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Abstract

We prove a second Noether theorem for Lagrangian densities with fractional
derivatives defined in the Riesz–Caputo sense. An application to the fractional
electromagnetic field is given.
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1 Introduction
Emmy Noether proved, in 1918, two theorems and their converses which revealed the
general connection between symmetries and conservation laws in physics. They led to
understanding of laws such as conservation of energy, angular momentum, etc., and also
were instrumental in discoveries of gauge field symmetries. The first theorem applies to
symmetries associated with finite dimensional Lie groups (global symmetries); the sec-
ond to symmetries associated with infinite dimensional Lie groups (local symmetries).

Fractional calculus is a discipline that studies integrals and derivatives of noninteger
(real or complex) order ( [11,12,18]). The field was born more than three centuries ago
and became an ongoing topic with many well-known mathematicians contributing to
its theory (see [22] for a review). The subject is nowadays very active due to its many
applications in mechanics, chemistry, biology, economics, and control theory (see [23]
for a review).

The study of fractional variational problems was introduced by Riewe [20]. The
original motivation was to show that a Lagrangian involving fractional time derivatives
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leads to an equation of motion with nonconservative forces such as friction. It is a re-
markable result since frictional and nonconservative forces are beyond the usual macro-
scopic variational treatment, and consequently, beyond the most advanced methods of
classical mechanics. Riewe generalized the usual variational calculus, by considering
Lagrangians that depend on fractional derivatives, in order to deal with nonconservative
forces. The fractional variational calculus has recently attracted the attention of several
researchers (see, e.g., [1, 2, 4, 16, 17, 19, 21] and references therein). For the state of the
art we refer the reader to the recent book [15].

Noether’s first theorems have been extended to fractional variational problems using
several approaches ( [3, 6–9]). In this paper we generalize the second Noether theorem
to fractional setting using Riesz–Caputo calculus. The paper is organized as follows.
At first, in Section 2, we fix notation by recalling the basic definitions and facts from
the fractional calculus. In Section 3 we prove the second Noether-type theorem for
Lagrangian densities with fractional derivatives defined in the Riesz–Caputo sense. We
end with Section 4, of application our results to a fractional electromagnetic action.

2 Preliminaries
In this section we fix notation by recalling the necessary definitions and facts from the
fractional calculus.

Let α ∈ R and 0 < α < 1, f ∈ L1([a, b],R). By the left Riemann–Liouville
fractional integral of f on the interval [a, b] we mean a function aI

α
x f defined by

aI
α
x f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x ∈ [a, b] a.e.,

by the right Riemann–Liouville fractional integral of f on the interval [a, b] we mean a
function xI

α
b f defined by

xI
α
b f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x ∈ [a, b] a.e.,

where Γ(·) represents the Gamma function. For α = 0, we set aI0
xf = xI

0
b f := If ,

the identity operator. If the function aI
α
x f is absolutely continuous on the interval [a, b],

then the left Riemann–Liouville fractional derivative is given by

aD
α
xf(x) =

1

Γ(1− α)

d

dx

∫ x

a

(x− t)−αf(t)dt.

If the function xI
1−α
b f is absolutely continuous on the interval [a, b], then the right

Riemann–Liouville fractional derivative is given by

xD
α
b f(x) =

−1

Γ(1− α)

d

dx

∫ b

x

(t− x)−αf(t)dt.
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Let f ∈ AC([a, b]). By the left Caputo fractional derivative of f on the interval [a, b]
we mean a function C

aD
α
xf defined by

C
aD

α
xf(x) =

1

Γ(1− α)

∫ x

a

(x− t)−α d
dt
f(t)dt,

and by the right Caputo fractional derivative of f on the interval [a, b] we mean a func-
tion C

xD
α
b f defined by

C
xD

α
b f(x) =

−1

Γ(1− α)

∫ b

x

(t− x)−α
d

dt
f(t)dt.

The Riesz fractional integral Ra I
α
b f of order α is defined by

R
a I

α
b f(x) =

1

2Γ(α)

∫ b

a

|x− θ|α−1f(θ)dθ.

Observe that, from definitions of the Riemann–Liouville and the Riesz fractional inte-
grals, it follows that

R
a I

α
b f(x) =

1

2
[aI

α
x f(x) +x I

α
b f(x)] .

The Riesz fractional derivative RaD
α
b f and the Riesz–Caputo fractional derivative RCa Dα

b f
of order α (0 < α < 1) are defined by

R
aD

α
b f(x) =

1

Γ(1− α)

d

dx

∫ b

a

|x− θ|−αf(θ)dθ ,

RC
a Dα

b f(x) =
1

Γ(1− α)

∫ b

a

|x− θ|−α d
dθ
f(θ)dθ.

Therefore,
R
aD

α
b f(x) =

1

2
[aD

α
xf(x)− xD

α
b f(x)]

and
RC
a Dα

b f(x) =
1

2

[
C
aD

α
xf(x)− C

xD
α
b f(x)

]
.

In the discussion to follow, we need a fractional integration by parts formula. Let
0 < α < 1. If f, g ∈ AC([a, b]), then∫ b

a

g(x) CaD
α
xf(x)dx = f(x)xI

1−α
b g(x)

∣∣x=b

x=a
+

∫ b

a

f(x)xD
α
b g(x)dx,

∫ b

a

g(x) CxD
α
b f(x)dx = −f(x)aI

1−α
x g(x)

∣∣x=b

x=a
+

∫ b

a

f(x)aD
α
xg(x)dx.
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Thus, in the case of the Riesz–Caputo fractional derivative, one has∫ b

a

g(x) RCa Dα
b f(x)dx = f(x)Rx I

1−α
b g(x)

∣∣x=b

x=a
−
∫ b

a

f(x)RaD
α
b g(x)dx. (2.1)

Partial fractional integrals and derivatives are a natural generalization of the cor-
responding one-dimensional fractional integrals and derivatives, being taken with re-
spect to one or several variables. For (x1, . . . , xn), (α1, . . . , αn), where 0 < αi < 1,
i = 1, . . . , n and [a1, b1]× · · · × [an, bn], the partial Riemann–Liouville fractional inte-
grals of order αk with respect to xk are defined by

akI
αk
xk
f(x1, . . . , xn) =

1

Γ(αk)

∫ xk

ak

(xk − tk)αk−1f(x1, . . . , tk, . . . , xn)dtk,

xkI
αk
bk
f(x1, . . . , xn) =

1

Γ(αk)

∫ bk

xk

(tk − xk)αk−1f(x1, . . . , tk, . . . , xn)dtk.

Partial Riemann–Liouville and Caputo derivatives are defined by

akD
αk
xk
f(x1, . . . , xn) =

1

Γ(1− αk)
∂

∂xk

∫ xk

ak

(xk − tk)−αkf(x1, . . . , tk, . . . , xn)dtk,

xkD
αk
bk
f(x1, . . . , xn) =

−1

Γ(1− αk)
∂

∂xk

∫ bk

xk

(tk − xk)−αkf(x1, . . . , tk, . . . , xn)dtk,

C
ak
Dαk
xk
f(x1, . . . , xn) =

1

Γ(1− αk)

∫ xk

ak

(xk − tk)−αk
∂

∂tk
f(x1, . . . , tk, . . . , xn)dtk,

C
xk
Dαk
bk
f(x1, . . . , xn) =

−1

Γ(1− αk)

∫ bk

xk

(tk − xk)−αk
∂

∂tk
f(x1, . . . , tk, . . . , xn)dtk.

Partial Riesz and Riesz–Caputo derivatives are defined by

R
ak
Dαk
bk
f(x1, . . . , xn) =

1

2

[
akD

αk
xk
f(x1, . . . , xn)− xkD

αk
bk
f(x1, . . . , xn)

]
,

and

RC
a Dαk

b f(x1, . . . , xn) =
1

2

[
C
ak
Dαk
xk
f(x1, . . . , xn)− C

xk
Dαk
bk
f(x1, . . . , xn)

]
.

3 Main Results
Consider a system characterized by a set of functions

uj(t, x1, . . . , xm), j = 1, . . . , n, (3.1)
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depending on time t and the space coordinates x1, . . . , xm. We can simplify the notation
by interpreting (3.1) as a vector function u = (u1, . . . , un) and writing t = x0, x =
(x0, x1, . . . , xm), dx = dx0dx1 · · · dxm. Then (3.1) becomes simply u(x) and is called
a vector field. Define the action functional in the form

J (u) =

∫
Ω

L(x, u, RC∇αu)dx, (3.2)

where Ω = R× [a0, b0], R = [a1, b1]× · · · × [am, bm], and RC∇α is the operator(
RC
a0
Dα0
b0
, RCa1 D

α1
b1
, · · · , RCamD

αm
bm

)
,

where α = (α0, α1, . . . , αm), 0 < αi ≤ 1, i = 0, . . . ,m. The function L(x, u, RC∇αu)
is called the fractional Lagrangian density of the field. We assume that:

(i) uj ∈ C1(Ω,R), j = 1, . . . , n;

(ii) L ∈ C1(Rm+1 × Rn × Rn(m+1);R);

(iii) x → ∂L
∂RCai D

αi
bi
uj

are C1-functions for every uj ∈ C1(Ω,R), i = 0, . . . ,m and

j = 1, . . . , n.

We define the admissible set of functions A(Ω) by

A(Ω) := {u : Ω→ Rn : u(x) = ϕ(x) for x ∈ ∂Ω} ,

where ϕ : ∂Ω→ Rn is a given function.
Applying the principle of stationary action to (3.2) we obtain fractional Euler–

Lagrange equations for the field (cf. [1, 13]).

Theorem 3.1. A necessary condition for the function u ∈ A(Ω) to provide an extremum
for the action functional (3.2) is that its components satisfy the following n multidimen-
sional fractional Euler–Lagrange equations:

∂L
∂uj
−

m∑
i=0

R
ai
Dαi
bi

∂L
∂RCai D

αi
bi
uj

= 0, j = 1, . . . , n.

Proof. The result of the theorem is proved by writing down the variation of the action,
performing an appropriate integration by parts, and using the fundamental lemma of the
calculus of variations.

We define

Ef
j (L) :=

∂L
∂uj
−

m∑
i=0

R
ai
Dαi
bi

∂L
∂RCai D

αi
bi
uj
, j = 1, . . . , n,
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which are called the fractional Lagrange expressions. We shall study infinitesimal trans-
formations that depend upon arbitrary functions of the independent variables and their
partial fractional derivatives in the sense of Riesz–Caputo. Let{

x̄ = x,

ūj(x) = uj(x) + T j1(p1(x)) + · · ·+ T jr(pr(x)),
(3.3)

j = 1, . . . , n, where ps, s = 1, . . . , r, are r arbitrary independent C1-functions defined
on Ω and T js is a linear fractional differential operator:

T js := cjs(x) +
m∑
i=0

cjsi (x)RCai D
βjsi
bi

, 0 < βjsi ≤ 1,

with RC
ai
D
βjsi
bi

ps, cjs, c
js
i C1-functions defined on Ω, s = 1, . . . , r, i = 1, . . . ,m.

Now we define invariance similarly to the classical case. The functional (3.2) is
invariant under transformations (3.3) if, and only if, for all u ∈ C1(Ω,Rn) we have∫

Ω

L
(
x, ū, RC∇αū

)
dx =

∫
Ω

L
(
x, u, RC∇αu

)
dx.

Theorem 3.2. If functional (3.2) is invariant under transformations (3.3), then there
exist r identities of the form

n∑
j=1

T̃ js
(
Ef
j (L)

)
= 0, s = 1, . . . , r,

where T̃ js is the adjoint of T js (see Remark 3.3).

Proof. By the definition of invariance we have

0 =

∫
Ω

L
(
x, ū, RC∇αū

)
dx−

∫
Ω

L
(
x, u, RC∇αu

)
dx

=

∫
Ω

(
L
(
x, ū, RC∇αū

)
− L

(
x, u, RC∇αu

))
dx.

Then, by the Taylor formula,

0 =
n∑
j=1

∫
Ω

(
∂L
∂uj

T js(ps) +
m∑
i=0

∂L
∂RCai D

αi
bi
uj

RC
ai
Dαi
bi
T js(ps)

)
dx, (3.4)



Gauge Symmetries in Fractional Variational Problems 91

where T js(ps) =
r∑
s=1

T js(ps). The Fubini theorem allows us to rewrite the integrals as

iterated integrals so that we can use the integration by parts formula (2.1):

∫
Ω

m∑
i=0

∂L
∂RCai D

αi
bi
uj

RC
ai
Dαi
bi
T js(ps)dx

= −
∫

Ω

m∑
i=0

R
ai
Dαi
bi

∂L
∂RCai D

αi
bi
uj
T js(ps)dx+ [·]|∂Ω, (3.5)

j = 1, . . . , n, where [·]|∂Ω represent the boundary terms – the m+ 1-volumes integrals.
Since ps are arbitrary, we may choose ps such that ps(x)|∂Ω = 0 and RC

ai
D
βjsi
bi

ps(t)|∂Ω =
0, s = 1, . . . , r, i = 1, . . . , l. Therefore, the boundary term in (3.5) vanishes and
substituting (3.5) into (3.4) we get

0 =
n∑
j=1

∫
Ω

(
∂L
∂uj
−

m∑
i=0

R
ai
Dαi
bi

∂L
∂RCai D

αi
bi
uj

)
T js(ps)dx.

Now we define the adjoint operator T̃ js of a fractional differential operator T js by∫
Ω

q(x)T js(ps(x))dx =

∫
Ω

ps(x)T̃ js(q(x))dx+ [·]|∂Ω,

where we use the Fubini theorem. Again appealing to the arbitrariness of ps, we can
force the boundary term to vanish (by putting ps(x)|∂Ω = 0). Therefore,

0 =
n∑
j=1

∫
Ω

r∑
s=1

T̃ js

(
∂L
∂uj
−

m∑
i=0

R
ai
Dαi
bi

∂L
∂RCai D

αi
bi
uj

)
psdx.

Finally, by the fundamental lemma of the calculus of variations, we conclude that

n∑
j=1

T̃ js
(
Ef
j (L)

)
= 0, s = 1, . . . , r.

This concludes the proof.

Remark 3.3. The adjoint of T js is given by the expression

T̃ js(q) = cjsq −
m∑
i=0

R
ai
D
βjsi
bi

(cjsi q), j = 1, . . . , n.



92 A. B. Malinowska

4 An Example
Historically, the first example of gauge symmetry to be discovered was classical elec-
tromagnetism. Here, we will propose a fractional electromagnetic action which is in-
variant under a fractional gauge transformation. To illustrate our result we will use the
Lagrangian density for the electromagnetic field (see [10]):

L =
1

8π
(E2 −H2), (4.1)

where E and H are the electric field vector and the magnetic field vector, respectively.
Using the method presented in [5, 14], we generalize (4.1) to the fractional Lagrangian
density by changing classical partial derivatives by fractional. Let x = (x0, x1, x2, x3) ∈
Ω and A(x) = (A1(x), A2(x), A3(x)),A0(x) be a vector potential and a scalar potential,
respectively. They are defined by setting

E = RC∇(α1,α2,α3)A0 − RC
a0
Dα0
a0
A, H = curlA, 0 < αi ≤ 1, i = 0, . . . , 3, (4.2)

where
RC∇(α1,α2,α3)A0 = iRCa1 D

α1
b1
A0 + jRCa2 D

α2
b2
A0 + kRCa3 D

α3
b3
A0,

RC
a0
Dα0
b0
A = iRCa0 D

α0
b0
A1 + jRCa0 D

α0
b0
A2 + kRCa0 D

α0
b0
A3,

curlA = i
(
RC
a2
Dα2
b2
A3 − RC

a3
Dα3
b3
A2

)
+ j
(
RC
a3
Dα3
b3
A1 − RC

a1
Dα1
b1
A3

)
+ k

(
RC
a1
Dα1
b1
A2 − RC

a2
Dα2
b2
A1

)
.

Replacing E and H in (4.1) by their expressions (4.2), we obtain the fractional La-
grangian density

L =
1

8π

[(
RC∇(α1,α2,α3)A0 − RC

a0
Dα0
b0
A
)2 − (curlA)2

]
. (4.3)

Observe that, similar to the integer case, the potential (A0,A) is not uniquely deter-
mined by the vectors E and H. Namely, E and H do not change if we make a fractional
gauge transformation:

Ãj(x) = Aj(x) + RC
aj
D
αj

bj
f(x), j = 0, . . . , 3, (4.4)

where f : Ω → R is an arbitrary function of class C2 in all of its argument. There-
fore, the Lagrangian density (4.3), and hence the action functional, is invariant under
transformation (4.4). By Theorem (3.2), we conclude that

3∑
j=0

R
aj
D
αj

bj

(
Ef
j (L)

)
= 0,

where Ef
j (L) are Lagrange expressions corresponding to (4.3). Equations Ef

j (L) = 0
do not uniquely determine the potential (A0,A) and to avoid this lack of uniqueness, a
fractional Lorentz-type condition can be imposed on (A0,A).
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