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Abstract

The Schur complement technique is often used in finite elements context. In
this paper we are interested in a coupling implicit finite volumes scheme and a
Schur complement method applied to an advection-diffusion equation on a 2D
structured and matching mesh. The domain of calculation is decomposed into
q ≥ 2 nonoverlapping sub-domains and the proposed approach is applied to solve
the local boundary sub-problems. The numerical experiments show the advantages
of the method compared to global calculation. The proposed algorithm is both
stable and efficient. It can be applied to more general PDEs.
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1 Introduction
Domain decomposition methods (DDM) have enjoyed an increasing popularity among
the scientific community, because they define a good framework to derive efficient
solvers for the resulting systems using the mathematical properties of PDEs. DDM
has been developed for structural mechanics problems (elliptic PDEs) and for compu-
tational fluid dynamics problems (hyperbolic and mixed hyperbolic-parabolic PDEs).
DDM are generally classified according to two criteria:
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• Overlapping or nonoverlapping method according to the spatial decomposition of
the the global domain.

• Multiplicative or additive method according to the independence of the local so-
lution at each iteration.

As nonoverlapping DDM, we can use Schwarz or Schur Complement (SC) method, the
latest being related to block Gaussian elimination techniques (each block corresponding
to a different sub-domain). At the continuous level, one has to deal with an operator
acting on interface variables whose discretization is the Schur complement of the global
operator [2–4].

Our objective is to propose a new coupled implicit finite volumes (FV) and SC (FV–
SC) algorithm, and apply it to the following advection-diffusion problem:

∂tc+ div(Uc−D∇c) = f on Ω× (0, T )
c(x, t) = cD(x, t) on ∂Ω× (0, T )
c(x, 0) = c0(x) on Ω,

(1.1)

where Ω ⊂ R2 is an open connected and bounded domain supposed to be polygonal, c is

the concentration, D =

(
δ 0
0 δ

)
is the diffusion coefficient where δ is a nonnegative

constant real number, U =
(
u v

)
is the velocity field and f ∈ L2(Ω × (0, T )) is

a given source term. The function c0 and cD denote the initial value and the Dirichlet
boundary value, respectively.

The paper is organized as follows. In the next section, we present the implicit finite
volumes (FV) scheme [1]. In Section 3, we describe the Schur complement and the
proposed new algorithm. Finally, in Section 4 we discuss the obtained results and we
finish by some concluding remarks and perspectives.

2 Finite Volumes Approach
The finite volumes approach consists of dividing the domain of calculation Ω into a
finite number of control volumes (CVs) Vi (i = 1, . . . , N ×M ) with Ω = ∪N×M

i=1 Vi. For
a general CV, we use the notation of the distinguished points (midpoint, midpoints of
faces) and the unit normal vectors according to the notation as indicated in Figure 2.1
(right). The midpoints of neighboring CVs we denote with capital letters W , S, etc. (see
Figure 2.1 left). By integrating the equation (1.1) over an arbitrary CV VP and applying
the Green formula, one obtains

µ(VP )
∂c

∂t
+
∑
a

∫
Sa

(U c−D∇c)nadSa =

∫
VP

f(x, t)dVP , (2.1)

where Sa (a = e, n, w, s) are the four faces of volume VP (Figure 2.1), na is the unit
normal vectors to the face Sa and µ(VP ) is the volume of cell VP . Approximating the



Schur Complement for Advection-Diffusion Equation using Finite Volumes 53

Figure 2.1: FV structured mesh of domain Ω.

time derivative at time tn+1 by the implicit Euler method,

cn+1
P − cnP

∆t
+

1

µ(VP )

∑
Sa

F n+1
P = fn+1

P , (2.2)

where F n+1
P =

∫
Sa

(U cn+1 −D∇cn+1)nadSa denote the advection and diffusion fluxes

through the CV VP faces,

fn+1
P =

1

µ(VP )

∫
VP

f(x, tn+1)dVP ,

and c0P =
1

µ(VP )

∫
VP

c0(x)dVP .

• The discretization of advection term is done through the flow coming on a cell VP

using the upwind scheme.

• For discretization of diffusion term, we have considered a centred difference
scheme.

• For approximation of the volume and surface integrals, we have employed the
midpoint rule.

Let us denote by cnI the concentration on the volume VI (I=P , E, W , N or S) at time
tn. The concentration variables cn+1

I and cnI (I=P , E, W , N or S) in equation (2.2) can
be arranged as follows:

aP c
n+1
P + aEc

n+1
E + aW cn+1

W + aNc
n+1
N + aSc

n+1
S = cnP + ζP , (2.3)
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where ζP is a constant depending on the boundary, initial conditions and fn+1
P . In the

case u ≥ 0 and v ≥ 0, the coefficients aI (I=P , E, W , N or S) are defined as follows:

• aP = 1 +
∆t

∆x∆y

(
uP∆y + vP∆x+ 2δ

(
∆y

∆x
+

∆x

∆y

))
;

• aW = −∆t

∆x

(
uW +

δ

∆x

)
;

• aE = −δ
∆t

(∆x)2
;

• aS = −∆t

∆y

(
vS +

δ

∆y

)
;

• aN = −δ
∆t

(∆y)2
.

The numerical scheme is then expressed as the linear system

ACn+1
P = Cn

P + ζP ,

where A is a (N ×M, N ×M) type matrix of coefficients aI (I=P , E, W , N or S).

3 Schur Complement Method
Before describing the Schur complement and the proposed new algorithm, we detail the
decomposition of Ω.

3.1 Domain Decomposition
The domain Ω is decomposed into a multi-domain nonoverlapping strip decomposition
Ω1, . . . ,Ωq, where Ω = ∪q

i=1Ωi and Ωi ∩ Ωj = ∅ when i ̸= j (Figure 3.1). Let Γij

denote the interface between Ωi and Ωj and Γ = ∪ijΓij , and by ni the normal direction
(oriented outward) on Γij for i = 1, . . . , q− 1 and j = i+1. For simplicity of notation,
we also set n = ni. Considering a rectangular mesh of Ω, each sub-domain Ωi is parti-
tioned into ni (i = 1, . . . , q) cells in X direction and m cells in Y direction (Figure 3.2).
The problem (1.1) can then be expressed as

∂ci
∂t

+ div(Uci −D∇ci) = f on Ωi × (0, T ), i = 1, . . . , q

ci(x, t) = cD(x, t) on (∂Ωi − Γ)× (0, T )
ci(x, 0) = c0(x) on Ωi

ci = cj on Γij, i, j = 1, . . . , q
∂ci
∂n

=
∂cj
∂n

on Γij.

(3.1)
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Figure 3.1: Nonoverlapping strip decomposition.

Figure 3.2: Domain decomposition and matching structured mesh of domain Ω.

The last two interface conditions are known as transmission conditions on Γij . The
decomposed problem (3.1) is discretized on each sub-domain Ωi, i = 1, . . . , q using
the implicit finite volume scheme described in Section 2. For the interface conditions
we have used the centred differences scheme. We obtain the following system, i =
1, . . . , q − 1, j = i+ 1:

aPic
n+1
Pi + aWic

n+1
Wi + aNic

n+1
Ni

+aSic
n+1
Si + aσic

n+1
σi = cnPi + ζPi on Ωi (a)

aPjc
n+1
Pj + aEjc

n+1
Ej + aNjc

n+1
Nj

+aSjc
n+1
Sj + aσjc

n+1
σj = cnPj + ζPj on Ωj (b)

cn+1
ei = cn+1

wj on Γij (c)

cn+1
ei + cn+1

wj − cn+1
Pi − cn+1

Pj = 0 on Γij (d)

(3.2)
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where{
σi = ei and σj = wj, if VPi ∩ Γij ̸= ∅ (i = 1, . . . , q − 1 and j = i+ 1)
σi = Ei and σj = Wj, otherwise,

and ζPi are constants depending on initial, boundary conditions, and fn+1
Pi on Ωi, i =

1, . . . , q.

3.2 Schur Complement
The methods based on Schur complement exist in two versions. The first one uses the
Steklov Poincaré operator and the second one is an algebraic version. In [2–4], one
finds presentations of these methods used in the context of a finite elements method. In
this work, we have used an algebraic version of Schur complement method. Let cn+1

i

and cn+1
Γ denote the vector of the unknowns of Ωi (i = 1, . . . , q) and Γ at time tn+1

(respectively), so the decomposed problem (3.2) can be written in the matrix form

A1 0 . . . 0 A1Γ

0 A2 0 . . 0 A2Γ

. . . . . . .

. . . . . . .

. . . . . . .
0 . . . 0 Aq AqΓ

AΓ1 AΓ2 . . . AΓq AΓΓ


·



cn+1
1

cn+1
2

.

.

.
cn+1
q

cn+1
Γ


=



cn1 + ζ1
cn2 + ζ2

.

.

.
cnq + ζq

0


, (3.3)

where Ai, AiΓ describe respectively (a) and (b) of system (3.2), and AΓi, AΓΓ (i =
1, . . . , q) describe respectively (c) and (d) of system (3.2). The matrix Ai presents the
coupling of the unknowns in Ωi, AΓΓ is related to the unknowns on the interface, AΓi

and AiΓ representing the coupling of the unknowns of each sub-domain Ωi with those
of the interface Γii+1 for (i = 1, . . . , q− 1). The system (3.3) can be solved formally by
block Gaussian elimination. Eliminating cn+1

i (i = 1, . . . , q) in the system (3.3) yields
the following reduced linear system for cn+1

Γ :

Scn+1
Γ = χΓ, (3.4)

where
χΓ = −

∑
i=1,...,q

AΓiA
−1
i (cni + ζi),

S = AΓΓ −
∑

i=1,...,q

AΓiA
−1
i AiΓ,

and S is the Schur complement matrix. After calculating cn+1
Γ , cn+1

i can be obtained
immediately and independently (in parallel) by solving Aic

n+1
i = (cni + ζi) − AiΓc

n+1
Γ

(i = 1, . . . , q).
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4 Numerical Simulations
In this section, we consider a bidimensional advection-diffusion problem with analyt-
ical solution. Let us consider a linear model problem of the type (1.1) with constant
coefficients given by

f = 0, D = δ

(
1 0
0 1

)
and U =

(
u v

)
.

The initial and boundary conditions are given by the exact solution [5]

c(x, y, t) =
1

200δt+ 1
e−50

(x−x0−ut)2+(y−y0−vt)2

200δt+1

representing a Gaussian peak starting at the point (x0, y0), being transported by advec-
tion and diffusion. Let us in particular consider:

Ω = (0, 3)× (0, 3), T = 2, u = 0.8, v = 0.4, x0 = 0.5, y0 = 1.35.

We consider the discretization of the domain Ω into N2 squares (with N = 12, 36, 108,
and 324), and the time interval (0, T ) into 200 time steps and we give two values to the
parameter δ: for δ = 0.1, the problem is diffusion-dominated, and for δ = 0.001, the
problem is convection-dominated. In order to validate the FV and the proposed FV–SC
algorithms, we have plotted on the exact and the numerical solutions (FV and FV–SC
for 2 sub-domains) and for all test cases, we have computed the analytical solution and
numerical ones at the stopped time t = 2 and considered three values of y (y = 0.375,
1.625 and 2.875).

• For δ = 0.1 (diffusion-dominated), we have plotted Figures 4.1, 4.2 and 4.3 (left)
for FV algorithm and Figures 4.1, 4.2 and 4.3 (right) for 2 sub-domains FV–SC
algorithm.

• For δ = 0.001 (convection-dominated), we have plotted Figures 4.4, 4.5 and
4.6 (left) for FV algorithm, Figures 4.4, 4.5 and 4.6 (right) for 2 sub-domains
FV–SC algorithm, in this case we have used the logarithmic scale for a better
visualization.

All figures show the convergence of the proposed algorithm to the exact solution with
the increasing of the unknown numbers and also its stability.

We also have computed the discrete L2(Ω) errors at time t = 2 for different values of
N (N2=144, 1296, 11664, and 104976), for δ = 0.1 (see Table 1), and for δ = 0.001 (see
Table 2). The estimate errors in Tables 1 and 2 show at the same time the convergence
of FV–SC algorithm and a good accuracy of calculation with the increasing of the sub-
domain numbers compared to FV method.
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Figure 4.1: Exact solution with FV (left) and FV–SC (right) for different values of N2

at t = 2, y = 0.375 and δ = 0.1.
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Figure 4.2: Exact solution with FV (left) and FV–SC (right) for different values of N2

(numbers of unknowns) at t = 2, y = 1.625 and δ = 0.1.
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Figure 4.3: Exact solution with FV (left) and FV–SC (right) for different values of N2

(numbers of unknowns) at t = 2, y = 2.875 and δ = 0.1.
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Figure 4.4: Exact solution with FV (left) and FV–SC (right) for different values of N2

(numbers of unknowns) at t = 2, y = 0.375 and δ = 0.001.
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Figure 4.5: Exact solution with FV (left) and FV–SC (right) for different values of N2

(numbers of unknowns) at t = 2, y = 1.625 and δ = 0.001.
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Figure 4.6: Exact solution with FV (left) and FV–SC (right) for different values of N2

(numbers of unknowns) at t = 2, y = 2.875 and δ = 0.001.
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N Unkns error–1D error–2DD error–3DD error–4DD
12 144 0.0095 0.0092 0.0088 0.0084
36 1296 0.0042 0.0042 0.0041 0.0040
108 11664 0.0018 0.0018 0.0018 0.0018
324 104976 0.00087447 0.00087336 0.00087254 0.00087138

Table 1: N , number of unknowns, and discrete L2(Ω) errors for δ = 0.1 at t = 2 for FV
approach and 2, 3, 4 strip sub-domains FV–SC approach (respectively).

N Unkns error–1D error–2DD error–3DD error–4DD
12 144 0.1684 0.1680 0.1680 0.1661
36 1296 0.1248 0.1240 0.1232 0.1226
108 11664 0.0985 0.0981 0.0977 0.0974
324 104976 0.0712 0.0711 0.0710 0.0709

Table 2: N , number of unknowns, and discrete L2(Ω) errors for δ = 0.001 at t = 2 for
FV approach and 2, 3, 4 strip sub-domains FV–SC approach (respectively).

5 Conclusion

A new approach coupling implicit FV and Schur complement methods applied to the
equation of advection-diffusion, on 2D structured and matching mesh, is presented. The
algorithm applied to nonoverlapping multi-domains decomposition has the proprieties
of stability and convergence. On the other hand, it reduces the error of calculation
compared to global calculation by FV method. As future perspectives, we plan to: gen-
eralize the algorithm to the convection-diffusion-reaction problem; apply the FV–SC
method to the nonlinear advection-diffusion problem; use an unstructured and match-
ing/nonmatching mesh for complex applications.
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