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Abstract

The Sturm comparison theorems for second order ODEs are classical results
from which information on the properties of the zeros of special functions can
be obtained. Sturm separation and comparison theorems are also available for
difference-differential systems under oscillatory conditions. The separation theo-
rem provides interlacing information for zeros of some special functions and the
comparison theorem gives bounds on the distance between these interlacing zeros.
For monotonic systems Sturm theorems for the zeros do not exist because there
is one zero at most. Instead, bounds on certain function ratios can be obtained
using information on the coefficients of the system, and particularly monotonicity
properties. Similar ideas that can be used to prove Sturm theorems can be consid-
ered for obtaining this type of bounds; the qualitative analysis of associated Riccati
equations is a key ingredient in both cases. We review some applications for mod-
ified Bessel, parabolic cylinder and Laguerre functions and we also present related
results for incomplete gamma functions. Sturm theorems, both for second order
ODEs and first order DDEs can be applied for the computation of the real zeros of
special functions. Recently a fourth order method based on the Sturm comparison
theorem for computing the real zeros of solutions of second order ODEs was de-
veloped. We discuss the connection of this method with the Sturm theorem and we
explain how this has been extended to the computation of complex zeros.
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1 Introduction
Sturm theorems for linear homogeneous second order ordinary differential (ODEs) are
classical results from which a good number of properties for the zeros of special func-
tions have been established; see for instance [2, 10, 21]. Sturm separation and compari-
son theorems are also available for the difference-differential equations (DDEs)

y′n(x) = an(x)yn(x) + dn(x)yn−1(x),
y′n−1(x) = bn(x)yn−1(x) + en(x)yn−1(x).

under oscillatory conditions (dn(x)en(x) < 0). The separation theorem provides in-
terlacing information for zeros of some special functions and, in particular, for zeros
of orthogonal polynomials belonging to different orthogonal sequences [15]. We pro-
vide a brief account of the results that we obtained both from the Sturm theorems for
ODEs [2, 3, 14] and DDEs [13, 15].

For nonoscillatory situations ((bn(x)−an(x))2+4dn(x)en(x) > 0) Sturm theorems
for the zeros do not exist because there is one zero at most. In its place, it is possible to
obtain bounds for the solutions; similar ideas that can be used to prove Sturm compar-
ison theorems can be used for obtaining such bounds. Indeed, as we will see, most of
these results can be obtained by studying the qualitative properties of associated Riccati
equations. For this reason, we may consider that these are also, in some sense, results
of Sturm type. We overview some of the results presented in [17,18] and provide a new
example (incomplete gamma function).

Much more recent is the application of Sturm theorems as numerical tools for solv-
ing some notable nonlinear equations (zeros of solutions of second order ODEs). The
idea behind these methods, first introduced in [16], is to use the information on the
speed of oscillation contained in the coefficientA(x) of the differential equation y′′(x)+
A(x)y(x) = 0 in order to make estimations of the zeros. We briefly describe some
particular applications for the real case as well as the extension to the complex plane
introduced in [19].

2 Sturm Theorems for Second Order ODEs
We consider second order ODEs

y′′(x) + A(x)y(x) = 0, A(x) > 0 (2.1)

with A(x) continuous in an interval. The following are two classical results appearing
in textbooks.

Theorem 2.1 (Sturm separation theorem). Let y1 and y2 be independent solutions of
(2.1). Then, between two zeros of each solution there is a zero of the other solution and
only one.
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Theorem 2.2 (Sturm comparison theorem (1st version)). Let yi, i = 1, 2, be solutions
of y′′i (x) + Ai(x)yi(x) = 0, i = 1, 2 with Ai(x) continuous and 0 < A1(x) ≤ A2(x) in
an interval I .

Let x1, x2 ∈ I such that y1(x1) = y1(x2) = 0. Then, there exist at least one value
c ∈ (x1, x2) such that y2(c) = 0 unless y1(x) = y2(x).

A simple explanation of the previous theorem and the next one is that the solutions
of a differential equation (2.1) oscillate more rapidly as A(x) is larger. In particular, if
for instance A(x) < AM , the solutions of y′′(x) + AMy(x) = 0 oscillate more rapidly
than the solutions of (2.1) and then the distance between to consecutive zeros of (2.1)
will be larger than π/

√
AM . Considering these type of arguments, the following results

are easy to understand.

Theorem 2.3 (Spacing and convexity). Let y(x) be a nontrivial solution of y′′+A(x)y =
0. Let xk < xk+1 < . . . denote consecutive zeros of y(x) arranged in increasing order.

Then

1. If A(x) ≤ AM in (xk, xk+1), AM > 0, (but not A(x) = AM ∀x ∈ (xk, xk+1) )
then

∆xk ≡ xk+1 − xk >
π√
AM

.

2. If A(x) ≥ Am > 0 in (xk, xk+1) (but not A(x) = Am ∀x ∈ (xk, xk+1)) then

∆xk ≡ xk+1 − xk <
π√
Am

.

3. If A(x) is strictly increasing in (xk, xk+2) then ∆2xk ≡ xk+2 − 2xk+1 + xk < 0 .

4. If A(x) is strictly decreasing in (xk, xk+2) then ∆2xk ≡ xk+2 − 2xk+1 + xk > 0 .

The two last results are again a consequence of the fact that hasA(x) becomes larger
the oscillations are faster. Then, for instance, if A(x) is increasing the oscillations are
faster as x increases and if we have three consecutive zeros xk < xk+1 < xk+2 then
xk+2 − xk+1 < xk+1 − xk.

In Section 5 we will use a slightly more general version of the Sturm comparison
theorem

Theorem 2.4 (Sturm comparison (2nd version)). Let y(x) and w(x) be solutions of
y′′(x) + Ay(x)y(x) = 0 and w′′(x) + Aw(x)w(x) = 0 respectively, with Aw(x) >
Ay(x) > 0. If y(x0)w′(x0)− y′(x0)w(x0) = 0 and xy and xw are the zeros of y(x) and
w(x) closest to x0 and larger (or smaller) than x0, then xw < xy (or xw > xy).

A proof can be formulated in terms of the associated Riccati equations; in fact, a
similar proof can be considered for a more general result:
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Theorem 2.5 (Sturm comparison (3rd version)). Let y(x) and w(x) be solutions of
y′′(x) + Ay(x)y(x) = 0 and w′′(x) + Aw(x)w(x) = 0 respectively, with Aw(x) >
Ay(x) > 0 and such that y(x0)w′(x0) − y′(x0)w(x0) = 0. Given a value xy > x0
(or xy < x0) let xw ̸= x0 be the closest value to x0 larger (or smaller) than x0 and
such that y(xy)w′(xw) − y′(xy)w(xw) = 0, then xw < xy (or xw > xy); therefore
|xw − x0| < |xy − x0|.

Proof. Let us consider the functions hy = y/y′ and hw = w/w′, satisfying the Riccati
equations h′y(x) = 1 + Ay(x)hy(x)

2, h′w(x) = 1 + Aw(x)hw(x)
2. Because we are

considering Ay > 0, Aw > 0, the hy and hw functions, assuming they have several
zeros, are tangent–like functions with zeros (zeros of y(x) or w(x)) and singularities
(zeros of y′(x) or w′(x)) interlaced. We assume that y′(x0) ̸= 0 and w′(x0) ̸= 0 (but it
is immediate to see that the result is also valid in this case) and let us consider xy > x0
(the proof for xy < x0 is analogous).

Because hy(x0) = hw(x0) and, given thatAw > Ay, h′w(x0) > h′y(x0), and the graph
of hw(x) lies above the graph of hy(x) at the right of x0, and it keeps being above until it
reaches its first vertical asymptote. Therefore, the function hw reaches any value in the
interval (hw(x0),+∞) before hy does. This tangent–like functions change sign at its
asymptotes and then, because h′w(xc) > h′y(xc) for any xc such that hw(xc) ≥ hy(xc), it
is also clear that hw also reaches any value between in the interval (−∞, hw(x0)) before
hy does. Therefore, given any xy > x0 because for x > x0 hw reaches any value before
hy does it is clear that there exists x0 < xw < xy such that hw(xw) = hy(xy). This
completes the proof.

Later we will consider proofs with a similar flavour for obtaining other results, not
related to zeros of solutions of ODEs. In this sense, the bounds in Section 4 have a
“Sturm flavour” even when they can not be considered Sturm theorems.

2.1 New Inequalities from Classical Sturm Theorems
The name of this section is the title of our paper [2]. In that paper, we proposed a
systematic analysis of the results that theorem 2.3 can provide for the zeros of hyperge-
ometric functions (Gauss, Kummer). In that analysis, it was crucial to take into account
the freedom we have in the selection of the independent variable via the Liouville trans-
formation.

As it is easy to check, given an ODE

y′′ +B(x)y′ + A(x)y = 0, (2.2)

then the function Y (z), with Y (z(x)) given by

Y (z(x)) =
√
z′(x) exp

(
1

2

∫ x

B(x)

)
y(x), (2.3)
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satisfies the equation in normal form

Ÿ (z) + Ω(z)Y (z) = 0 (2.4)

Ω(z(x)) =
1

z′(x)2

(
Ã(x) +

3z′′(x)2

4z′(x)2
− z′′′(x)

2z′(x)

)
Ã(x) = A(x)−B′(x)/2−B(x)2/4.

(2.5)

Using these transformations (called Liouville transformations) we can establish bounds
on the distances between zeros and/or convexity properties, provided the analysis of
the monotonicity properties of Ω(x) can be carried out. The main question that was
considered in [2] was: for which changes of variable is the analysis of the monotonicity
of Ω(x) simple in the sense that Ω′(x) = 0 is equivalent to a quadratic equation? And
the answer is:

1. z′(x) = xp−1(1− x)q−1; p+ q = 1 or p = 0 or q = 0 (Gauss hypergeometric).

2. z′(x) = xp−1 (confluent hypergeometric equation).

The analysis, particularly for values of p, q = 0, 1/2, 1, provided extensions of known
properties as well as new properties. We mention few examples for the case of Jacobi
functions Pα,β

ν (x) (polynomials if ν is a positive integer):

1. p = q = 1/2: Bounds on ∆θk, with θk the zeros of Pα,β
ν (cos θ) were established

which generalize and improve previous results by Szegő [21].

2. p = 0, q = 1: The relation (1− xk)
2 > (1− xk+1)(1− xk−1), was proved for the

zeros of |α| ≤ 1 Pα,β
ν (x), extending the previously known property for Legendre

polynomials [9].

3. p = 1, q = 0: The relation (1 + xk)
2 > (1 + xk+1)(1 + xk−1), is proved to be

valid for |β| ≤ 1.

The information on the monotonicity properties of Ω(x) is not only useful for establish-
ing new Sturm properties for the zeros but, as we will see in Section 5, this is a crucial
piece of information for the recent numerical methods for computing these zeros [16].

3 Sturm Theorems for First Order Differential Systems
Many special functions satisfy first order systems of the type

y′(x) = a(x)y(x) + d(x)w(x),
w′(x) = b(x)w(x) + e(x)y(x).

(3.1)

A typical situation is when y = yn, w = yn−1 with n a parameter (for example, the
degree in case of orthogonal polynomials) and with coefficients depending on n. In
particular Gauss and Kummer hypergeometric functions satisfy this type of systems.
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3.1 Monotonic and Oscillatory Systems
As we did for proving theorem 2.5, we are considering qualitative properties of an as-
sociated Riccati equation to explore properties of the solutions of the system (3.1).

Defining h(x) = y(x)/w(x), we have the Riccati equation

h′(x) = d(x)− (b(x)− a(x))h(x)− e(x)h2(x).

The behavior of the solutions is different depending on whether the equation d(x) −
(b(x) − a(x))λ(x) − e(x)λ(x)2 = 0 has real or complex solutions. Depending on
∆(x) = (b(x)− a(x))2 + 4e(x)d(x) we have the following possibilities:

1. ∆ < 0 (and then necessarily e(x)d(x) < 0). Then h(x) is monotonic and the
solutions of (3.1) are potentially oscillatory; when they are oscillatory, the h(x)
function is a tangent–like function, with zeros and singularities interlaced. In this
case, one can enunciate both separation and comparison theorems.

2. ∆ > 0, then it is easy to check that the solutions may have one zero at most.
We call this monotonic case. Sturm theorems are not available but we can derive
bounds on the solutions using similar ideas.

3.2 Sturm Theorems
First we are considering the oscillatory case, in which h(x) is a monotonic function with
zeros and singularities interlaced. The following result holds:

Theorem 3.1 (Sturm separation theorem). Let y(x) and w(x) be nontrivial continuous
solutions of the first order system with d(x) and e(x) continuous and not changing sign.
Then, the zeros of y and w are simple and they are interlaced (between two zeros of each
solution there is a zero of the other solution and only one).

For a proof see [13]. An alternative way to see this result is noticing that if a solution
has two zeros then necessarily ∆ < 0 and d(x)e(x) < 0 and then h(x) = y(x)/w(x)
is monotonic and continuous except at the zeros of w(x). From this monotonicity, the
interlacing of the zeros of y(x) and w(x) is obvious.

This simple result is interesting for studying interlacing properties of the zeros of
special functions, as was investigated in [15]. By analyzing the continuity of the coeffi-
cients of the system we can deduce interlacing.

As an example, the following result was proved in [15].

Theorem 3.2. Let pn+1(x) and pn−1(x) be two classical orthogonal polynomials (Her-
mite, Laguerre, Jacobi) with respect to the same weight function w(x) in the interval of
orthogonality [a, b]. Then, the zeros of pn+1(x) and pn−1(x) are interlaced for x > βn
and x < βn, with

βn =

∫ b

a
xp2n(x)w(x)dx∫ b

a
p2n(x)w(x)dx

∈ (a, b).
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If x1 and x2 are the closest zeros of pn+1(x) at both sides of βn (x1 < βn < x2), then
either there is no zero of pn−1(x) in (x1, x2) or x = βn is a common zero of pn+1(x) and
pn−1(x).

Many other results become available. To mention one example of interlacing be-
tween to different orthogonal sequences we have the following result for Jacobi polyno-
mials.

Theorem 3.3. The zeros of P (α,β)
ν (x) interlace with those of P (α′,β′)

ν′ (x) in (−1, 1) if the
differences δν = ν − ν ′ ∈ Z, δα = α − α′ ∈ Z and δβ = β − β′ ∈ Z (not all of them
equal to zero) satisfy simultaneously the following properties:

1. |δν| ≤ 1,

2. |δα|+ |δβ| ≤ 2,

3. |δν + δα| ≤ 1, |δν + δβ| ≤ 1, |δν + δα + δβ| ≤ 1.

This holds whenever ν > 0, ν + α > 0 and ν + β > 0, ν + α + β > 0 and similarly
for ν ′, α′ and β′, with the exception of the zeros for P (+1,β)

ν (x) and P (−1,β)
ν+1 (x) which

coincide in (−1, 1); the same is true for the zeros of P (α,+1)
ν (x) and P (α,−1)

ν+1 (x).

Interlacing properties of the zeros of orthogonal polynomials have also been studied
by K. A. Driver and collaborators using other techniques see [4–6]. Driver’s et al. results
include continuous shifts in the parameters (α and β for the case of Jacobi polynomials)
but the profs are valid for orthogonal polynomials (ν integer) in the classical range of
parameters (α, β > −1 in the Jacobi case). In our case the parameters are shifted by
integers but they apply to any solutions, not necessarily polynomials and not necessarily
in the classical range. In this sense, the results are complementary.

Sturm comparison theorems can also be established by comparing the system with
a system with constant coefficients. In order to simplify the discussion, we are consid-
ering a ystem of the form

y′(x) = −η(x)y(x) + w(x)
w′(x) = η(x)y(x)− y(x)

(3.2)

with associated Riccati equation for h(x) = y(x)/w(x)

h′(x) = 1− 2η(x)h(x) + h(x)2. (3.3)

We call this a system in reduced form; it has only one independent coefficient.
Considering systems in reduced form is not as restrictive as it may seems because it

is always possible to transform a system with differential coefficients into a system in
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reduced form. 1

We observe that the associated Riccati equation has solutions similar to a tangent
function but with a parameter η which shrinks the function at one side of its zeros
and expands it on the other side. Indeed, consider for instance (3.3) with η > 0, and a
solution of this equation with a zero x0. Let us compare this against h̃(x) = tan(x−x0),
solution of the auxiliary equation h̃′ = 1 + h̃2. We see that the slope of the solution of
(3.3) is smaller than the slope of the solution of the auxiliary equation at the right of x0
(h > 0), and that the contrary occurs at the left of x0 (h < 0). This comparison with the
tangent function immediately tells us that if xiy and x(i)w denote zeros of y and w such
that x(1)w < x(1)y < x(2)w and η > 0 then

x(2)w − x(1)y >
π

2
, x(1)y − x(1)w <

π

2
.

The contrary happens if η < 0. This result can be interpreted as a Sturm comparison
theorem, and it was a crucial result in the construction of the numerical fixed point
method of [13]. This type of result can be refined by comparing with equations with
constant η but different from zero.

If η is monotonic, then it is possible to establish also Sturm convexity results, like
for instance:

Theorem 3.4 (Sturm convexity). Let {y(x), w(x)} as before and with |η(x)| < 1,
η′(x) > 0. Let x(1)w < x(1)y < x(2)w < x(2)y < x(3)w . Then

x(1)y − x(1)w > x(2)y − x(2)w

and
x(2)w − x(1)y < x(3)w − x(2)y .

The inequalities are reversed if η′(x) < 0.

1Given a general system with differentiable coefficients a, b, c and d as before, we take

ỹ(z(x)) =

√
z′(x)

|d|
exp

(
−1

2

∫ x

(a+ b)

)
y(x),

w̃(z(x)) =

√
z′(x)

|e|
exp

(
−1

2

∫ x

(a+ b)

)
w(x)

with z′(x) =
√
|d(x)e(x)|, and the transformed system takes the form

˙̃y(z) = −η̃(z)ỹ(z) + d̃(z)w(z),
˙̃w(z) = η̃(z)w̃(z) + ẽ(z)y(z),

|d̃(z)| = |ẽ(z)| = 1

with

η̃(z) = ẋ
b(z)− a(z)

2
+

1

4

d

dz
log

∣∣∣∣d(z)e(z)

∣∣∣∣ .
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4 First Order Differential Systems (Monotonic Case)
Now we turn our attention to monotonic systems (see Section 3.1). By the moment, let
us consider the case d(x)e(x) > 0.

Because the solutions have one zero at most, we no longer have Sturm theorems;
but a similar analysis used for proving Sturm theorems can be used to establish bounds
on the solutions of monotonic systems.

As a first example, we consider the case of modified Bessel functions, described in
detail in [17]. We have that both yν = eiπνKν(x) and Iν(x) satisfy the system

y′ν(x) = −ν
x
yν(x) + yν−1(x),

y′ν−1(x) =
ν − 1

x
yν−1(x) + yν(x),

with associated Riccati equation

h′ν(x) = 1− 2ν − 1

x
hν(x)− hν(x)

2, hν(x) = yν(x)/yν−1(x). (4.1)

Now, solving h′ν(x) = 0 we see that

1. h′ν(x) < 0 if hν(x) > λ+ν (x)

2. h′ν(x) > 0 if 0 < hν(x) < λ+ν (x)

λ+ν (x) = x/(ν − 1/2 +
√

(ν − 1/2)2 + x2).

We concentrate on the Iν(x) Bessel function, but similar ideas can be applied to Kν(x).
For the Iν(x) function we see that because hν(x) = Iν(x)/Iν−1(x) is such that hν(0+) >
0 and h′ν(0

+) > 0 (ν ≥ 0) and dλ+ν /dx > 0 if ν ≥ 1/2, then, necessarily:

0 <
Iν(x)

Iν−1(x)
< λ+ν (x), x > 0, ν ≥ 1/2. (4.2)

Indeed, the initial conditions at x = 0 tells us that 0 < hν(0
+) < λ+(0+), but this

implies that 0 < hν(x) < λ+(x), hν(x) > 0 for all x > 0. Indeed, the graph of hν(x)
will never cut the graph of λ+(x) because λ+(x) is increasing. For this to happen at
x = xt we would have that h(x−t ) < λ+(x−t ), h(xt) = λ+(xt) and h′(xt) = 0; this is
not possible because λ+′(x) > 0. The situation is described in Figure 4.1 (dotted curve).

In [18], the more general case of monotonic systems

y′n(x) = an(x)yn(x) + dn(x)yn−1(x)
y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x)

(4.3)



336 J. Segura

0 2 4 6 8 10
x

0

1

2

3

4

h

λ +
 (x)

h
 1

 (x)
h

 2
 (x)

h’(x)>0

h’(x)<0

Figure 4.1: Two possible graphs for solutions of (4.1). The dotted curve is the situation
for the ratio hν(x) = yν(x)/yν−1(x).

was considered. The case en(x)dn(x) > 0 was considered, but also examples with
en(x)dn(x) < 0 were given.

The associated Riccati equation reads

h′n(x) = dn(x)− (bn(x)− an(x))hn(x)− en(x)hn(x)
2.

In the analysis, it is important that the roots λ±(x) of the characteristic equation h′(x) =
0 are monotonic, but it was proved that this is true under conditions which are met quite
generally. Indeed, it is easy to see that [18, Theorem 4] holds

Theorem 4.1. Let yk(x), k = n, n− 1 satisfying

y′n(x) = an(x)yn(x) + dn(x)yn−1(x),
y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x)

with dn(x)en(x) > 0 and y′′k(x) +B(x)y′k(x) + Ak(x)yk(x) = 0. Then, if

An(x) ̸= An−1(x),

the characteristic roots λ±n (x) (the solutions of en(x)λ(x) + (bn(x) − an(x))λ(x) −
en(x)λ(x)

2 = 0) are monotonic in (a, b). dλ±n (x)/dx have the same sign as An−1(x)−
An(x) and −η′n(x).

Because of this, we were able to obtain, similarly as we did for modified Bessel
functions, bounds for ratios of several important special functions, including modified
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Bessel functions, parabolic cylinder functions and Hermite and Laguerre functions of
negative argument. Similarly as for the case of the modified Bessel functions discussed
before, these bounds are given by characteristic roots of the Riccati equation. From
these bounds and using (4.3), also bounds for the logarithmic derivatives y′n(x)/yn(x).

Is is also important to observe that in the usual scenario in which the shift n→ n+1
can be considered in (4.3), there is also a three-term recurrence relation associated to
the system, namely:

en+1yn+1(x) + (bn+1(x)− an(x))yn(x)− dnyn−1(x) = 0, (4.4)

The characteristic roots for the recurrence are

en+1λ̄
2
n + (bn+1 − an)λ̄n − dn = 0, (4.5)

and it is a classical result that the asymptotic behavior an n → +∞ is precisely de-
termined by these characteristic roots. This is certified by the Perron–Kreuser theorem
(see, for instance, [8, Theorem 4.5]).

Theorem 4.2 (Perron–Kreuser). If lim
n→+∞

|λ̄(+)
n /λ̄(−)

n | ̸= 1 with λ̄(±)
n the solutions of

αnλ
2
n+β

2λn+γn = 0, then solutions {y(1)k , y
(2)
k } of the recurrence αnyn+1+ betanyn+

γnyn−1 = 0 exist such that

lim
n→+∞

1

λ̄+n

y
(1)
n

y
(1)
n−1

= 1, lim
n→+∞

1

λ̄−n

y
(2)
n

y
(2)
n−1

= 1.

An important observation is that the characteristic roots of the recurrence relation
(4.4) are very similar to the roots for the Riccati equation (solutions of (4.5)), which
are function bounds (like, for example, in (4.2)). This means that these bounds tend to
be more accurate as n → +∞ and that in the limit they reproduce the correct asymp-
totic behavior. On the other hand, these bounds are also related to the Liouville–Green
transformation [20], and they are usually also more accurate as x becomes large.

Another important consequence of the existence of a recurrence relation is that it can
be used to generate sequences of bounds, which are convergent sequences for minimal
solutions of TTRR). For instance, if bn+1 − an and yn+1/yn > 0 the solution is minimal
and with the backward iteration

yn(x)

yn−1(x)
= dn

(
bn+1 − an + en+1

yn+1(x)

yn(x)

)−1

sequences of upper and lower bounds are obtained. Similarly, the forward iteration gives
sequences of bounds for dominant solutions (nonconvergening sequences).

And because upper and lower bounds, it is also possible to establish Turán-type
inequalities in the following way:

ln = min
x

(Ln(x)) < Ln(x) <
yn
yn+1

yn
yn−1

< Un(x) < max
x

(Un(x)) = un.
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In [18], we can find a good number of applications of these ideas. We mention a few
applications for the case d(x)e(x) > 0.

1. A Turán-type inequality for modified Bessel functions Kν(x):

Kν−1(x)

Kν(x)

Kν+1(x)

Kν(x)
<

|ν|
|ν| − 1

, x > 0, ν /∈ [−1, 1].

This result was proved independently, and using different techniques, in [1, 17].

2. Parabolic cylinder functions, solutions of y′′ − (x2/4 + n)y = 0, a > 0.

Theorem 4.3. For n > 1/2 and x ≥ 0 the following holds

2
(
x+

√
4n+ 2 + x2

)−1

<
U(n, x)

U(n− 1, x)
< 2

(
x+

√
4n− 2 + x2

)−1

.

The lower bound also holds if n ∈ (−1/2, 1/2) and this inequality turns to an
equality if n = −1/2.

Theorem 4.4 (Turán-type inequalities for PCFs). Let

F (x) =
U(n, x)2

U(n− 1, x)U(n+ 1, x)
.

The following holds for all real x:√
n− 3/2

n+ 1/2
<
n− 1/2

n+ 1/2
F (x) < 1 < F (x) <

√
n+ 3/2

n− 1/2
.

The first inequality holds for n > 3/2 and the rest for n > 1/2. For x < 0 the
third inequality also holds if n ∈ (−1/2, 1/2).

Theorem 4.5 (LG bounds for PCFs). For all real x and n ≥ 1/2 the following
holds:

−
√
x2/4 + n+ 1/2 <

U ′(n, x)

U(n, x)
< −

√
x2/4 + n− 1/2.

The left inequality also holds for n > −1/2.

Consequence of the previous inequality is

Bn+1/2(x) <
U(a, x)

U(a, 0)
< Bn−1/2(x)

where

Bα(x) = exp

(
−x
2

√
x2

4
+ α

)(
x

2
√
α
+

√
x2

4α
+ 1

)−α

.
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3. Some Turán-type inequalities for orthogonal polynomials outside the interval of
orthogonality

(a) Hermite polynomials

Hn(ix)
2 −

√
(n− 1)/(n+ 1)Hn−1(ix)Hn+1(ix) > 0, n even.

(b) Associated Legendre functions of imaginary variable

Pm
n (ix)2

Pm
n−1(ix)P

m
n+1(ix)

< 1 +
1

n−m
, n−m odd.

(c) Laguerre functions

Theorem 4.6. For any ν ≥ 0 and α ≥ 0, x > 0 the following holds:

ν

ν + 1

α

α + 1
<
Lα−1

ν+1(−x)
Lα

ν (−x)
Lα+1

ν−1(−x)
Lα

ν (−x)
<

ν

ν + 1
.

We also gave some examples of application for monotonic cases with e(x)d(x) < 0
and described how the bounds could be used to establish bounds on the extreme zeros
of orthogonal polynomials. The cases described by no means exhaust the examples to
which these ideas can be applied. And to illustrate this, we consider a brief example of
application to incomplete gamma functions.

4.1 Bounds for the Incomplete gamma Function γ(α, x)

The incomplete gamma function γ(a, x), which is defined as

γ(a, x) =

∫ x

0

ta−1e−tdt, (4.6)

satisfies the recurrence relation (Paris [8.8.3])

γ(a+ 2, x)− (a+ 1 + x)γ(a+ 1, x) + axγ(a, x) = 0 (4.7)

and the differential relation [Paris, 8.8.15]

dn

dxn
(x−aγ(a, x)) = (−1)nx−n−aγ(a+ n, x). (4.8)

With this we arrive to the system

d

dz
γ(a, x) = −γ(a, x) + (a− 1)γ(a− 1, x)

d

dz
γ(a− 1, x) =

a− 1

x
γ(a− 1, x)− 1

z
γ(a, x).

(4.9)
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From this, the ratio
ha(x) = γ(a, x)/γ(a− 1, x) (4.10)

satisfies:

h′a(x) = (a− 1)−
(
1 +

a− 1

x

)
ha(x) +

1

x
h2a(x). (4.11)

We see that the characteristic roots are λ1(x) = x and λ2(x) = a − 1. But because for
the ratio (4.10) we have, using [Paris, 8.7.1],that ha(0+) = 0+ and h′a(0

+) > 0 if a > 1
(ha(z) = (a− 1)z/a+O(z2) of a > 1), graphical arguments easily gives us that

Theorem 4.7. For a > 1 and x > 0 the following holds:

ha(x) =
γ(a, x)

γ(a− 1, x)
< min{a− 1, x} ≤ x, (4.12)

h′a(x) > 0. (4.13)

This result finds a similar explanation to other similar results, like Eq. (4.2). For
x > 0 γ(a, x) > 0, and from (4.11) we observe that the positive solutions of the Riccati
equation are such that h′a(x) > 0 only if ha(x) < x when x ≤ a− 1 and ha(x) < a− 1
when x > a − 1. Then, because for ha(x) in (4.10) we have that h′a(0

+) > 0 and the
graph of ha(x) can not intersect with the graph of the characteristic roots from below
(because they are nondecreasing functions) then, necessarily, h′a(x) > 0 for x > 0 and
consequently ha(x) < x if x < a− 1 and ha(x) < a− 1 for x ≥ a− 1.

Now we prove the following result

Theorem 4.8. The ratio ha(x) = γ(a, x)/γ(a− 1, x) is increasing as a function of a if
a > 1, z > 0.

Proof. We assume a > 1. We start by noticing that ha+ϵ(0
+) = ha(0

+) = 0+, ϵ > 0,
but that h′a(0

+) = 1 − 1/a < h′a+ϵ(0
+). Therefore we will have ha+ϵ(x) > ha(x)

for x sufficiently close to x = 0; but then it is easy to see that this must hold for
any x > 0. Too see this, let us assume ha+ϵ(xe) = ha(xe) and ha+ϵ(x) > ha(x) for
x ∈ (0, xe) and we will arrive at a contradiction. Indeed, this immediately implies that
h′a+ϵ(xe) < h′a(xe) and with ha+ϵ(xe) = ha(xe) but this is in contradiction with the
equation (4.11), because for a same value of ha (fixed) the derivative h′a increases with
a. This can be checked by taking the partial derivative of ha with respect to a with z
and ha fixed:

∂h′a(x)

∂a
= 1− ha(z)/z > 0

where we have used theorem (4.7) in the inequality.

Taking into account the previous theorem, we arrive to the following corollary

Corollary 4.9. γ(a, x)/γ(a − 1, x), a > 1, x > 0 is increasing both as a function of x
and a.

This result is not new [12], but here we have proved it in a very elementary way.
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5 Numerical Applications: Computing Zeros of Special
Functions

Finally, we describe in this last section the application of Sturm theorems for the com-
putation of the zeros of special functions. It is very surprising that, in spite of the many
applications to the analysis of the zeros of special functions, Sturm theorems had not
been considered as numerical tools for their computation until very recently. The result-
ing methods are simple to implement and they are very fast and totally reliable.

5.1 Methods for First Order Systems
The Sturm separation and comparison theorems for first order systems can be used
to construct globally convergent fixed point methods for computing zeros of special
functions.

These are (like Newton) second order methods but with the advantage that a scheme
to compute with certainty all the zeros in an interval becomes available [13]; the foun-
dation of these methods are the Sturm separation theorem and the Sturm comparison
theorems described in Section 3.2.

We are not describing in detail these methods and we move to the recent and more
powerful fourth order methods based on Sturm theorems for second order ODEs.

5.2 A Fourth Order Method for the Real Zeros of Solutions of Sec-
ond Order ODEs

Theorem 2.4 is the main tool for constructing a method to compute with certainty all
real zeros of any solution of an ODE

y′′(x) + A(x)y(x) = 0 (5.1)

in any interval where A(x) is continuous and monotonic. The restriction to normal
form (no first derivative) is soft, because we can transform to normal form using Liou-
ville transformations (see Section 2.1). About the monotonicity, we can also divide an
interval in different subintervals were A(x) is monotonic and apply the method in each
of these subintervals; in any case, we will require that the monotonicity properties of
A(x) can be obtained.

As an immediate consequence of Theorem 2.4, we obtain a method to compute with
certainty all the zeros in an interval were A(x) is monotonic.

Algorithm 5.1 (Zeros of y′′(x) + A(x)y(x) = 0, A(x) > 0 monotonic). Starting from
a given x0, we compute successive iterates as follows. Given xn, find a solution of
the equation w′′(x) + A(xn)w(x) = 0 such that y(xn)w′(xn) − y′(xn)w(xn) = 0. If
A′(x) < 0 (A′(x) > 0) take as xn+1 the zero of w(x) closer to xn and larger (smaller)
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than xn. If α is the zero of y(x) closest to x0 and large (smaller) than x0, the sequence
{xn} converges to α.

This algorithm generates a monotonic sequence, increasing if A′(x) < 0 and de-
creasing if A′(x) > 0, converging with certainty to a zero. The reason why this is so is
easy to understand from the Sturm theorem. Indeed, if, for instance, A′(x) < 0, then
the zero of the solution of w′′(x) + A(xn)w(x) = 0 larger than xn and closer to xn is
smaller than the zero of α because A(x) < A(xn) if x > xn. Then xn < xn+1 < α.

The method is equivalent to iterating xn+1 = T (xn) with the following fixed point
iteration. Let j = sign(A′(x)), we define

T (x) = x− 1√
A(x)

arctanj

(√
A(x)h(x)

)
with

arctanj(ζ) =


arctan(ζ) if jz > 0,
arctan(ζ) + jπ if jz ≤ 0,
jπ/2 if z = ±∞.

This method converges to α for any x0 in [α′, α) if A′(x) < 0, with α′ the largest zero
smaller than α (analogously for A′(x) > 0).

After a zero α has been computed, Sturm theorem gives us a valid guess for com-
puting the next zero. If, for instance A′(x) < 0, and β is the next zero larger than α,
then

x0 = α− jπ/
√
A(α), j = sign (A′(x)) (5.2)

is such that x0 ∈ (α, β) because A(x) < A(α) if x > α (see Theorem 2.3). Starting
form this x0 and applying again Algorithm 5.1, we obtain convergence to β. In this way
we can compute all the successive zeros in an interval where A(x) is monotonic.

For A′(x) > 0 the same ideas can be applied but the zeros are computed in de-
creasing order. Combining the fixed point iteration with the step (5.2) we obtain the
following algorithm:

Algorithm 5.2. Computing zeros for A(x) monotonic in an interval [a, b]. Repeat until

a value of x outside the interval [a, b] is reached:

1. Iterate T (x) starting from x0 until an accuracy target is reached. Let α be the
computed zero.

2. Take x0 = T (α) = α + π/
√
A(α) and go to 1.

A simple example of computation with this algorithm is shown in Fig. 5.1 for an
elementary case: the zeros of y(x) = x sin(1/x), satisfying y′′(x) + x−4y(x) = 0.

The method does not only converge with certainty, but it does also converge in a fast
way. The method has fourth order convergence; indeed, it is easy to check that

ϵn+1 =
A′(α)

12
ϵ4n +O

(
ϵ5n
)
, ϵk = xk − α.
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Figure 5.1: Computation of the zeros of y(x) = x sin(1/x), solution of y′′(x) +
x−4y(x) = 0, with four digits accuracy. The sequence of operations is T (x[1]) = x[2],
T (x[2]) = x[3] (x[3] provides four digits) x[4] = x[3] + π/A(x[3]) (smaller than the
next zero by Sturm comparison) T (x[4]) = x[5], T (x[5]) = x[6] (x[6] provides four
digits)

Apart from this, the method was proved to have good nonlocal convergence in the sense
that, once a zero is computed, the estimation for the next zero (5.2) produces conver-
gence in few iterations. The method has fast convergence due to its fourth order and
good nonlocal behavior, requiring typically only 3 or 4 iterations for computing with
100-digits accuracy. Additionally, the algorithm computes with certainty all the zeros
in each subinterval where A(x) is monotonic.

The main requirement is that the monotonicity properties of the coefficient A(x) are
known in advance. Fortunately, and as explained in Section 2.1, this work has already
been carried out for Gauss and confluent hypergeometric functions and considering dif-
ferent changes of variable [2, 3]; in that cases, these properties can be analyzed just by
to solving of a second order algebraic equation.

In other cases, computing the regions of monotony may be not so straightforward.
An example is provided by the zeros of

xCν(x) + γC ′
ν(x).

For computing these zeros, we first obtain the second order ODE satisfied by ỹ(x) =
y′(x), y(x) = xγCν(x), transform to normal form with a change of function and then
solve the monotonicity. After this, the fourth order method can be applied. In this case
studying of the monotonicity of the resulting coefficient A(x) implies solving cubic
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equations [11]. The resulting method is very efficient and it is reliable, also for the
computation of double zeros [7].

5.3 Computing Complex Zeros of Special Functions
It is possible to extend the previous fourth order method to zeros in the complex plane.
We start considering the trivial case of A(z) constant. Then the general solution of
w′′(z) + A(z)w(z) = 0 reads

w(z) = C sin
(√

A(z)(z − ψ)
)
,

and the zeros are over the line

z = ψ + e−iφ
2 λ, λ ∈ R, φ = argA(z).

In other words, the zeros are over an integral line of

dy

dx
= − tan(φ/2). (5.3)

The method for complex zeros is based on the assumption that ifA(z) is not constant
the curves where the zeros lie will be approximately given by (5.3), but with variable φ.
This assumption is equivalent to consider that the Liouville–Green (or WKB) approxi-
mation is accurate. The WKB approximation with a zero at z(0) is

w(z) ≈ CA(z)−1/4 sin

(∫ z

z(0)
A(ζ)1/2dζ

)
and other zeros lie over the curve such that

ℑ
∫ z

z(0)
A(ζ)1/2dζ = 0. (5.4)

Those curves are also given by (5.3). These are the so-called anti-Stokes lines (ASLs).
The method for computing complex zeros follows the path of the ASLs and it is

similar to the method for real zeros. Given z(0) (y(z(0)) = 0) and assuming that |A(z)|
decreases for increasing ℜz we consider the following algorithm to compute the next
zero:

Algorithm 5.3. Basic algorithm for complex zeros; |A(z)| decreasing.

1. Take z0 = H+(z(0)) = z(0) + π/
√
A(z(0)).

2. Iterate zn+1 = T (zn) until |zn+1 − zn| < ϵ, with

T (z) = z − 1√
A(z)

arctan

(√
A(z)

w(z)

w′(z)

)
. (5.5)
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Figure 5.2: Zeros of the Bessel function Y10.35(z) in the quadrant ℜz > 0, ℑz > 0
(black circles), and first estimations to the zeros (white circles); the dotted line is the
anti–Stokes line passing through the zero with larger imaginary part.

3. Take as approximate zero α = zn+1 and z0 = α. Go to 1.

We observe that if A(z) has slow variation, the first step might be a good approxi-
mation to z(1). In addition, the step is tangent to the anti-Stokes line (ASL) at z(0) (that
is: the straight line joining z(0) and z0 is tangent at z(0) to the ASL passing through this
point). That the first step is a good approximation to z(1) will depend on how accurate is
the WKB approximation. On the other hand, T (z) is a fixed point iteration with order of
convergence 4, and this fact does not depend on the validity of the WKB approximation.

Figure 5.2 shows the complex zeros of the Bessel function Y10.35(z) in the first quad-
rant, the first estimations provided by the method together with the ASL passing through
the zero with largest imaginary part. The algorithm starts with this zero and computes
the following zeros (with successively smaller imaginary parts). The zeros are very
close to the ASL and the first estimations are very reasonable, except that after com-
puting the last zero with positive imaginary part the estimation for the next zero (which
is on the real line) is not accurate. Furthermore, this zero appears well separated from
the ASL. We conclude that the WKB approximation works initially well but that it is
not accurate for computing the last zero (although the iteration finally converges to this
zero). The problem with this last zero is that WKB fails as a principal Stokes line is
crossed.

The way to avoid computing zeros which are separated from the initial anti-Stokes
line is to divide the problem in different sectors in the complex plane in such a way that
a principal Stokes lines are not crossed. For more details and some explicit algorithms,
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we refer to [19].
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