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Abstract

Existence and multiplicity of weak solutions for an elliptic system is studied.
By using Ekeland’s variational principle and the mountain pass theorem, we prove
existence of at least three weak solutions.
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1 Introduction and Main Result

We are concerned with the following elliptic system of (p, q)-biharmonic type:

∆(|∆u|p−2∆u) = λh1(x)|u|p−2u+ Fu(x, u, v) in Ω,

∆(|∆v|q−2∆v) = µh2(x)|v|q−2v + Fv(x, u, v) in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN(N ≥ 1) is a bounded smooth domain, p, q > 1, F ∈ C1(Ω × R2,R),
Fu denotes the partial derivative of F with respect to u, and hi ∈ C(Ω), i = 1, 2, are
nonnegative weight functions.

The investigation of existence and multiplicity of solutions for problems with p-
biharmonic operators has drawn the attention of many authors, see [3, 4, 6–9]. In [3],
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Li and Tang considered the following Navier boundary value problem involving the
p-biharmonic operator:

∆(|∆u|p−2∆u) = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.2)

where p > max

{
1,
N

2

}
and λ, µ ≥ 0. Under suitable assumptions, the existence of at

least three weak solutions is established. In [4], the authors studied the system

∆(|∆u|p−2∆u) = λFu(x, u, v) + µGu(x, u, v) in Ω,

∆(|∆v|q−2∆v) = λFv(x, u, v) + µGv(x, u, v) in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω,

(1.3)

where p, q > max

{
1,
N

2

}
and λ, µ ≥ 0. By a technical approach based on the three

critical points theorem of Ricceri, they obtained existence and multiplicity of solutions.
In [6], Shen and Zhang studied the following system:

∆
(
|∆u|p−2∆u

)
= λ|u|q−2u+

1

p∗∗
Fu(x, u, v) in Ω,

∆
(
|∆v|p−2∆v

)
= µ|v|q−2v +

1

p∗∗
Fv(x, u, v) in Ω,

u = v = ∆u = ∆v = 0 on ∂Ω,

(1.4)

where 1 < q < p <
N

2
, p∗∗ =

Np

N − 2p
, λ, µ > 0, and F ∈ C1(Ω × (R+)2),R+) is

positively homogeneous of degree p∗∗. The authors proved the existence of at least two
positive solutions when the pair parameters satisfy a certain inequality.

The purpose of this paper is to extend some of the results obtained in the paper [1],
for the case of (p, q)-Laplacian to the case of a fourth-order quasilinear system with
weight. We prove the existence of at least three weak solutions for system (1.1). Our
technical approach is based on Ekeland’s variational principle and the mountain pass
theorem. We assume that F (x, u, v) satisfies the following condition:

(F1) lim
|s|+|t|→∞

Fs(x, s, t)

h1(x)|s|p−1
= 0, lim

|s|+|t|→∞

Ft(x, s, t)

h2(x)|t|q−1
= 0, uniformly in x ∈ Ω.

We introduce the space

X :=
(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)
×
(
W 2,q(Ω) ∩W 1,q

0 (Ω)
)
,

which is a reflexive Banach space endowed with the norm

||(u, v)|| = ||u||p + ||v||q,
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where ||u||p =

(∫
Ω

|∆u|pdx
)1/p

and ||v||q =

(∫
Ω

|∆v|qdx
)1/q

.

Consider the following problems:

∆(|∆u|p−2∆u) = λh1(x)|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω
(1.5)

and
∆(|∆v|q−2∆v) = µh2(x)|v|q−2v in Ω,

v = ∆v = 0 on ∂Ω.
(1.6)

Let λ1, µ1 denote the first eigenvalues of problems (1.5) and (1.6), respectively. Accord-
ing to the work of Talbi and Tsouli [8], since hi ∈ C(Ω) and hi ≥ 0, i = 1, 2, λ1 and µ1

are positive, simple, isolated and are given by

λ1 = inf

{
||u||pp : u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω),

∫
Ω

h1(x)|u|pdx = 1

}
,

µ1 = inf

{
||v||qq : v ∈ W 2,q(Ω) ∩W 1,q

0 (Ω),

∫
Ω

h2(x)|v|qdx = 1

}
.

(1.7)

Therefore, ∫
Ω

|∆u|pdx ≥ λ1

∫
Ω

h1(x)|u|pdx for allu ∈ W 2,p(Ω) ∩W 1,p
0 (Ω),∫

Ω

|∆v|qdx ≥ µ1

∫
Ω

h2(x)|v|qdx for all v ∈ W 2,q(Ω) ∩W 1,q
0 (Ω).

(1.8)

Let ϕ1 and ψ1 be the corresponding normalized eigenfunctions to λ1 and µ1, respec-
tively. Moreover, let

λ2 = inf {λ : λ is an eigenvalue of (1.5) with λ > λ1} ,
µ2 = inf {µ : µ is an eigenvalue of (1.6) with µ > µ1} .

(1.9)

The fact that λ1 and µ1 are isolated implies that λ1 < λ2 and µ1 < µ2. It can also be
shown (see Lemma 2.1) that there exist λ ∈ (λ1, λ2] and µ ∈ (µ1, µ2] such that∫

Ω

|∆u|pdx ≥ λ

∫
Ω

h1(x)|u|pdx (1.10)

for all u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) with

∫
Ω

h1(x)|ϕ1|p−2ϕ1udx = 0,∫
Ω

|∆v|qdx ≥ µ

∫
Ω

h2(x)|v|qdx (1.11)

for all v ∈ W 2,q(Ω) ∩W 1,q
0 (Ω) with

∫
Ω

h2(x)|ψ1|q−2ψ1vdx = 0. Now we are ready to

state our main result.
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Theorem 1.1. Assume that (F1) holds and

lim
|s|,|t|→∞

F (x, sϕ1, tψ1) = +∞, uniformly in x ∈ Ω. (1.12)

Then, for λ < λ1 and µ < µ1 sufficiently close to λ1 and µ1, problem (1.1) has at least
three solutions.

Remark 1.2. An example of a nonlinear F that satisfies the assumption (F1) is:

F (x, s, t) = h1(x)h2(x) ln (|s|p + |t|q + 1) for all (x, s, t) ∈ Ω× R2,

where p, q > 1 and h1, h2 ∈ C(Ω) are considered as in problem (1.1).

2 Preliminaries and Proof of Theorem 1.1
Let us denote by 〈ϕ1〉 and 〈ψ1〉 the linear spans of ϕ1 and ψ1, respectively. Define

V = 〈ϕ1〉 × 〈ψ1〉, (2.1)

W =

{
(u, v) ∈ X :

∫
Ω

h1(x)|ϕ1|p−2ϕ1udx = 0,

∫
Ω

h2(x)|ψ1|q−2ψ1vdx = 0

}
. (2.2)

Then we can decompose X as a direct sum of V and W . In fact, let (u, v) ∈ X . Writing

u = αϕ1 + w and v = βψ1 + z,

where (w, z) ∈ X ,

α = λ1

∫
Ω

h1(x)|ϕ1|p−2ϕ1udx and β = µ1

∫
Ω

h2(x)|ψ1|q−2ψ1vdx. (2.3)

One has ∫
Ω

|∆ϕ1|pdx = 1 and
∫

Ω

|∆ψ1|qdx = 1,∫
Ω

h1(x)|ϕ1|p−2ϕ1wdx = 0 and
∫

Ω

h2(x)|ψ1|q−2ψ1zdx = 0.

Therefore, (w, z) ∈ W and
X = V ⊕W.

We begin by establishing the existence of λ and µ for which (1.10) and (1.11) hold.

Lemma 2.1. There exist λ ∈ (λ1, λ2] and µ ∈ (µ1, µ2] such that∫
Ω

|∆u|pdx ≥ λ

∫
Ω

h1(x)|u|pdx, (2.4)∫
Ω

|∆v|qdx ≥ µ

∫
Ω

h2(x)|v|qdx, (2.5)

for all (u, v) ∈ W .
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Proof. For simplicity, we set

ϕ⊥1 =

{
u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) :

∫
Ω

h1(x)|ϕ1|p−2ϕ1udx = 0

}
,

ψ⊥1 =

{
v ∈ W 2,q(Ω) ∩W 1,q

0 (Ω) :

∫
Ω

h2(x)|ψ1|q−2ψ1vdx = 0

}
.

(2.6)

Let

λ = inf

{
||u||pp : u ∈ ϕ⊥1 ,

∫
Ω

h1(x)|u|pdx = 1

}
.

This value is attained in ϕ⊥1 . To see why this is so, let un be a sequence in ϕ⊥1 satisfying∫
Ω

h1(x)|un|pdx = 1 for all n, and
∫

Ω

|∆un|pdx → λ. It follows that un is bounded in

W 2,p(Ω) ∩W 1,p
0 (Ω) and therefore, up to a subsequence, we may assume that

un ⇀ u weakly in W 2,p(Ω) ∩W 1,p
0 (Ω) and un → u strongly in Lp(Ω).

From the strong convergence of the sequence in Lp(Ω), we obtain∫
Ω

h1(x)|u|pdx = lim
n→∞

∫
Ω

h1(x)|un|pdx = 1

and ∫
Ω

h1(x)|ϕ1|p−2ϕ1udx = lim
n→∞

∫
Ω

h1(x)|ϕ1|p−2ϕ1undx = 0,

so that u ∈ ϕ⊥1 . By the weakly lower semicontinuity of the norm || · ||p, we get

λ ≤
∫

Ω

|∆u|pdx ≤ lim inf
n→∞

∫
Ω

|∆un|pdx = λ,

and hence λ is attained at u.
Now we claim that λ > λ1. It follows from (1.7) that λ ≥ λ1. If λ = λ1, then by

simplicity of λ1 there is α ∈ R such that u = αϕ1. Since u ∈ ϕ⊥1 ,

α

∫
Ω

h1(x)|ϕ1|pdx = 0,

which implies α = 0. This contradicts the fact that
∫

Ω

h1(x)|u|pdx = 1. So, choose

λ = min{λ, λ2}. It is clear that λ satisfies (2.4).
In the same way, we prove the existence of µ ∈ (µ1, µ2] such that (2.5) holds, and

the proof of the lemma is complete.
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Definition 2.2. We say that (u, v) ∈ X is a weak solution of problem (1.1) if∫
Ω

|∆u|p−2∆u∆ϕdx+

∫
Ω

|∆v|q−2∆v∆ψdx−
∫

Ω

h1(x)|u|p−2uϕdx

−
∫

Ω

h2(x)|v|q−2vψdx−
∫

Ω

Fu(x, u, v)ϕdx−
∫

Ω

Fv(x, u, v)ψdx = 0

for all (ϕ, ψ) ∈ X .

The corresponding energy functional of problem (1.1) is given by

I(u, v) =
1

p

∫
Ω

|∆u|pdx+
1

q

∫
Ω

|∆v|qdx− λ

p

∫
Ω

h1(x)|u|pdx− µ

q

∫
Ω

h2(x)|v|qdx

−
∫

Ω

F (x, u, v)dx. (2.7)

Let us consider the functional T (u, v) =

∫
Ω

F (x, u, v)dx.

Lemma 2.3. Assume that (F1) holds. Then T ∈ C1(X,R) and

〈T ′(u, v), (a, b)〉 =

∫
Ω

Fu(x, u, v)a+ Fv(x, u, v)bdx

for all (u, v), (a, b) ∈ X .

Proof. It suffices to observe that by (F1), and using the fact that Fs, Ft ∈ C(Ω×R2,R)
for any ε > 0, there exists Cε > 0 such that

|Fs(x, s, t)| ≤ εh1(x)|s|p−1 + Cε,

|Ft(x, s, t)| ≤ εh2(x)|t|q−1 + Cε,
(2.8)

for all (x, s, t) ∈ Ω× R2.

In view of Lemma 2.3, we have I ∈ C1(X,R).

Lemma 2.4. Assume that (F1) holds. Then, for λ < λ1 and µ < µ1, the functional I
is coercive in X and bounded from below on W . Moreover, there exists a constant m,
independent of λ and µ, such that inf

W
I(u, v) ≥ m.

Proof. By Hölder’s inequality, from (2.8) we have

|F (x, u, v)| ≤
∣∣∣∣∫ u

0

|Fs(x, s, v)|ds+

∫ v

0

|Ft(x, 0, t)|dt+ F (x, 0, 0)

∣∣∣∣
≤
∣∣∣∣∫ u

0

(εh1(x)|s|p−1 + Cε)ds+

∫ v

0

(εh2(x)|t|q−1 + Cε)dt

∣∣∣∣+M

≤ ε

p
h1(x)|u|p + Cε|u|+

ε

q
h2(x)|v|q + Cε|v|+M,
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where M = max
x∈Ω
|F (x, 0, 0)|. It follows from (1.8) that

∫
Ω

|F (x, u, v)|dx

≤ ε

(
1

p

∫
Ω

h1(x)|u|pdx+
1

q

∫
Ω

h2(x)|v|qdx
)

+ Cε

(∫
Ω

|u|dx+

∫
Ω

|v|dx
)

+M |Ω|

≤ ε

pλ1

∫
Ω

|∆u|pdx+
ε

qµ1

∫
Ω

|∆v|qdx

+ Cε|Ω|
p−1
p S1

(∫
Ω

|∆u|pdx
) 1

p

+ Cε|Ω|
q−1
q S2

(∫
Ω

|∆v|qdx
) 1

q

+M |Ω|

≤ ε

pλ1

∫
Ω

|∆u|pdx+
ε

qµ1

∫
Ω

|∆v|qdx

+ C ′ε

[(∫
Ω

|∆u|pdx
) 1

p

+

(∫
Ω

|∆v|qdx
) 1

q

]
+M |Ω|

≤ ε

pλ1

∫
Ω

|∆u|pdx+
ε

qµ1

∫
Ω

|∆v|qdx+ C ′ε||(u, v)||+M |Ω|, (2.9)

where S1 and S2 are the embedding constants of W 2,p(Ω) ∩ W 1,p
0 (Ω) ↪→ Lp(Ω) and

W 2,q(Ω) ∩W 1,q
0 (Ω) ↪→ Lq(Ω), respectively, and

C ′ε = Cε max
{
|Ω|

p−1
p S1, |Ω|

q−1
q S2

}
.

For λ < λ1 and µ < µ1, from (1.8), (2.7) and (2.9), we get

I(u, v) ≥ 1

p

(
1− λ

λ1

− ε

λ1

)∫
Ω

|∆u|pdx+
1

q

(
1− µ

µ1

− ε

µ1

)∫
Ω

|∆v|qdx

− C ′ε||(u, v)|| −M |Ω|. (2.10)

Choose ε =
1

2
min

{
λ1

(
1− λ

λ1

)
, µ1

(
1− µ

µ1

)}
. Thus

I(u, v) ≥ λ1 − λ
2pλ1

∫
Ω

|∆u|pdx+
1

2q

(
1− µ

µ1

)∫
Ω

|∆v|qdx− C ′ε||(u, v)|| −M |Ω|

≥ 1

2
min

{
1

p

(
1− λ

λ1

)
,
1

q

(
1− µ

µ1

)}(∫
Ω

|∆u|pdx+

∫
Ω

|∆v|qdx
)

− C ′ε||(u, v)|| −M |Ω|. (2.11)

Let us make the following remark.
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Remark 2.5. For all s, t ≥ 0 we have(
t
1
p + s

1
q

)min(p,q)

≤ 2min(p,q)(t+ s+ 1).

Then,∫
Ω

|∆u|pdx+

∫
Ω

|∆v|qdx ≥ 1

2min(p,q)

[(∫
Ω

|∆u|pdx
) 1

p

+

(∫
Ω

|∆v|qdx
) 1

q

]min(p,q)

−1.

It follows from (2.11) that

I(u, v) ≥ 1

21+min(p,q)
min

{
1

p

(
1− λ

λ1

)
,
1

q

(
1− µ

µ1

)}(
||(u, v)||min(p,q) − 2min(p,q)

)
− C ′ε||(u, v)|| −M |Ω|. (2.12)

Since p, q > 1, I is coercive in X . Similarly, let (u, v) ∈ W . By Lemma 2.1 we get

I(u, v) ≥ 1

p

(
1− λ

λ
− ε

λ1

)∫
Ω

|∆u|pdx+
1

q

(
1− µ

µ
− ε

µ1

)∫
Ω

|∆v|qdx

− C ′ε||(u, v)|| −M |Ω|

≥ 1

p

(
1− λ1

λ
− ε

λ1

)∫
Ω

|∆u|pdx+
1

q

(
1− µ1

µ
− ε

µ1

)∫
Ω

|∆v|qdx

− C ′ε||(u, v)|| −M |Ω|.

Choose ε =
1

2
min

{
λ1

(
1− λ1

λ

)
, µ1

(
1− µ1

µ

)}
. Thus

I(u, v) ≥ 1

2p

(
1− λ1

λ

)∫
Ω

|∆u|pdx+
1

2q

(
1− µ1

µ

)∫
Ω

|∆v|qdx

− C ′ε||(u, v)|| −M |Ω|

≥ 1

21+min(p,q)
min

{
1

p

(
1− λ1

λ

)
,
1

q

(
1− µ1

µ

)}(
||(u, v)||min(p,q) − 2min(p,q)

)
− C ′ε||(u, v)|| −M |Ω|. (2.13)

Hence I is bounded from below onW . Moreover, we can find a constantm independent
of λ and µ such that inf

W
I(u, v) ≥ m, and the proof of the lemma is complete.

Lemma 2.6. Assume that (F1) and (1.12) hold. Then, for λ < λ1 and µ < µ1 suffi-
ciently close to λ1 and µ1, respectively, there exist s− < 0 < s+ and t− < 0 < t+ such
that I(s+ϕ1, t

+ψ1) < m and I(s−ϕ1, t
−ψ1) < m, where m is given by Lemma 2.4.
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Proof. By definition of λ1 and µ1, we have

I(sϕ1, tψ1) =
|s|p

p

∫
Ω

|∆ϕ1|pdx+
|t|q

q

∫
Ω

|∆ψ1|qdx

− λ |s|
p

p

∫
Ω

h1(x)|ϕ1|pdx− µ
|t|q

q

∫
Ω

h2(x)|ψ1|qdx−
∫

Ω

F (x, sϕ1, tψ1)dx

=
|s|p

p

∫
Ω

|∆ϕ1|pdx−
λ|s|p

λ1p

∫
Ω

|∆ϕ1|pdx

+
|t|q

q

∫
Ω

|∆ψ1|qdx−
µ|t|q

µ1q

∫
Ω

|∆ψ1|qdx−
∫

Ω

F (x, sϕ1, tψ1)dx

=
|s|p

p

(
1− λ

λ1

)
+
|t|q

q

(
1− µ

µ1

)
−
∫

Ω

F (x, sϕ1, tψ1)dx. (2.14)

By Fatou’s lemma and from (1.12), there exist s+, t+ > 0 such that∫
Ω

F (x, s+ϕ1, t
+ψ1)dx > −m+ 1 (2.15)

for λ1 −
pλ1

2(s+)p
< λ < λ1 and µ1 −

qµ1

2(t+)q
< µ < µ1. Relations (2.14) and (2.15)

imply that
I(s+ϕ1, t

+ψ1) < m.

Similarly, we get I(s−ϕ1, t
−ψ1) < m, for some s−, t− < 0, and the proof of the lemma

is complete.

Proof of Theorem 1.1. First we show that I satisfies the (PS) condition in X . Let
{zn = (un, vn)} ⊂ X be a (PS) sequence. Since I is coercive, zn is bounded in X ,
so up to subsequence, we may assume that zn ⇀ z = (u, v) weakly in X . Therefore,

〈I ′(un, vn), (un − u, 0)〉 = on(1). (2.16)

By Hölder’s inequality, we have∫
Ω

|h1(x)|un|p−2un(un − u)|dx ≤ |h1|∞
(∫

Ω

|un|pdx
) p−1

p
(∫

Ω

|un − u|pdx
) 1

p

.

(2.17)
Since un → u in Lp(Ω),

lim
n→∞

∫
Ω

h1(x)|un|p−2un(un − u)dx = 0. (2.18)

By (2.8), it is easy to see that

lim
n→∞

∫
Ω

Fu(x, un, vn)(un − u)dx = 0. (2.19)
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Combining (2.16), (2.18) and (2.19), we obtain

lim
n→∞

∫
Ω

|∆un|p−2∆un∆(un − u)dx = 0.

In the same way, we have

lim
n→∞

∫
Ω

|∆u|p−2∆u∆(un − u)dx = 0.

Therefore,

0 = lim
n→∞

∫
Ω

(|∆un|p−2∆un − |∆u|p−2∆u)∆(un − u)dx

≥ lim
n→∞

(||un||p−1
p − ||u||p−1

p )(||un||p − ||u||p),

and ||un||p → ||u||p. By the uniform convexity of W 2,p(Ω) ∩W 1,p
0 (Ω), it follows that

un → u strongly in W 2,p(Ω) ∩W 1,p
0 (Ω). Similar arguments yield that vn → v strongly

inW 2,q(Ω)∩W 1,q
0 (Ω), so that zn → z strongly inX , and I satisfies the (PS) condition.

Let
Λ± = {z ∈ X : z = ±(sϕ1, tψ1) + w, s, t > 0, w ∈ W} (2.20)

and {zn} ⊂ Λ+ be such that I(zn)→ c < m and I ′(zn)→ 0 as n→∞. Then zn → z
strongly inX . Note that ∂Λ+ = W . So, if z ∈ ∂Λ+, then it follows from inf

W
I ≥ m that

I(zn)→ c = I(z) ≥ m, which is impossible. Therefore, z ∈ Λ+, and hence I , satisfies
the (PS)c,Λ+ for all c < m. Similarly, I satisfies the (PS)c,Λ− for all c < m. In view
of Lemma 2.6, for λ < λ1 and µ < µ1 sufficiently close to λ1 and µ1, respectively, we
have

−∞ < inf
Λ+
I < m. (2.21)

By Ekeland’s variational principle in Λ+, there exists a sequence {zn} ⊂ Λ+ such that

I(zn)→ inf
Λ+
I and I ′(zn)→ 0.

Since I satisfies the (PS)c,Λ+ for all c < m, there exists z+ ∈ Λ+ such that

I(z+) = inf
Λ+
I.

Similarly, we find z− ∈ Λ− such that I(z−) = inf
Λ−
I . Hence I has two distinct critical

points z+ and z−. Now, we prove the existence of the third solution. To fix ideas,
suppose that I(z+) ≤ I(z−) and put

J(z) := I(z + z−)− I(z−), e = z+ − z−.
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So, J(0) = 0, J(e) ≤ 0. We can find r > 0 such that B(z−, r) ⊂ Λ−, thus

inf
||z−z−||=r

I(z) ≥ I(z−)

and hence inf
||z||=r

J(z) ≥ 0. Let

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (2.22)

where
Γ =

{
γ ∈ C([0, 1], X) : γ(0) = z−, γ(1) = z+

}
.

Since J also satisfies the (PS) condition and J ′ = I ′, it follows from the mountain pass
theorem (see [5], see also Theorem 6.2 in [2]) that c is a critical value of I . Note that all
paths joining z− to z+ pass throughW , c ≥ m. Therefore, the third solution is obtained,
and the proof of our theorem is complete.

References
[1] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Existence of multiple solutions for

a class of (p, q)-Laplacian systems, Nonlinear Anal. 72 (2010), no. 5, 2243–2250.

[2] B. E. Breckner, D. Repovš and C. Varga, On the existence of three solutions for
the Dirichlet problem on the Sierpinski gasket, Nonlinear Anal. 73 (2010), no. 9,
2980–2990.

[3] C. Li and C.-L. Tang, Three solutions for a Navier boundary value problem involv-
ing the p-biharmonic, Nonlinear Anal. 72 (2010), no. 3-4, 1339–1347.

[4] L. Li and C.-L. Tang, Existence of three solutions for (p, q)-biharmonic systems,
Nonlinear Anal. 73 (2010), no. 3, 796–805.

[5] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985),
no. 1, 142–149.

[6] Y. Shen and J. Zhang, Existence of two solutions for a Navier boundary value prob-
lem involving the p-biharmonic, Differ. Equ. Appl. 3 (2011), no. 3, 399–414.

[7] Y. Shen and J. Zhang, Multiplicity of positive solutions for a Navier boundary-value
problem involving the p-biharmonic with critical exponent, Electron. J. Differential
Equations 2011 (2011), no. 47, 14 pp.

[8] M. Talbi and N. Tsouli, On the spectrum of the weighted p-biharmonic operator
with weight, Mediterr. J. Math. 4 (2007), no. 1, 73–86.



106 M. Massar, E. Rahmani and N. Tsouli

[9] M. Talbi and N. Tsouli, Positive solutions with changing sign energy to a nonho-
mogeneous elliptic problem of fourth order, Bol. Soc. Parana. Mat. (3) 29 (2011),
no. 1, 25–39.


