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Abstract

The aim of this work is to study travelling wavefronts in a discrete-time inte-
grodifference equation with a particular top-hat kernel. An approximation of the
wavefront shape by a difference equation solution is presented.
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1 Introduction
The famous Fisher equation

∂u

∂t
= D

∂2u

∂x2
u+ ru(1− u) (1.1)

was introduced as a model for the spread of an advantageous allele [5]. Later on, the
equation was adopted for the spatial population ecology [6,17] as a model of population
invasion. In such a case, u denotes population density. The equation (1.1) admits travel-
ling wave solutions, i.e., solutions of the form u = u(x−ct), of all velocities c ≥ 2

√
rD.

If the initial function possesses a compact support, then all of the solutions converge to
a travelling waves of minimum speed c∗ = 2

√
rD [7]. Besides the question of existence

and stability of the travelling wave, there is a problem to determine the shape of it. An
approximate solution of the problem was obtained by a perturbation method [4].

Equation (1.1) models a spatial spread of a population with overlapping genera-
tions growing continuously in time. To describe a spatially distributed population with
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nonoverlapping generations, Kot and Schaffer [10] proposed the integrodifference equa-
tion

u(t+ 1, x) =

∞∫
−∞

k(x− y)f
(
u(t, y)

)
dy, t = 0, 1, 2, . . . , (1.2)

where the function f describes a growth of population size and the kernel k models
a spatial spread of the population. An explicit solution of the equation fits well to
insect dispersal data [9]. Equation(1.2) poses a natural generalization of the impulsive
reaction-diffusion model [11]:

∂u

∂t
= D

∂2u

∂x2
, x ∈ R, t ∈ (i, i+ 1), i = 0, 1, 2, . . . ,

lim
t→i+

u(t, x) = f
(
u(i, x)

)
, x ∈ R.

The nonnegative function f is defined on [0,∞) and it should satisfy the conditions

f(0) = 0, f ′(0) > 0, f(K) = K for some K > 0, (1.3)

such as the Beverton–Holt stock-recruitment curve [2, 15]

f(u) =
Kλu

K + (1− λ)u
, λ > 1, (1.4)

the logistic difference equation [14, 18], or the Ricker curve [16]

f(u) = u
(
1 + r − r

K
u
)
, f(u) = u exp

{
r
(
1− u

K

)}
, r > 0.

The kernel k may be any probability density function, i.e., it should satisfy

k ≥ 0,

∞∫
−∞

k(s)ds = 1.

If an initial function possesses compact support and the kernel has a moment-generating
function for some range about the origin, i.e., if there exists a positive constant µ0 with
the property

M(µ) =

∞∫
−∞

eµsk(s)ds < ∞ (1.5)

for all |µ| ≤ µ0, then travelling waves exists only for c not less than a minimal speed
c∗, [1, 3], and the travelling wave with the speed c∗ is asymptotically stable [12]. The
widely used kernels satisfying the above conditions are the Gaussian and the Laplace
(double exponential) ones

k(s) =
1

2
√
πD

exp

{
− s2

4D

}
, k(s) =

α

2
e−α|s|,
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or the top-hat (uniform) kernel

k(s) =

{
1/2β, −β < s < β

0, else
, (1.6)

see [13].
Mark Kot [8] adopted the Canosa’s perturbation method to extract the shape of trav-

elling waves from the equation (1.2) with the exponential and double exponential ker-
nels. But the method fails for the top-hat kernel.

The aim of the paper is to suggest a method of approximation the wavefront shape
in the case of the top-hat kernel (1.6). The subsequent section summarized prerequisite
results that slightly modify some Kot’s [8] ideas. The main result-approximation of the
wavefront shape by a solution of a difference equation-is presented in Section 3.

2 The Travelling Wave Solution
Travelling waves are solutions of equation (1.2) that satisfy

u(t, x) = u(0, x− ct)

for some positive constant c. In effect, each iterate yield a lateral translation c with no
other change in the shape of solution, c denotes the wave speed. In particular, such a
solution u satisfies

u(t, x− c) = u
(
0, x− c(t+ 1)

)
= u(t+ 1, c).

Let U = U(x) be the shape of travelling wave solution, i.e., U(x) = u(t, x) for some t
fixed. Then by (1.2) the function U satisfies

U(x− c) =

∞∫
−∞

k(x− y)f
(
U(y)

)
dy. (2.1)

Let us search the minimum possible wave speed c. It is determined by the local behavior
of (2.1) in the neighborhood of U∗ ≡ 0. The linearization of the function f in such a
neighborhood is just

f(U) ≈ f(0) + f ′(0)U = f ′(0)U

by (1.3). Hence, the linearization of equation (2.1) reads

U(x− c) = f ′(0)

∞∫
−∞

k(x− y)U(y)dy. (2.2)
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For a rightward moving wave, one may attempt a solution of the form

U(x) = Ae−µx (2.3)

with µ positive. Substituting it into (2.2), we obtain

eµc = f ′(0)

∞∫
−∞

k(x− y)e−µ(x−y)dy = f ′(0)M(µ), (2.4)

where M is the moment-generating function defined by the integral in (1.5). Let us put
Φ(µ) = f ′(0)M(µ). The function Φ satisfies

Φ(0) = f ′(0) > 1, Φ(µ) > 0 for µ > 0

according to the properties (1.3). Moreover, assumption (1.5) allows us to evaluate

Φ′(µ) = f ′(0)

∞∫
−∞

sk(s)eµsds = f ′(0)

∞∫
0

s
(
k(s)eµs − k(−s)e−µs

)
ds ≥

≥ f ′(0)

∞∫
0

s (k(s)− k(−s)) ds = f ′(0)

∞∫
−∞

sk(s)ds ≥ 0,

Φ′′(µ) = f ′(0)

∞∫
−∞

s2k(s)eµsds ≥ 0.

That is, the function Φ is a positive increasing convex function with Φ(0) > 1. Conse-
quently, there exists a c∗ > 0 such that equation (2.4) has no real root for c < c∗ and it
has two real roots for c > c∗. Hence, c∗ is the searched minimal wave speed. Of course,
equation (2.4) has the double root µ∗ for c = c∗, i.e., c = c∗ and µ = µ∗ satisfy the
equation

ceµc = Φ′(µ). (2.5)

The provided considerations lead to the conclusion: The minimal wave speed c and
the parameter µ describing the shape of a “leading edge” of the travelling wave are
solutions of the system of equations (2.4), (2.5) that can be rearranged to the form

c =
M ′(µ)

M(µ)
, eµc = f ′(0)M(µ). (2.6)
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3 The Wavefront Shape for the Top-Hat Kernel
Let k be the top-hat kernel (1.6) and define

F (x) =
coshx

sinhx
− 1

x
, G(x) =

x

sinhx
exF (x).

The first semester calculus yields, that

M(µ) =
sinh βµ

βµ
, M ′(µ) =

1

βµ

βµ cosh βµ− sinh βµ

µ
.

Now, the first equality of (2.6) takes the form

c

β
=

cosh βµ

sinh βµ
− 1

βµ
= F (βµ), (3.1)

and, subsequently, the second equation of (2.6) reads

f ′(0) =
βµ

sinh βµ
eβµF (βµ) = G(βµ). (3.2)

Since

lim
x→0+

G(x) = 1, lim
x→∞

G(x) = ∞, G′(x) =
(coshx)2 − (x2 + 1)

(sinhx)3
exF (x) > 0

for x > 0, the equation (3.2) possesses unique solution µ > 0 provided, that f ′(0) > 1.
Moreover,

lim
x→0+

F (x) = 0, lim
x→∞

F (x) = 1, F ′(x) =
(sinhx)2 − x2

(x sinhx)2
> 0 for x > 0.

This observation together with equality (3.1) implies 0 < c/β < 1, that is

0 < c < β. (3.3)

Equation (2.1) for the top-hat kernel (1.6) gains the form

U(x− c) =
1

2β

x+β∫
x−β

f
(
U(y)

)
dy.

Differentiating it by x, we obtain the equality

U ′(x− c) =
f
(
U(x+ β)

)
− f

(
U(x− β)

)
2β

.
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The substitution
z =

x

β
, V (z) = U(βz), γ =

c

β

simplifies the previous equality to

2V ′(z − γ) = f
(
V (z + 1)

)
− f

(
V (z − 1)

)
.

Let us denote vn = V (n). Inequality (3.3) yields 0 < γ < 1 and then the derivative on
the right hand side of the previous equality for z = n can be approximated by the term
vn − vn−1. Finally, let us introduce the function

g(v) = 2v − f(v). (3.4)

This way, we obtain the implicit second order difference equation

f(vn+1)− 2vn + g(vn−1) = 0. (3.5)

Now, we can conclude: Let g be the function defined by (3.4). If the difference equation
(3.5) possesses the solution {vn}∞n=−∞ such that

lim
n→−∞

vn = K and lim
n→∞

vn = 0, (3.6)

then vn ≈ U(βn).
The function g defined by (3.4) with the Beverton–Holt function f (1.4) can be

inverted,

g−1(x) =
K(λ− 2) + x(λ− 1) +

√(
K(λ− 2) + x(λ− 1)

)2
+ 4Kx(λ− 1)

2(λ− 1)
,

and equation (3.5) becomes “backward” explicit,

vn−1 = g−1
(
2vn − f(vn+1)

)
. (3.7)

According to (2.3) we can solve this equation for the initial values

v0 = ε, v1 = εe−µβ,

where ε is a small positive number and µ is the unique solution of equation (3.2).
Let us finish with a numerical experiment checking the proposed procedure. The

solution of the difference equation (3.7) with the Beverton–Holt function possessing
parameters λ = 1.5, K = 1, together with the numerical solution of the integrodif-
ference equation (1.2) with top-hat kernel with parameter β = 0.5, is plotted on fig.
3.1.
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Figure 3.1: The solution of the difference equation (3.5) with the Beverton–Holt func-
tion f possessing parameters λ = 15, K = 1 (circles) and a numerical solution of the
integrodifference equation (1.2) with the top-hat kernel (1.6) with β = 0.5 (solid line).

Remark 3.1. The method can be generalized to any symmetric kernel k with compact
support, i.e., for k satisfying

k(x) = k(−x), k(x) = 0 for x ∈ (−∞,−β) ∪ (β,∞),

β∫
−β

k(x)dx = 1.

In such a case we need more sophisticated calculations to verify inequalities (3.3). The
implicit difference equation for a discrete approximation of the wavefront shape takes
the form

k(β)f(vn+1)− vn + vn+1 − k(β)f(vn−1) = 0.

Of course, the equation can have the solution satisfying the boundary conditions (3.6)
only if k(β) ̸= 0.

Acknowledgments
This research was supported by the Czech Grant Agency grant GAP201/10/1032.

References
[1] C. Atkinson and G. E. H. Reuter. Deterministic epidemic waves. Math. Proc.

Cambridge Philos. Soc., 80(2):315–330, 1976.

[2] R. J. H. Beverton and S. J. Holt. On the dynamics of exploited fish populations.
Fisheries Investigations Series 2(19). Ministry of Agriculture, Fisheries, and Food,
London, UK, 1957.



302 Z. Pospı́šil
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