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Abstract

The goal of the present paper is to show how to study hybrid systems with
complex behavior (including Zeno points) by methods of time scale analysis. We
first transform impulsive differential problems with countably many impulses (de-
scribing the above hybrid systems) into dynamic problems on a well chosen time
scale domain and then apply a version of Peano’s theorem for multivalued case on
time scales in order to achieve an existence result for the considered problem. We
thus offer an alternative proof for [22, Theorem 1], where the tools were coming
from the theory of measure driven differential inclusions.
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1 Introduction
Generally, the term “hybrid” means “heterogeneous”. When speaking about hybrid
systems, we refer to systems containing parts with different attributes, in particular to
systems that are combinations of continuous and discrete (in time or values) systems.
Hybrid systems arise each time a digital device intercomes into a real world process,
but not only: we refer to continuous systems controlled by discrete logic, i.e., the so-
called embedded systems (thermostat, aircraft autopilot modes) or to continuous sys-
tems with a phased operation (such as, bouncing balls or walking robots). For exam-
ple, the sampled-data or digital control systems are systems described by differential
equations (so, working with continuous-valued variables on a continuous time domain,
shortly analog signals) that are controlled by a discrete-time controller, described by
difference equations.
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Hybrid systems could be time-driven (studied through differential or difference equa-
tions) or event-driven (historically studied via automata or Petri net models). The neces-
sity of an unitary approach is clear when thinking of hybrid systems where the interac-
tion between the continuous and the discrete parts is considerable, such as in automotive
engine control. E.g., any accurate model for a four-stroke gasoline engine should take
into consideration the fact that the power train and air dynamics are continuous-time
processes, while the pistons have four modes of operation corresponding to the stroke
they are in (therefore, a discrete event process) and their interconnection is significant:
the transition between two phases of the pistons is given by the motion of the power
train which, at his turn, depends on the torque produced by each piston (see [3]).

At the two extremities of the spectrum in the current approach of hybrid systems are
the extensions of the theories available for continuous systems in order to allow discrete
perturbations, respectively the extensions of the methodologies known for discrete sys-
tems towards hybrid systems. Our work is situated closer to the former situation: we
will focus on hybrid systems whose continuous behavior is subjected to discrete per-
turbations. In the literature on impulsive systems on bounded intervals, usually only
a finite number of impulses intervene (see [21]) or, when their number is infinite, it is
imposed that they accumulate only once, at the right (e.g., [17], see also [22] and the ref-
erences therein). We will allow a countably infinite number of perturbations in a finite
interval of time, that could accumulate in a finite number of points (that are known as
Zeno points, see [23, p. 78]). Otherwise said, we provide a way to study hybrid systems
with complex Zeno behavior.

The chosen method is that of analysis on time scale domains, that are arbitrary
closed sets of real numbers (not only real intervals or discrete sets, as in the classi-
cal continuous, respectively discrete analysis), introduced in 1988 by S. Hilger in his
PhD thesis (see also [19]). At two decades distance from the beginning of this theory,
the measure and integral were defined and studied on such domains: the ∆-measure
was introduced by Guseinov [18], the Riemann and Lebesgue ∆-integrals were stud-
ied by Bohner and Guseinov [7] in the 1-dimensional case and then generalized to the
n-dimensional Euclidean space, the integration on curves in the time scales plane [6]
and the Green formula [8] were obtained by Bohner and Guseinov and even the Cauchy
∆-integral [20] and the weak Riemann ∆-integral [14] were discussed and many appli-
cations were given. We will make use of the notion of Lebesgue ∆-integral, already
involved in a considerable number of existence results (see [4, 7, 16]).

After the preliminary section, we will prove a Peano theorem analog for multival-
ued dynamic problems on time scales and afterwards, by a procedure similar to that
described in [15], we provide an existence result for impulsive inclusions describing
hybrid systems with an arbitrary number of Zeno points, by embedding this class of
problems into the class of dynamic problems on time scales. Thus, we offer an al-
ternative proof of [22, Theorem 1], where the approach was that of measure driven
differential inclusions.
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2 Notations and Preliminary Facts
In order to make the paper self-contained, we start by introducing some preliminary
notions from the time scale analysis (we refer the reader to [1, 9, 10] and the references
therein).

A time scale T is a nonempty closed subset of real numbers R, with the subspace
topology inherited from the standard topology of R (such as, the real intervals, the
subsets of N or combinations between these two). By [a, b]T = {t ∈ T : a ≤ t ≤ b}
(respectively [a, b)T = {t ∈ T : a ≤ t < b}) we denote the time scales intervals with
endpoints a, b ∈ T.

Definition 2.1. The forward jump operator σ : T→ T and the backward jump operator
ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t},
respectively.

We say that σ(M) = M if T has a maximum M (so, inf ∅ = supT) and ρ(m) = m
if T has a minimum m (otherwise said, sup ∅ = inf T).

The jump operators σ and ρ allow the classification of points in time scale in the
following way: t is called right dense, right scattered, left dense, left scattered, dense
and isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t) and
ρ(t) < t < σ(t), respectively.

Definition 2.2. Let f : T → Rn and t ∈ T. Then the ∆-derivative of f at the point t,
f∆(t), is the element of Rn satisfying that for any ε > 0 there exists a neighborhood of
t on which ∥∥f(σ(t))− f(s)− f∆(t)[σ(t)− s]

∥∥ ≤ ε|σ(t)− s|.

Remark 2.3. In particular, when T = R, f∆ = f ′ is the usual derivative, while f∆ = ∆f
is the well-known forward difference operator when T = Z. Consequently, the time
scale analysis gives us the possibility to unify the treatment of differential and difference
equations.

Similarly one can define the ∇-derivative:

Definition 2.4. Let f : T → Rn and fix t ∈ T. Then the ∇–derivative f∇(t) is the
element of X such that for any ε > 0 there exists a neighborhood of t on which∥∥f(ρ(t))− f(s)− f∇(t)[ρ(t)− s]

∥∥ ≤ ε|ρ(t)− s|.

We will focus on the ∆-part of time scales theory, but if necessary almost the same
could be done with the∇-theory (although a specific care must be taken when switching
between the two, as seen in [4]).

As for the measure theory on time scales, for a precise definition and basic properties
of the Lebesgue measure on T, that will be denoted by µ∆, we refer the reader to [12].
For properties of Lebesgue integral on time scales see [9, 10].
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Let us now recall the notion of absolute continuity on time scales [11] and its charac-
terization, similar to that well-known in the analysis on real intervals. Note that in [11]
the authors are concerned with the behavior of real-valued functions, but the generaliza-
tion to the case of finite-dimensional spaces is immediate.

Definition 2.5. A function f : T→ Rn is called absolutely continuous if for every ε > 0

there exists δε > 0 such that
k∑
i=1

‖f(bi)− f(ai)‖ < ε whenever {[ai, bi)T; 1 ≤ i ≤ k} is

finite pairwise disjoint family of subintervals of T satisfying
k∑
i=1

(bi − ai) < δε.

Suppose in the sequel that the time scale domain T is bounded and 0 is its minimum.

Theorem 2.6 (See [11, Theorem 4.1]). A function f : T → Rn is absolutely con-
tinuous if and only if it is ∆-differentiable µ∆-a.e., f∆ is Lebesgue ∆-integrable and∫

[0,t)T

f∆(s)∆s = f(t)− f(0), for every t ∈ T.

Also,

Proposition 2.7 (See [16, Proposition 2.19]). If g : T→ Rn is Lebesgue-∆-integrable,

then the primitive t 7→
∫

[0,t)T

g(s)∆s is absolutely continuous and its derivative equals

to g, µ∆-a.e.

3 Main Results
We are concerned with the study of hybrid systems with an arbitrary (finite) number of
Zeno points (i.e., for which the discrete perturbations affecting the continuous dynamics
accumulate in a finite amount of time). More precisely, we focus on systems described
by an initial value impulsive differential problem:

ẏ(t) ∈ F (y(t)) , a.e. t ∈ [0, 1] \ {t1, . . . , tm, . . .}, (3.1)

∆y(ti) ∈ αiS(y(ti), αi), ∀i ∈ {1, . . . ,m, . . .}, (3.2)

y(0) = y0, (3.3)

with countably infinitely many impulsive moments (tm)m∈N having a finite number of
accumulation points.

One may suppose, without restricting the generality, that the sequence (tm)m∈N has
only one accumulation point and that tm ↑ t̃ (if tm ↓ t̃, then the same could be done, but
using the ∇-derivative instead of ∆-derivative); obviously, if the set of accumulation
points would contain more than one element, then the procedure should be repeated for
each element.
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By an idea that was described in [15] in the case of a finite number of impulses, we

choose a sequence of positive numbers (γi)i∈N such that
∞∑
i=1

γi = γ and define the set

(contained in [0, 1 + γ])

T = [0, t1] ∪ [t1 + γ1, t2 + γ1] ∪ [t2 + γ1 + γ2, t3 + γ1 + γ2] ∪ . . . ∪ [t̃+ γ, 1 + γ]

which is a time scale domain. Let x : T→ Rn be the function defined by

x(t) =

{
y(β(t))+, if t ∈ {t1 + γ1, t2 + γ1 + γ2, . . .},
y(β(t)), otherwise,

where β : T→ [0, 1] is given by

β(t) =



t, if t ∈ [0, t1],
t− γ1, if t ∈ [t1 + γ1, t2 + γ1],
t− (γ1 + γ2), if t ∈ [t2 + γ1 + γ2, t3 + γ1 + γ2],
...
t− γ, if t ∈ [t̃+ γ, 1 + γ].

If N is the null-measure subset of [0, 1] where y is not differentiable, then our impulsive
differential problem can be stated as a dynamic problem on the described time scale, as
follows:

x∆(t) ∈

 F (x(t)) , if t /∈ β−1(N),
αjS(x(t)), αj)

γj
, if t = tj + γ1 + . . .+ γj−1, j ∈ {1, 2, . . .},

x(0) = y0,

where γ0 = 0. Remark that β−1(N) contains {t1, t1 +γ1, t2 +γ1, t2 +γ1 +γ2, . . . , t̃+γ},
due to the fact that all the points t̃, tm ∈ N .

This writing is a consequence of the properties of ∆-derivative (see [10, Theorem
1.3]) which, at a right-scattered point, such as t = tj + γ1 + . . .+ γj−1, equals to

x∆(t) =
x(σ(t))− x(t)

σ(t)− t
=
x(σ(t))− x(t)

γj
∈ αjS(x(t)), αj)

γj
.

Let us note that the function x is ∆-differentiable except on β−1(N) \ {t1, t2 + γ1, . . .},
that is a µ∆-null set.

In this way, it will be possible to study impulsive differential problems with a count-
able number of impulses on a real bounded interval by methods of analysis on time
scales.
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Next, without major changes (in the method) comparing to the case of similar prob-
lems on real intervals, we state an analog of Peano’s theorem, i.e., an existence result
for the following set-valued nonautonomous dynamic problem on a bounded time scale:

x∆(t) ∈ F̃ (t, x(t)), µ∆ − a.e. t ∈ T, (3.4)

x(0) = x0. (3.5)

Notice that Peano’s theorem on time scales was investigated (in the single-valued case)
in [13], an example being also included for infinite dimensional space-valued functions.

Theorem 3.1. Let F̃ : Ω → ck(Rn) be an upper semicontinuous multifunction, where
Ω ⊂ T × Rn is an open set. Then the dynamic problem (3.4)–(3.5) admits Lipschitz
continuous solutions on a time-scale interval [0, T ]T.

Proof. As F is upper semicontinuous with compact values, there exist two positive
constants M,T such that [0, T ]T × (x0 + TMB0) ⊂ Ω and ‖F (t, x)‖ ≤ M, ∀(t, x) ∈
[0, T ]T × (x0 + TMB0) (here B0 is the unit ball in Rn). In a classical way (see e.g., [5,
Theorem 1, p. 129]), we define the set

K = {x : [0, T ]T → Rn;x is M -Lipschitz and x(0) = x0}

which is nonempty, convex and compact, by Arzela–Ascoli theorem on time scales
( [2]). We also consider the set-valued operator

Ξ : K → K, Ξ(x) = {z ∈ K; z∆(t) ∈ F (t, x(t)) µ∆ − a.e. }

with convex and nonempty values (since, by Proposition 2.7, it contains the primitives
of all measurable selections of F (·, x(·))). An application of Alaoglu’s theorem in the
dual of the Banach space of Lebesgue-∆-integrable functions (see [16, Theorem 2.11])
implies that the values are also closed, therefore compact, and that Ξ is upper semicon-
tinuous. In conclusion, it satisfies the hypothesis of Kakutani’s fixed point theorem and
it possesses fixed points. Each such fixed point is a solution of the announced prob-
lem.

In what follows, we apply Theorem 3.1 in order to obtain an existence result for
the impulsive differential problem (3.1)–(3.3), that was proved in [22] by methods of
the theory of measure driven differential inclusions (here, the Lipschitz continuity is
understood with respect to the Hausdorff–Pompeiu distance).

Let us first clarify the notion of solution that will be obtained in this setting.

Definition 3.2. A function y : [0, 1] → Rn is a solution of the problem (3.1)–(3.3) if
there is an integrable function Φ : [0, 1] → Rn with Φ(t) ∈ F (y(t)) a.e. and βi ∈ Rn

with βi ∈ S(y(ti), αi) such that

y(t) =

∫ t

0

Φ(s)ds+
∑
i∈J(t)

αiβi,

where J(t) = {i ∈ N; ti < t}.
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Theorem 3.3 (See [22, Theorem 1]). Suppose that F : Rn → ck(Rn) and S : Rn ×
[0, 1]→ k(Rn) satisfy the following conditions:

i) F is Lipschitz continuous;

ii) S is bounded and Lipschitz continuous in the first variable, uniformly with respect
to the second one;

iii)
∞∑
i=1

αi <∞.

Then the impulsive problem (3.1)–(3.3) admits solutions.

Proof. Let M1, resp. M2 be the Lipschitz constants of F , resp. S(· , α). For each

j ∈ N, let us choose γj such that
αj
γj

=
M1

M2

. Obviously, by hypothesis iii), both series

of terms αj and γj converge and

∞∑
j=1

γj =
M2

M1

∞∑
j=1

αj = γ.

To find solutions of impulsive differential problem (3.1)–(3.3) means to find solutions
of the dynamic initial value problem

x∆(t) ∈ F̃ (t, x(t)), µ∆ − a.e.
x(0) = y0,

where F̃ : T× Rn → ck(Rn) is given by

F̃ (t, x) =

 F (x) , if t /∈ {t = tj + γ1 + . . .+ γj−1, j = 1, 2, . . .},
αjS(x, αj)

γj
, if t = tj + γ1 + . . .+ γj−1, j ∈ {1, 2, . . .}.

We need to show that the conditions of Theorem 3.1 are satisfied for this dynamic prob-
lem. The upper semicontinuity of F̃ comes immediately from hypothesis i) at every
point (t, x) where t /∈ {t = tj + γ1 + . . . + γj−1, j = 1, 2, . . .} ∪ {t̃ + γ}. The upper
semicontinuity at an arbitrary point (t, x) with t of the form t = tj+γ1 +. . .+γj−1, j =
1, 2, . . ., follows by the remark that we may suppose, without restricting the generality,
that

F (x) ⊂ M1

M2

S(x, αj),∀j ∈ N

by replacing, if necessary, F (x) by F (x) ∩ ∩∞j=1

M1

M2

S(x, αj). Finally, in order to prove

the upper semicontinuity at the points where t = t̃+γ, notice that the physical meaning
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of the set-valued function S naturally implies that we may consider, for every x ∈ Rn,
that

lim
α→0

S(x, α) ⊂ M2

M1

F (x).

This suffices to our purpose since, when a point of the form t = tj+γ1 + . . .+γj−1, j =
1, 2, . . . tends to t̃+ γ, in fact lim

j→∞
αj = 0.

Finally, we present an example of hybrid system for which Theorem 3.3 asserts the
existence of executions:

Example 3.4 (Example “Ball and Paddle” in [22]). Consider a player trying to keep
in the air a table tennis ball by hitting it with a paddle faster and faster (at the same
time, lighter and lighter) until it rests on the table and then “reversing” the trajectory
(i.e., by hitting it up again). The moment when the ball comes to rest on the table is a
Zeno point and if the variable (x1(t), x2(t)) represents the pair (height,vertical velocity),
F (x1, x2) = (x2,−1) and S(x, α) = (0, α), then the preceding result guarantees the
existence of executions for this hybrid system.

Remark 3.5. By the same method, namely embedding the impulsive differential prob-
lems (with a countable set of impulses occurring in a finite amount of time) into dynamic
problems on time scale domains, more existence results could be obtained starting from
existence results known on time scales (such as, those proved in [4,14,15]), under more
general assumptions comparing to those presented above.
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[13] M. Cichoń. A note on Peano’s theorem on time scales. Appl. Math. Lett.,
23(10):1310–1313, 2010.
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Carathéodory functions. Adv. Difference Equ., 2010. Art. ID 650827, 20 pp.

[17] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice. Hybrid systems:
Generalized solutions and robust stability, page 112. Proc. IFAC Symp. Nonlinear
Control Systems. Stuttgart, Germany, 2004.



326 B.–R. Satco and C.–O. Turcu

[18] G. Sh. Guseinov. Integration on time scales. J. Math. Anal. Appl., 285(1):107–127,
2003.

[19] S. Hilger. Analysis on measure chains-a unified approach to continuous and dis-
crete calculus. Results Math., 18(1–2):18–56, 1990.

[20] T. Kulik and C. Tisdell. Volterra integral equations on time scales: Basic qual-
itative and quantitative results with applications to initial value problems on un-
bounded domains. Int. J. Difference Equ., 3(1):103–133, 2008.

[21] V. Lakshmikantham, D.D. Bainov, and P.S. Simeonov. Theory of impulsive dif-
ferential equations, volume 6 of Series in Modern Applied Mathematics. World
Scientific Publisher Co., 1989.

[22] J. Lygeros, M. Quincampoix, and T. Rzeżuchowski. Impulse differential inclu-
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