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Abstract

This work develops an efficient and fast algorithm to invert elliptic operators
associated to Lipschitz coefficients. The method is based on multiresolution anal-
ysis and uses localization properties of wavelets. The numerical inverse of the
operator is defined through the coupling between a Galerkin approximation and a
preconditioner based on wavelets. The inverse uses a standard residual correction
method that may be applied to solve some partial differential equations. According
to the algorithm the time derivation operators is approximated by a finite difference
scheme. The work presents numerical simulations and provides comparisons with
a standard Galerkin method. The results are quite reasonable when compared to
the exact solution. Numerical examples show that the proposed method is efficient.

AMS Subject Classifications: 65T60, 65N22.
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1 Introduction
Beginning from 1980s, wavelets have been used for the resolution of partial differential
equations, they have been applied to obtain representations of integral and differential
operators in many physical problems (see [1, 10]). The wavelet algorithms for solv-
ing partial differential equations (PDEs) usually are based on Galerkin technics or on
the collocation method and most of them can handle easily periodic boundary condi-
tions. Several studies testify the use of wavelets to solve PDEs. For example, in [5, 8],
Haar wavelet solutions for reaction-diffusion and nonlinear evolution equations were
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proposed. In [2], a wavelet numerical method for the analysis of a convection-diffusion
equation was presented. For more accounts of related topics, we refer the reader to [3].

For this work, the purpose is the definition and the implementation of a multiscale
algorithm based on wavelets for the inversion of elliptic operators associated to variable
coefficients. We focus on operators like L = I − div(A∇), where A is chosen such
that the operator is connected to a coercive and hermitian form. The main results are
the derivation of a preconditioner of L and the construction of an explicit approximation
for the solution of the problem Lu = f . After introducing the problem in Section 2,
we present in Section 3 some background on multiresolution analysis and wavelets.
Section 4 describes a wavelet preconditioner ofL and we derive an explicit expression of
the inverse using a standard iterative correction algorithm. This construction is obtained
through the coupling between, on one hand, the inverse of the Galerkin approximation
in a low dimension space and, on the other hand, a preconditioner of the operator; this
step corresponds to the refinement procedure offered by wavelets. Section 5 describes
the iterative algorithm for solving the problem Lu = f . Section 6 is devoted to the
numerical implementation of the inversion algorithm in a periodic framework, a short
discussion on the complexity and numerical results are given. A final discussion on the
obtained results and possible extensions of this work is presented in Section 7.

2 Presentation of the Problem
This section gives the assumptions we make on the operator to be inverted. Our interest
stands in the approximation of the solution of the problem

Lu = f, (2.1)

where L is defined from H2(R) to L2(R) as L = I − div(A∇). We choose A such that
L is connected to a V -elliptic and hermitian form. For the sake of simplicity, we take

L = I − ∂

∂x

(
ν(x)

∂

∂x

)
, where I is the identity operator. After using a finite difference

approximation of
∂

∂t
in the diffusion equation

∂θ

∂t
=

∂

∂x

(
ν(x)

∂θ

∂x

)
+ s, the problem

(2.1) can be found where ν plays the role of a diffusion coefficient. We assume that ν is
a bounded and Lipschitzian function of L2(R) and that it exists a constant ν0 > 0, such
that ν(x) ≥ ν0,∀x ∈ R. The operator L is then associated to a sesquilinear form B(·, ·)
defined on H1(R) by

B(f, h) =

∫
IR

ν(x)
∂f

∂x

∂̄h

∂x
(x)dx+

∫
IR

f(x)h̄(x)dx, f, h ∈ H1(R).

The form B is continuous and coercive, so the Lax–Milgram lemma ensures the ex-
istence of L−1 and of any of its Galerkin approximation derived on finite dimension
subspaces.
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3 Multiresolution Analysis and Wavelets
Classical approaches to wavelet construction deal with multiresolution analysis (MRA).
In [7], we define a multiresolution analysis as a sequence of embedded spaces of approx-
imation of L2(R), Vj , j ∈ Z satisfying the following properties: the spaces Vj are gen-
erated by the orthonormal bases {ϕjk, k ∈ Z} where ϕjk(x) = 2j/2ϕ(2jx− k) and ϕ is
r-regular 1. A multiresolution analysis is related to particular functions called wavelets
obtained by dilation and translation of a given function ψ, the mother wavelet. Wavelets
are essentially fast decaying and localized in time and frequency. Let now Wj be the
orthogonal complement of Vj in Vj+1 : Vj+1 = Vj ⊕Wj , it exists a wavelet ψ such that
the family {ψjk = 2jψ(2jx−k), k ∈ Z} is an orthonormal basis of Wj . The function ψ
has the same regularity properties as ϕ and, moreover, the function ψ has zero moments,

i.e., ∀α ≤ r,
∫
xαψ(x)dx = 0 and ∀f ∈ L2(R), f(x) =

∑
j∈Z

∑
k∈Z

⟨f, ψjk⟩ψjk(x).

Orthogonal or biorthogonal multiresolution analysis lead naturally to hierarchical
algorithms for the expression of the scalars ⟨u, ψjk⟩ in term of the scalars ⟨u, ϕpk⟩, p > j,
k ∈ Z, (for details, see [4,9]). For practical implementations, it implies the existence of
filters Hj and Gj that are used in the following way:

⟨u, ψjk⟩ =
∑
j,l

⟨u, ϕj+1,l⟩Gj(2k − l)

⟨u, ϕjk⟩ =
∑
j,l

⟨u, ϕj+1,l⟩Hj(2k − l).

In numerical applications, these relations are implemented using convolution and deci-
mation algorithms of complexityO(N) orO(N log(N)), whereN is the number of vari-
ables. The operator {⟨u, ϕpk⟩, k ∈ Z} 7→ {⟨u, ψjk⟩, j < p, k ∈ Z} is called the wavelet
decomposition, while we call wavelet reconstruction to the inverse.

4 Preconditioning and Inversion Algorithm
The operator Πj , j ∈ Z (resp. Π∗

j , j ∈ Z), stands for the orthogonal projection from
L2(R) on Vj (resp. the extension operator from Vj on L2). Given an integer p, we
consider the Galerkin approximation of L in the space Vp : Lp = ΠpLΠ

∗
p : Vp → Vp.

Choosing any integer q < p, we have

Vp = Vq
⊕
p>j≥q

Wj.

A classical Galerkin method is used to derive the approximation of L−1 on the subspace
Vq, and a refinement procedure is applied on the subspaces Wj . Let Ap,q : Vq → Vq be

1∀m ∈ N, n ≤ r, it exists a constant Cm such that
∣∣∣∣∂nϕ(x)

∂xn

∣∣∣∣ ≤ Cm(1 + |x|)−m.
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the inverse of the Galerkin approximation of Lp defined as

πqLpπ
∗
qAp,q = IVq ,

where IVq is the identity operator on Vq, πq is the orthogonal projection from Vp on Vq
and π∗

q is the extension operator from Vq to Vp. The canonical extension of Ap,q to Vp

is still denoted by Ap,q. Let D = −i ∂
∂x

and D2 = − ∂2

∂x2
so that L = I + DνD. We

define an operator Pp,q by {
Pp,q(ψjk) = τjk, q ≤ j < p,
Pp,q(ψjk) = 0, otherwise,

where the functions τjk are defined by

ν(k2−j + 2−j−1)(ΠpD
2Π∗

p)τjk = ψjk.

Following [6], we prove that it exists an operator Up,q such that

Lp(Ap,q + Pp,q) = Ip − Up,q,

where Ip is the identity operator in Vp and Ap,q + Pp,q is a preconditioner of Lp. The
operator Up,q satisfies the following property.

Theorem 4.1. It exists a constant C > 0, independent of q and p, such that

||U2
p,q|| ≤ C2−q.

4.1 Construction of the Inverse Operator

The inversion scheme of Lp is divided into two steps:

• The first step is constructed from a coupling between the inverse of the Galerkin
approximation of L in Vq, Ap,q, and the operator Pp,q obtained using the wavelet
basis of Wj, p > j ≥ q.

• The second step is an iterative refinement of the first step approximation obtained
by a classical method of residual correction.

Thanks to Theorem 4.1, and using Neumann’s theorem, we deduce that

L−1
p = (Ap,q + Pp,q)

∑
k≥0

Uk
p,q.
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5 Iterative Algorithm
A standard relaxed gradient method applied to the problem

Lp(Ap,q + Pp,q)v = g, g = (Ap,q + Pp,q)f,

gives {
v(n+1) = v(n) + α

(
g − Lp(Ap,q + Pp,q)v

(n)
)
,

v(0),

with α a relaxation parameter. The error e(n) = v(n) − v satisfies

e(n+1) = (I − αLp(Ap,q + Pp,q))
ne(0)

and, therefore, the method converges as soon as ρ(I−αLp(Ap,q+Pp,q)) < 1 where ρ(L)
stands for the spectral radius of the operator L. We get with u(n) = (Ap,q +Pp,q)v

(n) the
recursive equation for the correction c(n) = u(n) − u(n−1):{

c(n+1) = (I − α(Ap,q + Pp,q)Lp)c
(n),

c(o) = (Ap,q + Pp,q)f.

For α = 1, the method converges for large values of q. Indeed, we get

ρ(I − Lp(Ap,q + Pp,q)) < C2−q/2

and ρ(I − Lp(Ap,q + Pp,q)) < 1 for large enough values of q. Moreover, for α = 1, the
numerical solution of the problem Lpu = f obtained after n iterations corresponds to

u(n) =
n∑

k=0

fk,

{
fk = (I − (Ap,q + Pp,q)Lp)fk−1,
f0 = (Ap,q + Pp,q)f.

6 Numerical Implementation
The implementation of the algorithm has been performed for the resolution of elliptic
problems with periodic conditions; a spline multiresolution analysis of order m is used.

1. Application of Ap,q. The application of Ap,q is equivalent to the resolution of a
linear system of size 2q. For any basis of Vq, {ϕq,l, 0 ≤ l < 2q}, the general term

of the linear system is [Mq]l,l′ = ⟨Lϕq,l, ϕq,l′⟩. Since L = I − ∂

∂x

(
ν(x)

∂ ·
∂x

)
,

this matrix is ill conditioned (cond(Mq) = O(4q)). Therefore, the choice of the
wavelet basis for the calculation is theoretically optimal since a diagonal precon-
ditioner of Mq is available. For practical implementation, the basis that provides
the maximum of zero coefficients in Mq is the B-spline basis. Indeed, when us-
ing the B-splines of order m, the matrix Mq is a (2m − 1) band matrix. Due to
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the general form of ν, the calculation of each term of Mq should be made using a
quadrature formula. Periodicity allows to use a simple formula such as trapezoidal
rule. The resolution of the linear system is performed using a Cholesky factoriza-
tion (Mq is semi definite positive), eventually adapted to the band structure of the
matrix.

2. Application of Pp,q. The operator Pp,q is defined by

Pp,qg =
∑

0≤k≤2j−1
q≤j≤p−1

⟨g, ψjk⟩τjk

for all g ∈ L2. The application of Pp,q on a function g reduces to replace ψjk by
τjk in the wavelet decomposition of g. Specific filters are used in a biorthogonal
MRA [6].

6.1 Complexity
1. The complexity associated to the application of Ap,q is

M2q
(2q + 1)

2
+

1

3
23q + 22q.

The first contribution deals with the calculation of the terms of the symmetric
matrix Mq using a quadrature formula on M points; the second contribution deals
with the application of a Cholesky method for the resolution of the linear system.

2. The complexity of the application of Pp,q is O(p2p) and is mainly related to the
use of orthogonal and biorthogonal wavelet transformations.

3. The complexity associated to the application of Lp is again O(p2p). Finally, one
iteration u(n)p,q 7→ u(n+1)

p,q requires O(p2p) operations as soon as q ≤ p

3
. If we

assume that the iteration number is bounded, then the global complexity of the
algorithm is O(p2p). Estimations have shown that the CPU time ratio between
one iteration and the global resolution using a Galerkin matrix inversion method
is of order fifteen (see [7]).

6.2 Tests
We provide some numerical results for various values of ν(x) and f . We call u(n)p,q the
output of our algorithm after n iterations with α = 1 and we will compare it to u,
the solution of the initial problem Lu = f , to up the solution of the weak formulation
Lpup = ΠVp(f) and to uG the Galerkin approximation of u in Vp. We use the following

definitions: Ep =
||u− Πpu||2

||u||2
is the relative error between the exact solution u and the
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orthogonal projection in Vp,Πpu; EG =
∥u− uG∥2

∥u∥2
is the relative error between u and

the Galerkin solution in Vp; En
p,q =

∥u− u
(n)
p,q ∥2

∥u∥2
is the relative error between u and the

solution of the algorithm after n iterations.

We investigate the influence of some parameters that control the convergence of
the numerical scheme. The parameters p (dimVp = 2p) and m (spline order) control
the quality of the approximation of H1 by Vp. The parameter q (dimVq = 2q) and
the norm ∥Dν∥∞ control the norm of U2

p,q and consequently the convergence of u(n)p,q

towards up. Figure 6.1 demonstrates the influence of the spline order m on the error
Ep for p = 8, q = 2 and for the exact solution u(x) = sin(2πx) + 0.5 sin(4πx) on
[0, 1] and the operator coefficient ν(x) = x(x − 1) + 1. Figure 6.2 illustrates clearly
the influence of the number p on the error En

p,q. We present also some numerical results
related to the choice of a family of functions ν(x) that influences the accuracy of the
algorithm: ν(x) = 2 + cosk(2πx), 1 ≤ k ≤ 256, and u(x) = sin(2πx) + 0.5 sin(4πx).
For this family, ∥Dν∥∞ is variable but ∥ν∥∞ and ∥ν−1∥∞ are constants. Figures 6.3,
6.4, 6.2 and 6.6 illustrate these results. In these figures, the number of iterations to get
the numerical convergence remains very reasonable (less than 20) in any case and for
every value of q and leads to a convergent algorithm. Moreover, when k increases, the
number of iterations to get the convergence decreases; it is due to the localization of ν
derivatives.

7 Concluding Remarks

We proposed an efficient and fast algorithm to invert elliptic operators associated to Lip-
schitz coefficients. The numerical inverse of the operator was constructed through the
coupling between a Galerkin approximation and a preconditioner based on wavelets.
However, the construction can be extended to multi-dimension, the difficulty arises
when one deals with the derivation of the related algorithms. The numerical results
presented in this paper were connected to various choices of the operator coefficient and
demonstrated the feasibility of the iterative algorithm. The main advantages are its sim-
plicity and small computation costs: this is due to the sparsity of the transform matrices
and to the small number of significant wavelet coefficients. The algorithm is wholly
competitive and efficient in comparison with the Galerkin method.

Our approach may be extended theoretically to boundary value problems. However,
in such cases the difficulty is connected with the construction of the functions τjk and
the related biorthogonal multiresolution analysis.
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Figure 6.1: Evolution of Ep versus the spline order m.
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Figure 6.2: Evolution of En
p,q versus the number n of iterations, m = 4, q = 2, ν(x) =

x(x− 1) + 1.
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Figure 6.3: Evolution of En
p,q versus the number n of iterations: ν(x) = 2 + cos(2πx),

Ep = 1.139693× 10−9, EG = 8.836547× 10−9.
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Figure 6.4: Evolution of En
p,q versus the number n of iterations: ν(x) = 2+cos32(2πx),

Ep = 7.316891× 10−7, EG = 4.015059× 10−7.
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Figure 6.5: Evolution ofEn
p,q versus the number n of iterations: ν(x) = 2+cos128(2πx),

Ep = 9.204909× 10−6, EG = 4.872407× 10−6.
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Figure 6.6: Evolution ofEn
p,q versus the number n of iterations: ν(x) = 2+cos256(2πx),

Ep = 3.422981× 10−5, EG = 1.906790× 10−5.
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