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Abstract

We study the existence of p-harmonic solutions for the Steklov problem
. p—20u
Apu=0inQ, [Vu v f(z,u) on 082,

under assumptions on the asymptotic behavior of the quotients f(x, s)/|s[’~2s and
pF(x,s)/|s|’, where the limits at infinity of these quotients lie between the first
two eigenvalues. Finally we establish, in a certain sense, the solvability of the
problem under the first eigenvalue.

AMS Subject Classifications: 35J70, 35P30.
Keywords: Nonresonance, Sobolev trace embedding, p-harmonic solutions, Steklov
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1 Introduction

In a previous work [2], we investigated the solvability of the following problem:
{ Ayu = |ulP~?u in §,

1.1
]Vu]p_Q%:f(a:,u) on 09, .1
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under assumptions on the asymptotic behaviour of the quotients f(x,s)/|s[’~*s and
pF(x,s)/|s|’ with F(z,s) = / f(x, t)dt, where the limits at infinity of these quotients

0
lie between the first principal and nonprincipal eigenvalues for the asymmetric Steklov
problem

Ayu = |ulP?u in ,
{ Vup 2 N @ @)@ oo, 0P

with the weights m, n € M* = {m € LY(0Q);m* # 0in 0Q}, where A, is the p-
Laplacian, 1 <p < 4+00,¢> (N—=1)/(p—1)ifl<p< Nandgq > 1ifp > N, and
) is a bounded smooth domain in R™, N > 1. In the present paper, we are interested in
studying the existence of the p-harmonic solutions for the following Steklov problem:

{ Apyu =0 in €2,
o 0u (1.3)
p—2 —

|Vul 5 f(z,u) on 09,

where [ : 02 x R — R is a Carathéodory function satisfying the growth condition
|f (@, )] < a(@)|s~" + b(x) (1.4)

forae. z € 9Q and all s € R. Here a € LY(9Q) and b € L” (9Q), where p/ its the
conjugate of p, g > (N —1)/(p—1)ifl <p< Nandgq > 1if p > N, with N > 2.
We assume that the inequalities

e f(@8) fz,s)
7)o = NP o2

= Ti(2) (1.5)

hold uniformly with respect to x € 02, where v+ and I'y. are in M, with

M, = {m € L10N),m* £0and [ mdo < 0}
89
and satisfy
M(v+) <1, M(y2) <1, o4, T2) > 1. (1.6)
We also assume that the inequalities
e PR s) pF(z,s) _
or(z) := ligjglof T < hsrgiip I Ai(x) (1.7)

hold uniformly with respect to x € 9€2, where 6+ and A, are in M, and satisfy

AM(04) <1, M(0-) <1, ¢(AL,AL) > 1. (1.8)
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Here A\;(m) and ¢(m, n) are respectively the first principal and nonprincipal eigenvalues
of the following asymmetric Steklov problem:

Ayu =0 in €2,
{ P22 = () (e~ ()] on 09, 42

with the weights m,n € M, (see [1,3]). The problem (1.3) can be a limit situation of
the problem (1.1) because we can replace |u[P~?u by €|u|’*u in (1.1), where € is small
enough. Problem (1.3) appears naturally in several branches of pure and applied mathe-
matics, such as the theory of quasiregular and quasiconformal mappings in Riemannian
manifolds with boundary (see [11, 13]), non Newtonian fluids, reaction diffusion prob-
lems, flow through porus media, nonlinear elasticity, glaciology, etc. (see [6,8,9]).

The paper is organized as follows. In Section 2, which has a preliminary character,
we collect some results relative to the asymmetric Steklov problem (1.9). In Section 3
we study, as in [2], the case of nonresonance of the problem (1.3) between the first
principal and nonprincipal eigenvalues of the asymmetric Steklov problem. Finally, in
Section 4 we study the solvability of problem (1.3) under the first eigenvalue.

2 Preliminaries

Our main purpose in this preliminary section is to collect some results relative to the
asymmetric Steklov problem (1.9). For any integer £ > 1, let

[y :={K C S; K is symmetric, compact and y(K) > k}

1
with S := {u c WP (Q);— | mlufPdo = 1} and ~(K') be the Krasnoselski genus
D Joq
of K. Let )
Ak(m) := inf sup —/ \VulPdz. (2.1)
Q

Kelk yek P
In [14], Torné proved the following proposition using infinite dimensional Ljusternik—
Schnirelman theory.

Proposition 2.1 (See [14]). Let m € M,. Then \i(m) given by (2.1) is a sequence of
eigenvalues of the problem (1.9) with m = n such that \j, — 400 as k — +o0.

The author established the simplicity and isolation of the first eigenvalue A, (m) of
the Steklov eigenvalue problem (1.9) with m = n. The strict monotonicity and the
continuity of \;(m) respect to the weight are proved respectively in [3,4].

Let us conclude this section with some results concerning ¢(m, n) the first nonprin-
cipal positive eigenvalue of (1.9). Let m, n € M, and let A, B,,,, : W'(Q) — R,

1 1
defined by A(u) = —/ |\Vu|Pdz and B,, ,,(u) = —/ [m(u®)? + n(u”)?]do. At this
D Ja D Joa



40 B. Karim, A. Zerouali, A. Anane, O. Chakrone

point let us introduce the set M, ,, := {u € W"?(Q); B, ,(u) = 1}. The condition
m™ # 0 implies that M,,,, # (). Moreover, the set M,, , is a C ! manifold in W'?((2).
Let A denote the restriction of A to the manifold M., ». In [1], we showed the follow-
ing proposition concerning the first nonprincipal positive eigenvalue ¢(m,n) for (1.9),
where

c(m,n) = Hellf“ ug}yz[ﬁ(l] A w) (2.2)

and
I'={y€C([0,1], My, n) : 7(0) = =, and ¥(1) = ¢, }

with ¢, the normalized positive first eigenvalue of A\;(m).

Proposition 2.2. Assume m, n € M,. Then c(m,n) is an eigenvalue of (1.9) which
satisfies
max{A;(m), A\;(n)} < c(m,n).

Moreover, there is no eigenvalue of (1.9) between max{A;(m), \1(n)} and c(m,n).

The continuity and the monotonicity of the nonprincipal eigenvalue ¢(m,n) with
respect to the weights m and n are proved in [5].

Proposition 2.3 (See [5]). Assume my, ng, m, n, m, n € M,.
1. If (mg,ng) — (m,n) in L1(0Q) x LY(0N), then c(my, ny) — c¢(m,n).
2. Ifm <mandn < nin dS, then c(m,n) > c(m,n).

The monotonicity provided by Proposition 2.3 is generally not strict, as in [2, Ex-
ample 3.1]. The following proposition guarantees, in a certain sense, the strict mono-
tonicity.

Proposition 2.4. Assume m, n, m, n € M,. If m <1, n < n in 0, and
/ (m — m)(u")Pdo + / (n—n)(u )Pdo >0 (2.3)
o0 o0
for at least one eigenfunction u associated to c(m,n), then c(m,n) > c(1m, n).
Proof. This is an easy adaptation of proof of [2, Proposition 3.2]. [

The lemma below guarantees that in a mountain pass situation, any minimizing path
contains a critical point at the mountain pass level.

Lemma 2.5 (See [7]). Let E be a real Banach space and let M := {u € E; g(u) = 1},
where g € ~C'I(E,IR) and 1 is a regular value of g. Let f € C*(E,R). Consider the
restriction f of f to M. Let u, v € M with u # v and assume that

H :={h e C(]0,1],M); h(0) = wand h(1) = v}
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is nonempty and that

c:= inf max f(w) > max{f(u), f(v)}.

heH weh([0,1])

Suppose that h € H is such that r}rll(%x]) f(u) = c. Then there exists u € h([0, 1]) with
ue ,1

f(u) = ¢ which is a critical point of f.

3 Nonresonance Between the First Two Eigenvalues

In this section, we study the existence of the p-harmonic solutions for the Steklov prob-
lem (1.3), under assumptions (1.4), (1.5), (1.6), (1.7) and (1.8). We can apply a version
of the mountain pass theorem in a Banach space as given for instance in [10]. The
following theorem is the main result in this section.

Theorem 3.1. Assume (1.4)—(1.8). Then the problem (1.3) admits at least one solution
win WHP(Q).

Remark 3.2. Let us recall the precise meaning of the fact that the limits in (1.7) are
uniform with respect to z: for any € > 0, there exists a. € L' (9€2) such that

1 1 €
=0 (x)|sTIP+ =0_(2)|s|P — =|s]P — a.(x
p+( )]s 5 ()]s p|| (x)

1 1
< () < AL @)ls P+ A (@)ls P+ §|s|p +a(z). B.1)

Note also that one clearly has
Ye(z) < di(x) < Ap(x) <Ty(z)ae. in 09. (3.2)

We consider now the functional
1
o(u) = —/ \Vu|Pdx —/ F(z,u)do.
P Ja o0

Assumption (1.4) implies that ¢ is a C* functional on W'P(Q). Its critical points are
exactly the solutions of problem (1.3).

Lemma 3.3. Functional ¢ satisfies the (PS) condition on W**(Q).
Proof. Let uy be a (PS) sequence, i.e.,
()| < ¢, (3.3)

(0 (we), w)| < exllwl| Yw € WH(Q), (3.4)
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where c is constant and £, — 0. It suffices to prove that u;, remains bounded in W'?(2).
Assume by contradiction that, for a subsequence, ||ux| — +oo. Put vy = wuy/||ugl|-
For a further subsequence, v, — v weakly in W'?(Q), v — v ae. in 09, v, — v
strongly in LP(€2) and by the Sobolev trace embedding W'?(Q2) — LP(0Q), v, — v
strongly in L?(092). Using (1.4), we deduce that f(z, uy,)/||u/|P~* remains bounded in
LP(8Q). Thus f(z,u)/|lukl|P~ = fo(z) weakly in L (992). We first take w = v — vy,

in (3.4) and divide by ||ug||”~* to deduce / IVur[P 2V, V(v — v)dr — 0. Since
Q

v — v strongly in LP(Q2), we have
/ IVurP Vo V(v — vy, )dx + / |vg|P2(v — v )dx — 0.
Q Q

Thus by the (S™) type property of the operator —A,u + |u[’"*u on W'P((2), we have
vy — v strongly in W?(Q). In particular ||v|| = 1. One also deduces in a similar
manner from (3.4) that

/ (V[P 2VoVpdr = fo(x)pdo Yo € WHP(Q). (3.5)
Q o)

Now, by standard arguments based on assumption (1.6) (cf., e.g., [12]), the function
fo(z) can be written as a(z)(v")?~' — B(z)(v™)P~* for some LI(0N) functions a, 3
satisfying

1+(7) < a(z) <Ty(z), 7-(2) < B(z) <T(2)ae. in I (3.6)

Since the values of «(z) (resp. 5(z)) on {z € 0Q;v(x) < 0} (resp. {z € 0Q;v(x) >
0}) are irrelevant in the above expression of fo(x) as a(z)(v™ )P~ — B(z)(v™ )P, we
can assume that

alx) = Ai(xz)on {z € 0Q;v(x) <0}, B(z)=A_(z)on {z € Iv(x) > 0}.

(3.7)

We now distinguish three cases: (i) v > 0 a.e. in 042, (ii) v < 0 a.e. in 0f2 and (iii) v

changes sign in 0€). We will see that each case leads to a contradiction.

In case (i), (3.5) implies A\;(«) = 1 and v(z) > 0 in 0. Using the monotonicity of

A1(+) with respect to the weight, it follows from (3.6) and (1.6) that A\;(y4+) = 1 and

also, by the strict monotonicity of A;(-), we have o = =, a.e. in 9€2. Dividing (3.3) by

||ug||? and going to the limit, using (1.7) and Fatou’s lemma, one gets

F
/ Ozvde':/|VU|pdCL’= lim wdaZ/ dpoPdo.
20 Q koo Jog  ||ul[? 20

Since a = v, < J, a.e. in 92 and v > 0, we deduce o = d a.e. in J€2. Consequently
A1(d4) = 1, which contradicts (1.8). Case (ii) can be treated similarly. In case (iii),
(3.5) shows that v is a solution of the following problem which changes sign

{ Apu=0 in (2,

|Vu|p_2? =a(ut)’' =B )Pt onodQ,
v

(3.8)
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and consequently ¢(«, 5) < 1. By (1.6), (3.6) and using the monotonicity of ¢(-, -) with
respect to the weights,we have c¢(«, 5) = ¢(I'y,I'_) = 1. Dividing (3.5) by ||u||” and
going to the limit, using (1.7) and Fatou’s lemma, one gets

[ ety sy do = [ v = [ P

k—+oo Joq  ||uxlP

< /8 (A AT do (3.9)

< /asz (DL ()P +T_(v")?) do.

The first integral and the last integral in (3.9) are equal. Indeed, if

/ ()P + B(v7)P) do < / (Pe(0T)? +T_(v7)?) do,
o0

o0
then

/m (Ts — a)(0*)P + (T — B)(w ) do > 0.

Thus, Proposition 2.4 yields that ¢(«, ) > ¢(I';,['_). This contradicts the fact that
cla, B) = ¢(I'y,I'_) = 1. We conclude that all the terms are equal in (3.9) and we
deduce, using (2.1), that A, = I'y on {z € IQ;u(x) > 0}, A_ = T'_ on {z €
0Q;v(x) < 0}, and using (3.6), that « = I'y on {z € 0Q;v(z) > 0}, B = I'_ on
{z € 0 v(z) < 0}. Combining with (3.7), we finally get « = A, and 5 = A_ ae.
in ). Therefore, c(A,, A_) = 1, which contradicts (1.8). This concludes the proof of
Lemma 3.3. [

We now turn to the study of the geometry of ¢; and first look for directions along
which ¢ goes to —oo.

Lemma 3.4. Let w, (resp. w_) be a positive eigenfunction associated to \1(d..) (resp.
A (6-)). Then ¢p(Rwy) — —o0 and ¢(—Rw_) — —oo as R — +o0.

Proof. We will prove the assertion relative to ¢( Rw, ), the other one is proved similarly.
(3.1) implies, for R > 0, that
RP

P
o(Rw;) < R—/ \Vwy|[Pde — — [ (0;wh — ewi)d0+/ ac.do
P Ja D Jaq i)

<E(1—#)/|Vw |pd:c—|—ﬁe/ wpda—l—/ acdo
Iz AM(04) ) Ja i p Joa o0

< r (1 ! —|—€k:)/|V |Pd +/ d
< — - — w x a.ao
b /\1(5+) Q * 89

Pd 1
with k = M > (). Choosing € > 0 such that 1 —
Jo |V Pz A (57)

possible by assumption (1.8), we get that ¢( Rw,) — —oc as R — +00. O

+ ke < 0, which is
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Lemma 3.5. There exists Ry such that for all R > Ry and for all h € Hgr := {h €
C([0,1], W'?(Q)); h(0) = Rw, and h(1) = —Rw_}, we have

uEIfl;l(E[ié),(l]) ¢(u) > max{p(Rwy), p(—Rw_)}. (3.10)

Proof. We take a, according to (3.1) and use Lemma 3.3 to choose Ry > 0 such that

—/ a.do > max{¢(Rwy), p(—Rw_)} (3.11)
Ge)

for all R > Ry. Take such a value R and let h € Hg. To prove (3.10), we distinguish
two cases: either (i) Ba, a_(h(ty)) < 0 for some ¢, € [0, 1], or (ii) Ba, a_(h(t)) >0
forall t € [0, 1]. We recall here that Bo, a_ is the function which defines the manifold
MAa ., a_ (cf. Section 2).

Case (i). We first use (3.1) to obtain

o(u) > ]%/Q |Vul|Pde — ]l?/ag (Ap(uh)P + A (u)P) do

—E/ \u]pda—/ a.do.
P Joa o0

This implies, since we are in case (i),

(3.12)

1 pi. € Py _
mx 00) = 0(0(10) > - / Vh(t)ds — & /m\h@on do /magda. (3.13)

u€h([0,1])

If |h(to)|Pdo = 0, then max ¢(u) > ¢(h(ty)) > —/ a.do.

a0 uEh([U,l]) 90
If / Ih(to)[Pdo > 0 and / IV hi(to)Pdz = 0, then h(to) = c # 0. The sign of ¢ gives
1s)9) Q
|cf? [P
BAJr,Ai(h(to)) = — A+d0' < Oor BA+’A7(h(t0>> = — A_do < 0. Thus
P Joa P Joa

by (3.12), we have

max  ¢(u) > ¢(h(ty)) > Jel” (— Aido — 6|8Q|) —/ a.do (3.14)
o0 G

ueh([0,1]) p
or
p
max o) > 6(h(ty)) > 1L (—/ Ada—e|8§2|) —/ ado. (315
uEh([O,l]) p a0 90

If |h(to)|Pdo > 0 and/ |V h(ty)[Pdx > 0, then by (3.13) we obtain
o0 v

1 p
max  6(u) > 6(h(to)) > 1—9(1—ek)/Q\Vh(to)| dx—/maeda (3.16)

ueh([0,1])
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faa |h(t0) |pd0-
Jo IV h(to)|Pdz

with £ = > (. Now, by the choice of € in (3.14), (3.15) and (3.16), one

has

max o) > - /a aude > max{o(Ru), o(~ )}

which implies the inequality (3.10) of Lemma 3.5.
Case (ii). In this case we can normalize the path h(t) to get a path

h(t) == h(t)/Ba,.a_(h()""

on the manifold Ma, a_ which satisfies, by (2.2) form = A, andn = A_,

1
max —/ |\Vul|Pde > c¢(Ap, AL). (3.17)
ueh([0,1]) P Ja

We now use (3.1) to get

1 1
o(u) > —/ |Vul|Pde — —/ (A (uh)P + A (u)?) do — € |ulPdo — / a.do
P Ja P Jaq P Jaq i)

which implies, by (3.17),
1 €
max ———— u) + B (u) + - upda+/ agda}ch,A_.
e {ot+ Baaw+ S [ upass [ (AnA )
Hence there exists u, € h([0, 1]) such that

€

P(ue) > (c(Ap,A) = 1) Ba, a_(ue) — — |ue[Pdo — / a.do.
P Joa o0

If there exists ¢y > 0 such that |ttey |Pdo = 0, then
o9

max  ¢(u) > d(ue,) > —/ ae,do.

uEh([O,lD a0

If foralle > 0 |ue|Pdo > 0, then we have the following claim.
09

Claim. There exists ¢y > 0 such that

€0

(€8 8) = 1) Baa (1) = 2 [ fugPdo 20
D Joq

Proof of the Claim. Suppose, by contradition, that for all € > 0

€

(c(AL,AZ) = 1) Ba, a_(ue) — —/ |ue|Pdo < 0.
D Joq
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Then,
(A, AL) = 1) Ba,a_(ul)

< € forall € > 0. (3.18)
5 Jog ucPdo

Let ug and u; be such that

B(ug) = ug(i[gl]{B(u); B(u) > 0};

|ui|Pdo = max {/ |u|pda;/ |u|Pdo > 0} .
o9 uch([0.1] (Jaq o9
Thus, by (3.18), we have

(c(Ay,AZ) = 1) Ba, a_(uo)

%fag |u|Pdo

This implies that (¢(A;, A_) —1)Ba, a_(ug) = 0, which contradicts the fact that

< e forall € > 0. (3.19)

c(Ay,A_) > 1and Ba, a_(ug) > 0.

Finally, by the claim, one has

max  ¢(u) > — /89 ac,do > max{p(Rw, ), p(—Rw_)},

ueh([0,1])
which implies the inequality (3.10) of Lemma 3.5. ]

Proof of Theorem 3.1. Now, we can apply a version of the mountain pass theorem in a
Banach space as given for instance in [10] to conclude that

inf
B bty 2

is a critical value of ¢. Theorem 3.1 is proved. U

4 Nonresonance under the First Eigenvalue

In this section we are interested at nonresonance for Steklov problem (1.1), under the
first eigenvalue for the problem (1.9) (with m = n). Suppose that f satisfies the condi-
tion (1.4) and there exists m(x) € M, such that

F
lim sup p—(% 5) :

|s]—+o0 |S|p

= m(x). 4.1)

Theorem 4.1. Assume that (1.4) and (4.1) hold. Then the problem (1.3) admits at least
a solution for A\;(m) > 1.
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Remark 4.2. We can have A\, (m ) > 1, since A1 (m) is homogeneous with respect to the
(

1,
)

for all @ > 0.

weight in the sense A\ (am) =

Remark 4.3. The condition (4.1) 1mp11es that for all £ > 0, there exists d. € L' (952)
such that a.e. z € 092 and Vs € R, we have F'(z,s) < (m(z) + 5)u d.(z).

Lemma 4.4. Assume (4.1) holds. Then the functional ¢ is coercive for A\;(m) > 1.

Proof. Suppose by contradiction that there exist a sequence u,, € W'?(2) and ¢ > 0
such that ||u,|| — 400 and |®(u,)| < ¢. The condition ¢ > |®(u, )| implies that

1
c> —/ \Vun]pdw—/ F(z,uy)do. 4.2)
D Ja lg)

From Remark 4.3, we have

1 1
c> —/ |Vun|pdx——/ (m(x)+€)|un|pdcr—/ d.(z)do. 4.3)
b Ja P Joq o0

Let ¢ > 0 be such that A\;(m + €) > 1 (the continuity of m — A;(m) is used here,
see [4, Proposition 3.3]). Thus

Put v, = Dividing (4.4) by ||u,||", we obtain

[l nll

1 1 1
€ > (1 . —) - / Vo, |Pde — ——— / d.(x)do.  (4.5)
| [P M(m+¢e,p)) pJo [unllP Joq

Since v,, is a bounded, for a further subsequence still denoted by v,, — v weakly in
W?(Q) and v, — v strongly in L?(£), on the other hand, we have

/]Vv\pdx—i-/ |v|Pdz < lim inf (/ ]an|pdx+/\vn\pda:).
Q Q n—too \Jo Q

Passing to the limit in (4.5), we obtain 0 = / |VulPdz. Thus v = ¢; = const and

Q
[vnllip = ||v|l1,- Since W'P(Q) is uniformly convex (then reflexive), v, — c¢;
strongly in W?(Q). Dividing (4.3) by ||u,|[ and passing to the limit, we have

p
Jea]? (m(z)+¢e)do. As ¢ is arbitrary, we obtain Jeaf? / m(z)do > 0. Since
D Joq D Joa

m(z)do < 0, we have ¢; = 0 and, consequently, ||v, || — 0. This contradicts

0> —

B
l|vn|| = 1. We conclude that ¢ is coercive. O
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Lemma 4.5. Assume that (1.4) and (4.1) hold. Then the energy functional ¢ is weakly
lower semicontinuous.

Proof. Tt suffices to see that the trace mapping W' (Q) — Lt (09)) is compact. [

Proof of Theorem 4.1. From Lemma 4.5, we know that ¢ is weakly lower semicontinu-
ous, while by Lemma 4.4 ¢ is coercive. Thus, ¢ is continuously differentiable and the
proof is complete. O

Corollary 4.6. Suppose that m € M,. If \y(m) > X > 0. Then problem (1.3) admits
at least a solution for f(x,u) = Am|u[P~u + g(z) with g € L¥ (9R).
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