
,

(3.18)

with f0 = f .
We can express the coefficients αn and βn in terms of the ck used in (3.4). We write

fn(s) =
∞∑
k=0

c
(n)
k sk, c

(0)
k = ck, (3.19)

and after substituting this into (3.18) we find for the coefficients c(n)k the recursion

c
(n+1)
0 = 4z2c

(n)
2 , c

(n+1)
k = 4

(
z2c

(n)
k+2 + (1− b+ k)c

(n)
k+1

)
, (3.20)

where k ≥ 1 and n ≥ 0. The first coefficients are

α0 = 1, β0 = c1,

α1 = 4z2c2, β1 = 4z2c3 + 4(2− b)c2

α2 = 4z2(4z2c4 + 4(3− b)c3),

β2 = 16z4c5 + 32z2((3− b)c4 + 16(b− 2)(b− 3)c3.

(3.21)

In general, for αn we need cn+1, . . . , c2n and for βn we need cn+1, . . . , c2n+1.
To compare the expansion in (3.17) with Slater’s expansion in (2.3), we observe

first that Φ1 = 2(2z/u)2−bK2−b(uz), and we use the relation in (3.13) to rearrange our
expansion. This gives (we have used Kν(z) = K−ν(z))

e−
1
2
z2zbU

(
a, b, z2

)
=

22−bub−1

Γ(a)
×(

zKb−1(uz)
N−1∑
n=0

an(z)

u2n
− z

u
Kb(uz)

N−1∑
n=0

bn(z)

u2n
+

2b−2zbu1−b

u2N

∫ ∞
0

e−
1
4
u2s−z2/ss−bfN(s) ds

)
,

(3.22)
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where
a0(z) = 1, an(z) = αn + 4(1− b)βn−1, n ≥ 1,

bn(z) = −2zβn, n ≥ 0.
(3.23)

This gives the first coefficients

a0(z) = 1,

b0(z) = 1
6
z3,

a1(z) = 1
6
(b− 2)z2 + 1

72
z6,

b1(z) = −1
3
b(b− 2)z − 1

15
z5 + 1

1296
z9,

a2(z) = −2
3
b(b− 1)(b− 2)− 1

120
(b+ 2)(5b− 12)z4+

1
6480

(5b− 52)z8 + 1
31104

z12,

b2(z) = − 1
90

(5b+ 2)(b− 3)(b− 4)z3 − 1
45360

(175b2 − 350b− 1896)z7+

− 7
12960

z11 + 1
933120

z15.

(3.24)

When we compare these coefficients with the ones in Slater’s expansion of the U -
function given in (2.5) we see differences in a2(z) and b2(z). In particular, the condition
An(0) = 0 (n ≥ 1) used in the construction of Slater’s coefficients is not showing in
our a2(z).

3.2 Expansion of 1F1(a; b; z)

For an expansion of the F -function we start with the integral5

1F1

(
a
b

; z

)
=

Γ(b)Γ(1 + a− b)
2πiΓ(a)

∫ (1+)

0

eztta−1(t− 1)b−a−1 dt, (3.25)

where <a > 0 and b − a 6= 1, 2, 3, . . .. The contour can be the circle |t − 1| = 1. The
transformation t = s/(s − 1) transforms this circle into itself. To verify this we write
s = t/(t− 1). With t = 1 + eiθ, θ ∈ [0, 2π), we obtain s = 1 + e−iθ. The result of the
substitution is

1F1

(
a
b

; z

)
=

Γ(b)Γ(1 + a− b)
2πiΓ(a)

∫
C
ezs/(s−1)sa−1(s− 1)b ds, (3.26)

where C is the circle |s− 1| = 1.
Next we take s = ew. With s = 1 + eiθ, θ ∈ [0, 2π), we see that the circle C is

described by
w = σ + iτ, σ = ln(2 cos τ), −1

2
π < τ < 1

2
π. (3.27)

5http://dlmf.nist.gov/13.4.ii
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After some manipulations we obtain

1F1

(
a
b

; z2
)

=
Γ(b)Γ(1 + a− b) e 1

2
z2

Γ(a) 2πi

∫
L
e

1
4
u2s+z2/ss−bf(−s) ds, (3.28)

where a =
1

4
u2 +

1

2
b (as in (2.1)), f is the same as in (3.3) and L can be taken as a loop

around the negative axis that encircles the origin in a positive (anti-clockwise) direction.
Below and above the branch cut along the negative axis the phase of s is −π and +π,
respectively. This representation is valid for all complex z and <(a+ b) > 0.

Upon substituting the expansion in (3.4) we obtain

1

Γ(b)
1F1

(
a
b

; z2
)

=
Γ(1 + a− b)e 1

2
z2

Γ(a)

K−1∑
k=0

(−1)kckΨk + SK(a, b, z), (3.29)

where

SK(a, b, z) = (−1)K
Γ(1 + a− b)e 1

2
z

Γ(a) 2πi

∫
L
e

1
4
u2s+z2/ssK−brK(−s) ds, (3.30)

and, in terms of the modified Bessel function Iν(z),

Ψk =
1

2πi

∫
L
e

1
4
u2s+z2/ssk−b ds =

(
2z

u

)k+1−b

Ib−k−1(uz). (3.31)

This representation follows from6

Jν(z) =
(12z)ν

2πi

∫ (0+)

−∞
et−z

2/(4t) dt

tν+1
, (3.32)

with z replaced with e
1
2
πiz.

In the above results we can give z any finite complex value, and we require <a > 0,
1 + a − b 6= 0,−1,−2, . . .. For b = 0,−1,−2, . . ., the left-hand side of (3.29) can be
interpreted by using

lim
b→−m

1

Γ(b)
1F1

(
a
b

; z

)
=

(a)m+1 z
m+1

(m+ 1)!
1F1

(
a+m+ 1
m+ 2

; z

)
. (3.33)

The expansion in (3.29) can be written in the form with two Bessel functions. We need
the relation

Iν−1(z) = Iν+1(z) +
2ν

z
Iν(z) (3.34)

6http://dlmf.nist.gov/10.9.E19
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and an integration by parts procedure as used for the U -function gives a form compara-
ble with Slater’s result in (2.2). In this way we obtain the result written in the form of
(2.2)

e−
1
2
z2zb1F1

(
a
b

; z2
)

=
Γ(b)Γ(1 + a− b)

Γ(a)
ub−121−b ×(

zIb−1(uz)
N−1∑
n=0

an(z)

u2n
+
z

u
Ib(uz)

N−1∑
n=0

bn(z)

u2n
+

2b−1zbu1−b

u2N 2πi

∫
L
e

1
4
u2s+z2/ss−bfN(−s) ds

)
,

(3.35)

where the coefficients an(z), bn(z) and the functions fn are the same as for the expansion
of the U -function in (3.22).

We cannot yet compare this result with Slater’s result in (2.2), because of the ratio
of the gamma functions with large parameter in our results. We should expand this ratio
and multiply this expansion with the ones in (3.35). We have

Γ(1 + a− b)
Γ(a)

=
Γ
(
1 + 1

4
u2 − 1

2
b
)

Γ
(
1
4
u2 + 1

2
b
) ∼

(u
2

)2−2b ∞∑
n=0

dn
u2n

, (3.36)

as a→∞. All coefficients d2n+1 vanish and the first even indexed coefficients are

d0 = 1, d2 =
2

3
(b− 2)(b− 1)2,

d4 =
2

45

(
5b2 − 22b+ 24

)
(b− 1)4,

d6 =
4

2835

(
35b3 − 252b2 + 604b− 480

)
(b− 1)6,

d8 =
2

42525

(
175b4 − 1820b3 + 7124b2 − 12400b+ 8064

)
(b− 1)8.

(3.37)

See [10, §3.6.2] for expansions of this type.
When we perform the multiplications of the series we obtain Slater’s expansion

given in (2.2).

3.3 Remarks on Both Methods
Slater’s expansions in §2 are based on Olver’s method for differential equations; see [3,
Chapter 12] (Slater has referred to earlier papers by Olver). This method is very power-
ful, it gives expansions valid in large domains of the parameters and recurrence relations
for the coefficients. Also, the method provides realistic error bounds for remainders in
the expansions. In the case of the Kummer functions, the expansions are first given for
two linear independent solutions of Kummer’s differential equation

zw′′ + (b− z)w′ − aw = 0. (3.38)
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Then the expansions of 1F1(a; b; z) and U(a, b, z) follow from linear combinations of
these solutions, and the coefficients in these combinations follow from certain known
limiting forms of the Kummer functions (in the present case for z → 0).

On the other hand, when the recurrence relations for the coefficients in the ex-
pansions are derived, these recursions usually include constants of integration. In the
present case these are the quantitiesKs used by Slater in (2.4). A certain choice of these
constants generates a formal solution of the differential equation.

These two steps have to be taken into account when constructing the expansions
of the functions 1F1(a; b; z) and U(a, b, z), and it appears that Slater has not used the
correct steps for the U -function.

When working with integrals these difficulties are not present: we always start with
a representation of the function to be considered. All right, we can usually not construct
recurrence relations for the coefficients, and the construction of error bounds or esti-
mates for remainders is more difficult, but there will never be a misunderstanding about
the correct form of the expansions.

We can repair Slater’s expansion by dividing the series by the series in (3.36), which
gives the expansion given in (3.17). We can also repair by including a ratio of gamma
functions in the representation in (2.3), and modify powers of 2 and u. That is, we have

e−
1
2
z2zbU

(
a, b, z2

)
=

2bu1−b

Γ(1 + a− b)
×(

zKb−1(uz)

(
N−1∑
s=0

As(z)

u2s
+O

(
1

u2N

))
−

z

u
Kb(uz)

(
N−1∑
s=0

Bs(z)

u2s
+

z

1 + |z|
O
(

1

u2N

)))
.

(3.39)

In the present case the construction of an error bound of the expansion given for
the U -function given in (3.22) is rather easy when we assume that we have a bound of
fN(s) for s ≥ 0. When <z2 ≥ 0, this bound may be independent of z, which shows the
uniform character of this expansion with respect to z. More details on construction of
a bound for the remainder in the expansion given in (3.8) can be found in [9]. For the
expansions of the F -function these bounds should be obtained from complex contours
of integration, which is a more difficult matter; again, see [9].

3.4 Other Forms of the Expansions for Large a

We have already two forms of the expansions: one with a series of Bessel functions, and
one with only two Bessel functions. These forms are valid for bounded and even small
values of z. When z is such that uz → ∞ we can expand the Bessel functions and use
the well-known expansions of these functions for large argument; see [5, §10.40]. In
this way we can construct an expansion in terms of elementary functions.
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It may also be convenient to have expansions that show the parameter a explicitly
as the large parameter, and not the parameter u as in Slater’s expansions. Slater’s form
has some advantages because the coefficients are simpler than expansions in terms of
negative powers of a. This is the approach used in [9], and it gives expansions with a
series of Bessel functions. The integration by parts procedure used in the present paper
is easy to modify for obtaining expansions with only two Bessel functions. And when
we expand the Bessel functions we find expansions with series in negative powers of a.
For the F -function Perron [6] has given an expansion in terms of elementary functions.
For a more recent publication, see [1], where an expansion is given for the Laguerre
polynomials for large degree. That expansion can also be used for the F -function as
a→ −∞, because

L(α)
n (z) =

(
n+ α
n

)
1F1

(
−n
α + 1

; z

)
. (3.40)

Szegő [8, §8.22, §8.72, Problem 46] has suggested several methods for these polynomi-
als.

Finally, when z is complex, it may be convenient to consider expansions of the F -
function in terms of the J-Bessel function by using7

Iν(z) = e∓
1
2
νπiJν

(
ze±

1
2
πi
)
, −π ≤ ±ph z ≤ 1

2
π. (3.41)

4 Expansions for a→ −∞
For this case we use relations between the Kummer functions and the results for a →
+∞.

4.1 Expansion of 1F1(a; b; z)

This case has not been considered in Slater’s book, but we can use the results for a →
+∞ by using the relation

1F1

(
a
b

; z

)
= ez1F1

(
b− a
b

; −z
)
. (4.1)

We take this time
a = −1

4
u2 + 1

2
b. (4.2)

Then b− a =
1

4
u2 +

1

2
b and we have

1F1

(
a
b

; −z2
)

= e−z1F1

(1

4
u2 +

1

2
b

b
; z2

)
. (4.3)

7http://dlmf.nist.gov/10.27.E6
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For the F -function in the right-hand side we can use the results of §3.2. The explicit
result for the left-hand side is

e
1
2
z2zb1F1

(
−1

4
u2 +

1

2
b

b
; −z2

)
=

Γ(b)Γ
(
1 + 1

4
u2 − 1

2
b
)

Γ
(
1
4
u2 + 1

2
b
) ub−121−b ×(

zIb−1(uz)
N−1∑
n=0

an(z)

u2n
+
z

u
Ib(uz)

N−1∑
n=0

bn(z)

u2n
+

2b−1zbu1−b

u2N 2πi

∫
L
e

1
4
u2s+z2/ss−bfN(−s) ds

)
,

(4.4)

where the coefficients an(z), bn(z) and the functions fn are the same as for the expansion
of the U -function in (3.22).

4.2 Expansion of U(a, b, z)

Also in this case we can use connection formulas. We have

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
1F1

(
a
b

; z

)
+

Γ(b− 1)

Γ(a)
z1−b1F1

(
a− b+ 1

2− b ; z

)
, (4.5)

when b is not an integer, and

1

Γ(b)
1F1

(
a
b

; z

)
=

e∓πia

Γ(b− a)
U(a, b, z) +

e±πi(b−a)

Γ(a)
ezU

(
b− a, b, ze±πi

)
. (4.6)

The first form is useful because we have a real representation, but, although the U -
function is well-defined for integer values of b, a nasty limiting procedure is needed in

that case. The best approach is using the second form with a = −1

4
u2 +

1

2
b. Then we

can use the expansion given in (4.4) and for

U
(
b− a, b, ze±πi

)
= U

(
1

4
u2 +

1

2
b, b, ze±πi

)
the expansion given in (3.22). Observe that the K-Bessel function have arguments
uze±

1
2
πi, which can be expressed in terms of the ordinary Bessel functions Jν(z) and

Yν(z); see [5, §10.27].
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