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Abstract

This study focuses on modeling the transport and the distribution of pollutants
into Tangier Bay. These pollutants come mainly from harbor activities, urban or
industrial wastes. The mathematical model used for the prediction of pollutant con-
centrations is based on convection and dispersion equations. This model is linked
to hydrodynamic processes based on Navier–Stokes equations for incompressible
flow. Numerical tests are carried out using finite element methods.
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1 Introduction

The marine environment is a precious asset. Oceans and seas provide 99% of the avail-
able living space on the planet. They cover 71% of earth’s surface and contain 90%
of the biosphere and consequently contain more biological diversity than terrestrial and
freshwater ecosystems. The marine environment is essential to life on earth and plays
a key role in climate and weather patterns. It is also an important factor in economic
prosperity, social wellbeing and quality of life. However, the ecological balance of this
medium is often threatened.

Conscious of pollution problems in the coastal marine environment and their di-
rect impact on the socioeconomic life of the bordering countries, many studies have
been conducted to modeling the behavior of pollutants after their marine spill. In [10],
a numerical model has been developed to study the behavior of pollutants in Algeci-
ras Bay. The model includes a hydrodynamic process and a sediment transport model.
In [8], a hydrodynamic process coupled with a diffusion model was developed to sim-
ulate contaminant transport in the Bay of Daya in China. In [3], finite difference and
finite element methods were applied to Sepetiba Bay. For the region of Tangier, a geo-
chemical study was applied to Tangier Bay focussed on the evaluation of the aliphatic
hydrocarbons concentrations in marine water (see [4, 5]).

In this paper, we target the key objective of developing a mathematical and a nu-
merical model to estimate concentrations of hydrocarbons discharged in the Bay of
Tangier. This estimation takes into account experimental measurements of concentra-
tions published in [1]. The mathematical model is established by the coupling between
hydrodynamic and transport models. The first one is based on Navier–Stokes equations,
it considers all the factors influencing the flow such as velocity, Coriolis force, gravity
and pressure, as well as physico-chemical properties of sea water (density and dynamic
viscosity). The second is based on convection and dispersion equations. Numerical tests
are carried out by using a finite element method using FreeFem++ software (see [9]).

The text is organized as follows. In Section 2, we describe the mathematical model
defined for the simulation of the pollutants transport in the Bay of Tangier. Section 3
is devoted to the discretization scheme and to the variational formulation of the prob-
lem. Section 4 presents some numerical results related to the transport model in a two
dimensional space. Finally, some conclusions and possible extensions of this work are
presented in Section 5.

2 Mathematical Model

Several models have been proposed for the simulation of pollutant transport in the sea,
all of them based on convection and diffusion equations. In this work, an incompress-
ible fluid is considered and two mathematical models are coupled to simulate transport
hydrocarbons in the Bay of Tangier. The first is the hydrodynamic model that provides
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the velocity field and water levels, it is based on Navier–Stokes equations. The second
is based on a convection-dispersion equations which simulates the concentration field.

2.1 Transport Equations
In a domain Ω ⊂ R3, the incompressible pollutant transport model is built on the con-
vection and dispersion equations:

∂C

∂t
+ U · ∇C − div(D∇C) = f, (x, t) ∈ Ω×]0, T [ , (2.1)

where C is the concentration of hydrocarbons in the sea water, U the Darcy velocity,
f a source term, T the final time of observation and D the diffusion-dispersion tensor.
The tensor D is given by D = dm + |U | {αLP (U) + αT (I − P )(U)}, where dm is the
molecular tensor diffusion coefficient, αL and αT are the longitudinal and transverse
dispersion coefficients and PL and I − PL are the projections in the direction of the
flow and the direction orthogonal to the flow respectively, which allow to consider the
influence of the transport speed of the current (in dimensions of space chosen) on the
phenomenon of dispersion, with PL(U)ij = UiUj |U |−2, where Ui, i = 1 ≤ 3, are the
components of U . In a two dimensional space, (2.1) can be simplified to

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
− ∂

∂x

(
Dx

∂C

∂x

)
+

∂

∂y

(
Dy

∂C

∂y

)
= f, (2.2)

where u and v are two components of U in the directions x and y; the dispersion co-
efficients Dx and Dy depend upon the flow characteristics and vary according to the
velocities u and v, see for instance [6].

2.2 Hydrodynamic Model
The hydrodynamic model is derived from the Navier–Stokes equations which couple
mass conservation equations (continuity equations for incompressible flow) and mo-
mentum conservation equations. They are used to describe water movement in a marine
environment taking into account all the factors affecting the rate of transport, namely,
the pressure force, gravitational force, the Coriolis force and the friction force turbulent
due to the viscosity. In our domain Ω we consider the following problem:

∂U

∂t
+ U · ∇U +

1

ρ
∇P = µ△U + F − τ f

h
in Ω×]0, T [ ,

∂h

∂t
+∇ · (hU) = 0.

(2.3)

Here, U is the velocity, it has two components u and v, µ is the horizontal eddy viscosity
corresponding to the inverse Reynolds number, ρ is the density of sea water, P is the
pressure from the water column under the law of hydrostatics, it corresponds to P = ρgh
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with g the acceleration of gravity and h the depth of the sea water. In equation (2.3),
F represents the Coriolis force which describes the influence of earth rotation on the
direction of currents. For the two-dimensional space, F has two components along the
axes x and y: {

Fx = 2ψ sinϕ.v = fv,
Fy = −2ψ sinϕ.u = −fu,

where f is the Coriolis factor, ψ is the speed of rotation of the earth, and ϕ is the
latitude of the geographical area of study. Finally, τ f is the bottom shear stresses with
two components: 

τ fx = gρu
N2

h1/3

√
u2 + v2,

τ fy = gρv
N2

h1/3

√
u2 + v2.

The developed form of hydrodynamic equations is the following:
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= 0

(2.4)

with initial condition the velocity U(t = 0) = U0 and suitable boundary conditions.

2.3 Boundary Conditions
The domain Ω mimics the bay of Tangier. As a consequence, the three dimensional
geometry of the domain Ω is limited by the bottom, the free surface of the water, the
coastline and some imaginary vertical wall on the sea at some reasonable distance of the
shore. To simplify the numerical tests, we have considered a two dimensional setting
neglecting the limits of the bottom and the free surface of the water. This transforms
the dimensions of the domain Ω from (3D) to (2D). In this context, for the numerical
resolution of the Navier–Stokes equation in (2D), we neglect the parameters of the
bottom shear stresses τ f , and the depth of the sea water h. As a consequence, we work
with a (2D) Lipschitz domain Ω with Dirichlet boundary conditions on the coastline
and Neumann conditions elsewhere.

3 Numerical Model
We now present the discretization scheme and the variational formulation of the prob-
lem. A classical way to compute an approximation to the Navier–Stokes equations is
to discretize the variational problem via finite elements for the spacial variables and
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the characteristic approach to deal with the time evolution. With this characteristic ap-

proach, the convection term
∂U

∂t
+ U · ∇U is approximated by the following scheme:

Un+1 − Un ◦Xn

∆t
≃ ∂U

∂t
+ U · ∇U.

For a particle x that lives in Ω at time tn+1, Xn(x) gives the position at time tn = n∆t,
where this particle x comes from. So, we have Xn(x) = ζx(t

n) where ζx(tn) is a
solution of the differential equation dζ/dt = U(t, ζx(t)) with inital condition ζx(tn+1) =
x and solved from tn+1 to tn. Then, the time discretization scheme of the hydrodynamic
model are the following equations:{

Un+1 − ν∆t∆Un+1 +∆t∇P n+1 = Un ◦Xn,

∇ · Un+1 = 0.
(3.1)

After multiplying by a test function ω, integrating on Ω and applying the boundary
conditions, we obtain that

1

∆t

∫
Ω

Un+1 · ω − ν

∫
Ω

∆Un+1 · ω +

∫
Ω

∇P n+1 · ω =
1

∆t

∫
Ω

(Un ◦Xn) · ω (3.2)

for any vector function ω ∈ H1(Ω)2. Then, integration by parts, using n as the outward
normal to ∂Ω, gives∫

Ω

∆Un+1 · ω = −
∫
Ω

∇Un+1 · ∇ω +

∫
∂Ω

∂Un+1

∂n
· ω, (3.3)

∫
Ω

∇P n+1 · ω = −
∫
Ω

P n+1 div(ω) +

∫
∂Ω

P n+1(n · ω). (3.4)

Therefore,
1

∆t

∫
Ω

Un+1 · ω + µ

∫
Ω

∇Un+1 · ∇ω + µ

∫
∂Ω

(
−∂U

n+1

∂n
+ P n+1n

)
· ω,∫

Ω

P n+1div(ω) =
1

∆t

∫
Ω

(Un+1 ◦Xn) · ω.
(3.5)

Now, we take ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩN accounts for the boundary of the domain
on the sea and ∂ΩD represent the shore. Having a free flow on ∂ΩN amounts to the
boundary condition

∂U

∂n
− Pn = 0 on ∂ΩN

and assuming flow at rest on the shore:

U = 0 on ∂ΩD.
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As a consequence, it makes sense to take

w = 0 on ∂ΩD,

that respects the data of the sought solution U and also cancels the unknown normal
contribution on ∂ΩD of U . Then, all boundary terms are gone and if we take

a(Un+1, ω) =
1

∆t

∫
Ω

Un+1ω + µ

∫
Ω

∇Un+1∇ω

b(ω, P n+1) = −
∫
Ω

P n+1∇ω

l(ω) =
1

∆t

∫
Ω

(Un+1 ◦Xn)ω.

(3.6)

Then, the variational problem becomes a saddle point problem at each time step. For
n ≥ 0 and given Un ∈ Vh, find (Un+1, P n+1) ∈ Vh ×Mh such that:

∀ω ∈ Vh, a(Un+1, ω) + b(ω, P n+1) = l(ω), (3.7)

∀q ∈Mh, b(U
n+1, q) = 0, (3.8)

where Vh and Mh are finite element spaces for the velocity and pressure taken in the
usual way and satisfying the standard discrete inf-sup conditions, for instance, we could
take the pair of spaces P2 − P1 or P1b − P1, see [2] or [7]. For example, in the simplest
case P2−P1, an idea on the definition of the spaces is the following one: given a regular

triangulation of Ω, define Ωh =
nbυ∪
k=1

Tk, and denote by υi, i ∈ {1, . . . , nbυ}, the vertices

of the triangulation. Then define the discrete spaces Vh and Mh by:

Vh = {υh ∈ C0(Ωh),∀k ∈ {1, . . . , nbt}, υh | Th ∈ P2}, (3.9)

Mh = {υh ∈ C0(Ωh),∀k ∈ {1, . . . , nbt}, υh | Th ∈ P1}, (3.10)

where Pk designates the vector space of polynomials of two variables of the overall
degree less or equal to k. The functions of Vh are entirely determined by their values in
each summits υi, i ∈ {0, . . . , nbυ− 1}, and the midpoints of all edges of the mesh. The
dimension of the space Vh is equal to the total number nbυ + nbe− 1, where nbe is the
number of edges of the nodes of the mesh. The functions of Mh are entirely determined
by their values in each summits υi, i ∈ {0, . . . , nbυ−1}. The dimension of Mh is equal
to the total number nbυ of vertices of the mesh.

4 Numerical Simulation
In this section, some results related to nonaromatic hydrocarbons discharged on the Bay
of Tangier are investigated. The maps presented in the figures below are based on exper-
imental measures published in [1], and are realized by ArcGIS 9 software. Figure 4.1
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illustrates the spatial distribution of hydrocarbon concentrations while Figure 4.2 cor-
responds to the interpolation of these concentrations. After analyzing the maps, we
deduce that the largest concentrations are located at the mouth of Mghogha river and
in Tangier’s harbor. However, the spatial interpolation model does not give the true
distribution of concentrations because it does not take into account the natural factors
influencing the distribution, namely current velocity, dispersion coefficient, and wind
speed. Hence, the importance of establishing a numerical model which allows to take
into account all these factors, and consequently to obtain a more realistic model. Since
we use a finite element scheme for the resolution in space of equation (2.1), we build
the triangulation τh of Ω shown in Figure 4.3. Time discretization is performed by a
first order characteristic scheme implemented in FreeFem++ [9]. In Figure 4.4, we plot
the concentration C at different instants of time for the numerical simulation of equa-
tion (2.1); the velocity is computed by solving Navier–Stokes equations with Dirichlet
boundary conditions on the coastline and Neumann conditions elsewhere.

Figure 4.1: Map indicating the spatial distribution of hydrocarbons in Tangier Bay.

5 Conclusion and Perspectives

In this paper, a mathematical model for the evaluation of hydrocarbon concentrations in
Tangier Bay was presented. The model was based on convection and dispersion equa-
tions. The flow velocity was calculated for the two dimensional incompressible Navier–
Stokes equations. Numerical tests were carried out by using finite element method with
the free software FreeFem++ [9]. Following some experimental measures given in [1],
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Figure 4.2: Interpolated concentrations elaborated by ArcGIS software.

Figure 4.3: Finite element mesh of the study area.
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IsoValue
1134.97
3404.92
5674.87
7944.82
10214.8
12484.7
14754.7
17024.6
19294.6
21564.5
23834.5
26104.4
28374.3
30644.3
32914.2
35184.2
37454.1
39724.1
41994
44264

Figure 4.4: Concentrations of hydrocarbons on the Bay of Tangier.

and using ArcGIS 9 software, we established a spatial distribution of hydrocarbon con-
centrations and the corresponding interpolated values. Our approach may be extended
to the 3-dimensional space taking into account the sea level variation. Finally, in order
to construct a realistic numerical model, an inverse problem may be solved to adjust
model parameters and to determine their associated uncertainty. Calibration results may
show close agreement between simulated and expected concentrations.
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