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Abstract
We study the existence of p-harmonic solutions for the Steklov problem

∆pu = 0 in Ω, |∇u|p−2∂u

∂ν
= f(x, u) on ∂Ω,

under assumptions on the asymptotic behavior of the quotients f(x, s)/|s|p−2s and
pF (x, s)/|s|p, where the limits at infinity of these quotients lie between the first
two eigenvalues. Finally we establish, in a certain sense, the solvability of the
problem under the first eigenvalue.

AMS Subject Classifications: 35J70, 35P30.
Keywords: Nonresonance, Sobolev trace embedding, p-harmonic solutions, Steklov
problem, first nonprincipal eigenvalue.

1 Introduction
In a previous work [2], we investigated the solvability of the following problem:{

∆pu = |u|p−2u in Ω,

|∇u|p−2∂u

∂ν
= f(x, u) on ∂Ω,

(1.1)
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under assumptions on the asymptotic behaviour of the quotients f(x, s)/|s|p−2s and

pF (x, s)/|s|p with F (x, s) =

∫ s

0

f(x, t)dt, where the limits at infinity of these quotients

lie between the first principal and nonprincipal eigenvalues for the asymmetric Steklov
problem {

∆pu = |u|p−2u in Ω,

|∇u|p−2∂u

∂ν
= λ[m(x)(u+)p−1 − n(x)(u−)p−1] on ∂Ω,

(1.2)

with the weights m, n ∈ M+ = {m ∈ Lq(∂Ω);m+ 6≡ 0 in ∂Ω}, where ∆p is the p-
Laplacian, 1 < p < +∞, q > (N − 1)/(p− 1) if 1 < p < N and q ≥ 1 if p ≥ N , and
Ω is a bounded smooth domain in RN , N ≥ 1. In the present paper, we are interested in
studying the existence of the p-harmonic solutions for the following Steklov problem:{

∆pu = 0 in Ω,

|∇u|p−2∂u

∂ν
= f(x, u) on ∂Ω,

(1.3)

where f : ∂Ω× R→ R is a Carathéodory function satisfying the growth condition

|f(x, s)| ≤ a(x)|s|p−1 + b(x) (1.4)

for a.e. x ∈ ∂Ω and all s ∈ R. Here a ∈ Lq(∂Ω) and b ∈ Lp
′
(∂Ω), where p′ its the

conjugate of p, q > (N − 1)/(p − 1) if 1 < p < N and q ≥ 1 if p ≥ N, with N ≥ 2.
We assume that the inequalities

γ±(x) := lim inf
s→±∞

f(x, s)

|s|p−2s
≤ lim sup

s→±∞

f(x, s)

|s|p−2s
:= Γ±(x) (1.5)

hold uniformly with respect to x ∈ ∂Ω, where γ± and Γ± are in Mq with

Mq =

{
m ∈ Lq(∂Ω),m+ 6≡ 0 and

∫
∂Ω

mdσ < 0

}
and satisfy

λ1(γ+) ≤ 1, λ1(γ−) ≤ 1, c(Γ+,Γ−) ≥ 1. (1.6)

We also assume that the inequalities

δ±(x) := lim inf
s→±∞

pF (x, s)

|s|p
≤ lim sup

s→±∞

pF (x, s)

|s|p
:= ∆±(x) (1.7)

hold uniformly with respect to x ∈ ∂Ω, where δ± and ∆± are in Mq and satisfy

λ1(δ+) < 1, λ1(δ−) < 1, c(∆+,∆−) > 1. (1.8)
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Here λ1(m) and c(m,n) are respectively the first principal and nonprincipal eigenvalues
of the following asymmetric Steklov problem:{

∆pu = 0 in Ω,

|∇u|p−2∂u

∂ν
= λ[m(x)(u+)p−1 − n(x)(u−)p−1] on ∂Ω,

(1.9)

with the weights m,n ∈ Mq (see [1, 3]). The problem (1.3) can be a limit situation of
the problem (1.1) because we can replace |u|p−2u by ε|u|p−2u in (1.1), where ε is small
enough. Problem (1.3) appears naturally in several branches of pure and applied mathe-
matics, such as the theory of quasiregular and quasiconformal mappings in Riemannian
manifolds with boundary (see [11, 13]), non Newtonian fluids, reaction diffusion prob-
lems, flow through porus media, nonlinear elasticity, glaciology, etc. (see [6, 8, 9]).

The paper is organized as follows. In Section 2, which has a preliminary character,
we collect some results relative to the asymmetric Steklov problem (1.9). In Section 3
we study, as in [2], the case of nonresonance of the problem (1.3) between the first
principal and nonprincipal eigenvalues of the asymmetric Steklov problem. Finally, in
Section 4 we study the solvability of problem (1.3) under the first eigenvalue.

2 Preliminaries
Our main purpose in this preliminary section is to collect some results relative to the
asymmetric Steklov problem (1.9). For any integer k ≥ 1, let

Γk := {K ⊂ S;K is symmetric, compact and γ(K) ≥ k}

with S :=

{
u ∈ W 1,p(Ω);

1

p

∫
∂Ω

m|u|pdσ = 1

}
and γ(K) be the Krasnoselski genus

of K. Let
λk(m) := inf

K∈Γk

sup
u∈K

1

p

∫
Ω

|∇u|pdx. (2.1)

In [14], Torné proved the following proposition using infinite dimensional Ljusternik–
Schnirelman theory.

Proposition 2.1 (See [14]). Let m ∈ Mq. Then λk(m) given by (2.1) is a sequence of
eigenvalues of the problem (1.9) with m = n such that λk → +∞ as k → +∞.

The author established the simplicity and isolation of the first eigenvalue λ1(m) of
the Steklov eigenvalue problem (1.9) with m = n. The strict monotonicity and the
continuity of λ1(m) respect to the weight are proved respectively in [3, 4].

Let us conclude this section with some results concerning c(m,n) the first nonprin-
cipal positive eigenvalue of (1.9). Let m, n ∈ Mq and let A, Bm,n : W 1,p(Ω) → R,

defined by A(u) =
1

p

∫
Ω

|∇u|pdx and Bm,n(u) =
1

p

∫
∂Ω

[m(u+)p + n(u−)p]dσ. At this
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point let us introduce the set Mm,n :=
{
u ∈ W 1,p(Ω);Bm,n(u) = 1

}
. The condition

m+ 6≡ 0 implies that Mm,n 6= ∅. Moreover, the set Mm,n is a C1 manifold in W 1,p(Ω).
Let Ã denote the restriction of A to the manifold Mm,n. In [1], we showed the follow-
ing proposition concerning the first nonprincipal positive eigenvalue c(m,n) for (1.9),
where

c(m,n) = inf
γ∈Γ

max
u∈γ[0,1]

Ã(u) (2.2)

and
Γ = {γ ∈ C([0, 1],Mm,n) : γ(0) = −ϕn and γ(1) = ϕm}

with ϕm the normalized positive first eigenvalue of λ1(m).

Proposition 2.2. Assume m, n ∈ Mq. Then c(m,n) is an eigenvalue of (1.9) which
satisfies

max{λ1(m), λ1(n)} < c(m,n).

Moreover, there is no eigenvalue of (1.9) between max{λ1(m), λ1(n)} and c(m,n).

The continuity and the monotonicity of the nonprincipal eigenvalue c(m,n) with
respect to the weights m and n are proved in [5].

Proposition 2.3 (See [5]). Assume mk, nk, m, n, m̂, n̂ ∈Mq.

1. If (mk, nk)→ (m,n) in Lq(∂Ω)× Lq(∂Ω), then c(mk, nk)→ c(m,n).

2. If m ≤ m̂ and n ≤ n̂ in ∂Ω, then c(m,n) ≥ c(m̂, n̂).

The monotonicity provided by Proposition 2.3 is generally not strict, as in [2, Ex-
ample 3.1]. The following proposition guarantees, in a certain sense, the strict mono-
tonicity.

Proposition 2.4. Assume m, n, m̂, n̂ ∈Mq. If m ≤ m̂, n ≤ n̂ in ∂Ω, and∫
∂Ω

(m̂−m)(u+)pdσ +

∫
∂Ω

(n̂− n)(u−)pdσ > 0 (2.3)

for at least one eigenfunction u associated to c(m,n), then c(m,n) > c(m̂, n̂).

Proof. This is an easy adaptation of proof of [2, Proposition 3.2].

The lemma below guarantees that in a mountain pass situation, any minimizing path
contains a critical point at the mountain pass level.

Lemma 2.5 (See [7]). Let E be a real Banach space and let M := {u ∈ E; g(u) = 1},
where g ∈ C1(E,R) and 1 is a regular value of g. Let f ∈ C1(E,R). Consider the
restriction f̃ of f to M . Let u, v ∈M with u 6= v and assume that

H := {h ∈ C([0, 1],M);h(0) = u and h(1) = v}
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is nonempty and that

c := inf
h∈H

max
w∈h([0,1])

f(w) > max{f(u), f(v)}.

Suppose that h ∈ H is such that max
u∈h([0,1])

f̃(u) = c. Then there exists u ∈ h([0, 1]) with

f̃(u) = c which is a critical point of f̃ .

3 Nonresonance Between the First Two Eigenvalues
In this section, we study the existence of the p-harmonic solutions for the Steklov prob-
lem (1.3), under assumptions (1.4), (1.5), (1.6), (1.7) and (1.8). We can apply a version
of the mountain pass theorem in a Banach space as given for instance in [10]. The
following theorem is the main result in this section.

Theorem 3.1. Assume (1.4)–(1.8). Then the problem (1.3) admits at least one solution
u in W 1,p(Ω).

Remark 3.2. Let us recall the precise meaning of the fact that the limits in (1.7) are
uniform with respect to x: for any ε > 0, there exists aε ∈ L1(∂Ω) such that

1

p
δ+(x)|s+|p +

1

p
δ−(x)|s−|p − ε

p
|s|p − aε(x)

≤ F (x, s) ≤ 1

p
∆+(x)|s+|p +

1

p
∆−(x)|s−|p +

ε

p
|s|p + aε(x). (3.1)

Note also that one clearly has

γ±(x) ≤ δ±(x) ≤ ∆±(x) ≤ Γ±(x) a.e. in ∂Ω. (3.2)

We consider now the functional

φ(u) :=
1

p

∫
Ω

|∇u|pdx−
∫
∂Ω

F (x, u)dσ.

Assumption (1.4) implies that φ is a C1 functional on W 1,p(Ω). Its critical points are
exactly the solutions of problem (1.3).

Lemma 3.3. Functional φ satisfies the (PS) condition on W 1,p(Ω).

Proof. Let uk be a (PS) sequence, i.e.,

|φ(uk)| ≤ c, (3.3)

|〈φ′(uk), w〉| ≤ εk‖w‖ ∀w ∈ W 1,p(Ω), (3.4)
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where c is constant and εk → 0. It suffices to prove that uk remains bounded inW 1,p(Ω).
Assume by contradiction that, for a subsequence, ‖uk‖ → +∞. Put vk := uk/‖uk‖.
For a further subsequence, vk → v weakly in W 1,p(Ω), vk → v a.e. in ∂Ω, vk → v
strongly in Lp(Ω) and by the Sobolev trace embedding W 1,p(Ω) → Lp(∂Ω), vk → v
strongly in Lp(∂Ω). Using (1.4), we deduce that f(x, uk)/‖uk‖p−1 remains bounded in
Lp
′
(∂Ω). Thus f(x, uk)/‖uk‖p−1 → f0(x) weakly in Lp

′
(∂Ω). We first take w = v−vk

in (3.4) and divide by ‖uk‖p−1 to deduce
∫

Ω

|∇vk|p−2∇vk∇(v − vk)dx → 0. Since

vk → v strongly in Lp(Ω), we have∫
Ω

|∇vk|p−2∇vk∇(v − vk)dx+

∫
Ω

|vk|p−2(v − vk)dx→ 0.

Thus by the (S+) type property of the operator −∆pu + |u|p−2u on W 1,p(Ω), we have
vk → v strongly in W 1,p(Ω). In particular ‖v‖ = 1. One also deduces in a similar
manner from (3.4) that∫

Ω

|∇v|p−2∇v∇ϕdx =

∫
∂Ω

f0(x)ϕdσ ∀ϕ ∈ W 1,p(Ω). (3.5)

Now, by standard arguments based on assumption (1.6) (cf., e.g., [12]), the function
f0(x) can be written as α(x)(v+)p−1 − β(x)(v−)p−1 for some Lq(∂Ω) functions α, β
satisfying

γ+(x) ≤ α(x) ≤ Γ+(x), γ−(x) ≤ β(x) ≤ Γ−(x) a.e. in ∂Ω. (3.6)

Since the values of α(x) (resp. β(x)) on {x ∈ ∂Ω; v(x) ≤ 0} (resp. {x ∈ ∂Ω; v(x) ≥
0}) are irrelevant in the above expression of f0(x) as α(x)(v+)p−1 − β(x)(v−)p−1, we
can assume that

α(x) = ∆+(x) on {x ∈ ∂Ω; v(x) ≤ 0}, β(x) = ∆−(x) on {x ∈ ∂Ω; v(x) ≥ 0}.
(3.7)

We now distinguish three cases: (i) v ≥ 0 a.e. in ∂Ω, (ii) v ≤ 0 a.e. in ∂Ω and (iii) v
changes sign in ∂Ω. We will see that each case leads to a contradiction.
In case (i), (3.5) implies λ1(α) = 1 and v(x) > 0 in ∂Ω. Using the monotonicity of
λ1(·) with respect to the weight, it follows from (3.6) and (1.6) that λ1(γ+) = 1 and
also, by the strict monotonicity of λ1(·), we have α = γ+ a.e. in ∂Ω. Dividing (3.3) by
‖uk‖p and going to the limit, using (1.7) and Fatou’s lemma, one gets∫

∂Ω

αvpdσ =

∫
Ω

|∇v|pdx = lim
k→+∞

∫
∂Ω

pF (x, uk)

‖uk‖p
dσ ≥

∫
∂Ω

δ+v
pdσ.

Since α = γ+ ≤ δ+ a.e. in ∂Ω and v > 0, we deduce α = δ+ a.e. in ∂Ω. Consequently
λ1(δ+) = 1, which contradicts (1.8). Case (ii) can be treated similarly. In case (iii),
(3.5) shows that v is a solution of the following problem which changes sign{

∆pu = 0 in Ω,

|∇u|p−2∂u

∂ν
= α(u+)p−1 − β(u−)p−1 on ∂Ω,

(3.8)
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and consequently c(α, β) ≤ 1. By (1.6), (3.6) and using the monotonicity of c(·, ·) with
respect to the weights,we have c(α, β) = c(Γ+,Γ−) = 1. Dividing (3.5) by ‖uk‖p and
going to the limit, using (1.7) and Fatou’s lemma, one gets∫

∂Ω

(
α(v+)p + β(v−)p

)
dσ =

∫
Ω

|∇v|pdx = lim
k→+∞

∫
∂Ω

pF (x, uk)

‖uk‖p
dσ

≤
∫
∂Ω

(
∆+(v+)p + ∆−(v−)p

)
dσ

≤
∫
∂Ω

(
Γ+(v+)p + Γ−(v−)p

)
dσ.

(3.9)

The first integral and the last integral in (3.9) are equal. Indeed, if∫
∂Ω

(
α(v+)p + β(v−)p

)
dσ <

∫
∂Ω

(
Γ+(v+)p + Γ−(v−)p

)
dσ,

then ∫
∂Ω

(
(Γ+ − α)(v+)p + (Γ− − β)(v−)p

)
dσ > 0.

Thus, Proposition 2.4 yields that c(α, β) > c(Γ+,Γ−). This contradicts the fact that
c(α, β) = c(Γ+,Γ−) = 1. We conclude that all the terms are equal in (3.9) and we
deduce, using (2.1), that ∆+ = Γ+ on {x ∈ ∂Ω; v(x) > 0}, ∆− = Γ− on {x ∈
∂Ω; v(x) < 0}, and using (3.6), that α = Γ+ on {x ∈ ∂Ω; v(x) > 0}, β = Γ− on
{x ∈ ∂Ω; v(x) < 0}. Combining with (3.7), we finally get α = ∆+ and β = ∆− a.e.
in ∂Ω. Therefore, c(∆+,∆−) = 1, which contradicts (1.8). This concludes the proof of
Lemma 3.3.

We now turn to the study of the geometry of φ; and first look for directions along
which φ goes to −∞.

Lemma 3.4. Let w+ (resp. w−) be a positive eigenfunction associated to λ1(δ+) (resp.
λ1(δ−)). Then φ(Rw+)→ −∞ and φ(−Rw−)→ −∞ as R→ +∞.

Proof. We will prove the assertion relative to φ(Rw+), the other one is proved similarly.
(3.1) implies, for R > 0, that

φ(Rw+) ≤ Rp

p

∫
Ω

|∇w+|pdx−
Rp

p

∫
∂Ω

(δ+w
p
+ − εw

p
+)dσ +

∫
∂Ω

aεdσ

≤ Rp

p

(
1− 1

λ1(δ+)

)∫
Ω

|∇w+|pdx+
Rp

p
ε

∫
∂Ω

wp+dσ +

∫
∂Ω

aεdσ.

≤ Rp

p

(
1− 1

λ1(δ+)
+ εk

)∫
Ω

|∇w+|pdx+

∫
∂Ω

aεdσ

with k =

∫
∂Ω
wp+dσ∫

Ω
|∇w+|pdx

> 0. Choosing ε > 0 such that 1− 1

λ1(δ+)
+ kε < 0, which is

possible by assumption (1.8), we get that φ(Rw+)→ −∞ as R→ +∞.



44 B. Karim, A. Zerouali, A. Anane, O. Chakrone

Lemma 3.5. There exists R0 such that for all R ≥ R0 and for all h ∈ HR := {h ∈
C([0, 1],W 1,p(Ω));h(0) = Rw+ and h(1) = −Rw−}, we have

max
u∈h([0,1])

φ(u) > max{φ(Rw+), φ(−Rw−)}. (3.10)

Proof. We take aε according to (3.1) and use Lemma 3.3 to choose R0 > 0 such that

−
∫
∂Ω

aεdσ > max{φ(Rw+), φ(−Rw−)} (3.11)

for all R ≥ R0. Take such a value R and let h ∈ HR. To prove (3.10), we distinguish
two cases: either (i) B∆+,∆−(h(t0)) ≤ 0 for some t0 ∈ [0, 1], or (ii) B∆+,∆−(h(t)) > 0
for all t ∈ [0, 1]. We recall here that B∆+,∆− is the function which defines the manifold
M∆+,∆− (cf. Section 2).

Case (i). We first use (3.1) to obtain

φ(u) ≥ 1

p

∫
Ω

|∇u|pdx− 1

p

∫
∂Ω

(
∆+(u+)p + ∆−(u−)p

)
dσ

− ε

p

∫
∂Ω

|u|pdσ −
∫
∂Ω

aεdσ.

(3.12)

This implies, since we are in case (i),

max
u∈h([0,1])

φ(u) ≥ φ(h(t0)) ≥ 1

p

∫
Ω

|∇h(t0)|pdx− ε

p

∫
∂Ω

|h(t0)|pdσ −
∫
∂Ω

aεdσ. (3.13)

If
∫
∂Ω

|h(t0)|pdσ = 0, then max
u∈h([0,1])

φ(u) ≥ φ(h(t0)) ≥ −
∫
∂Ω

aεdσ.

If
∫
∂Ω

|h(t0)|pdσ > 0 and
∫

Ω

|∇h(t0)|pdx = 0, then h(t0) = c 6= 0. The sign of c gives

B∆+,∆−(h(t0)) =
|c|p

p

∫
∂Ω

∆+dσ < 0 or B∆+,∆−(h(t0)) =
|c|p

p

∫
∂Ω

∆−dσ < 0. Thus

by (3.12), we have

max
u∈h([0,1])

φ(u) ≥ φ(h(t0)) ≥ |c|
p

p

(
−
∫
∂Ω

∆+dσ − ε|∂Ω|
)
−
∫
∂Ω

aεdσ (3.14)

or

max
u∈h([0,1])

φ(u) ≥ φ(h(t0)) ≥ |c|
p

p

(
−
∫
∂Ω

∆−dσ − ε|∂Ω|
)
−
∫
∂Ω

aεdσ. (3.15)

If
∫
∂Ω

|h(t0)|pdσ > 0 and
∫

Ω

|∇h(t0)|pdx > 0, then by (3.13) we obtain

max
u∈h([0,1])

φ(u) ≥ φ(h(t0)) ≥ 1

p
(1− εk)

∫
Ω

|∇h(t0)|pdx−
∫
∂Ω

aεdσ (3.16)



Nonresonance under and between the First two Eigenvalues 45

with k =

∫
∂Ω
|h(t0)|pdσ∫

Ω
|∇h(t0)|pdx

> 0. Now, by the choice of ε in (3.14), (3.15) and (3.16), one

has
max

u∈h([0,1])
φ(u) ≥ −

∫
∂Ω

aεdσ > max{φ(Rw+), φ(−Rw−)},

which implies the inequality (3.10) of Lemma 3.5.
Case (ii). In this case we can normalize the path h(t) to get a path

h̃(t) := h(t)/B∆+,∆−(h(t))1/p

on the manifold M∆+,∆− which satisfies, by (2.2) for m = ∆+ and n = ∆−,

max
u∈h̃([0,1])

1

p

∫
Ω

|∇u|pdx ≥ c(∆+,∆−). (3.17)

We now use (3.1) to get

φ(u) ≥ 1

p

∫
Ω

|∇u|pdx− 1

p

∫
∂Ω

(
∆+(u+)p + ∆−(u−)p

)
dσ − ε

p

∫
∂Ω

|u|pdσ −
∫
∂Ω

aεdσ

which implies, by (3.17),

max
u∈h([0,1])

1

B∆+,∆−(u)

{
φ(u) +B∆+,∆−(u) +

ε

p

∫
∂Ω

|u|pdσ +

∫
∂Ω

aεdσ

}
≥ c(∆+,∆−).

Hence there exists uε ∈ h([0, 1]) such that

φ(uε) ≥ (c(∆+,∆−)− 1)B∆+,∆−(uε)−
ε

p

∫
∂Ω

|uε|pdσ −
∫
∂Ω

aεdσ.

If there exists ε0 > 0 such that
∫
∂Ω

|uε0|pdσ = 0, then

max
u∈h([0,1])

φ(u) ≥ φ(uε0) ≥ −
∫
∂Ω

aε0dσ.

If for all ε > 0

∫
∂Ω

|uε|pdσ > 0, then we have the following claim.

Claim. There exists ε0 > 0 such that

(c(∆+,∆−)− 1)B∆+,∆−(uε0)−
ε0
p

∫
∂Ω

|uε0|pdσ ≥ 0.

Proof of the Claim. Suppose, by contradition, that for all ε > 0

(c(∆+,∆−)− 1)B∆+,∆−(uε)−
ε

p

∫
∂Ω

|uε|pdσ < 0.
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Then,
(c(∆+,∆−)− 1)B∆+,∆−(uε)

1
p

∫
∂Ω
|uε|pdσ

< ε for all ε > 0. (3.18)

Let u0 and u1 be such that

B(u0) = min
u∈h([0,1]

{B(u);B(u) > 0};

∫
∂Ω

|u1|pdσ = max
u∈h([0,1]

{∫
∂Ω

|u|pdσ;

∫
∂Ω

|u|pdσ > 0

}
.

Thus, by (3.18), we have

(c(∆+,∆−)− 1)B∆+,∆−(u0)
1
p

∫
∂Ω
|u1|pdσ

< ε for all ε > 0. (3.19)

This implies that (c(∆+,∆−)− 1)B∆+,∆−(u0) = 0, which contradicts the fact that

c(∆+,∆−) > 1 and B∆+,∆−(u0) > 0.

Finally, by the claim, one has

max
u∈h([0,1])

φ(u) ≥ −
∫
∂Ω

aε0dσ > max{φ(Rw+), φ(−Rw−)},

which implies the inequality (3.10) of Lemma 3.5.

Proof of Theorem 3.1. Now, we can apply a version of the mountain pass theorem in a
Banach space as given for instance in [10] to conclude that

inf
h∈HR

max
u∈h([0,1])

φ(u)

is a critical value of φ. Theorem 3.1 is proved.

4 Nonresonance under the First Eigenvalue
In this section we are interested at nonresonance for Steklov problem (1.1), under the
first eigenvalue for the problem (1.9) (with m = n). Suppose that f satisfies the condi-
tion (1.4) and there exists m(x) ∈Mq such that

lim sup
|s|→+∞

pF (x, s)

|s|p
:= m(x). (4.1)

Theorem 4.1. Assume that (1.4) and (4.1) hold. Then the problem (1.3) admits at least
a solution for λ1(m) > 1.
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Remark 4.2. We can have λ1(m) > 1, since λ1(m) is homogeneous with respect to the

weight in the sense λ1(αm) =
λ1(m)

α
for all α > 0.

Remark 4.3. The condition (4.1) implies that for all ε > 0, there exists dε ∈ L1(∂Ω)

such that a.e. x ∈ ∂Ω and ∀s ∈ R, we have F (x, s) ≤ (m(x) + ε)
|s|p

p
+ dε(x).

Lemma 4.4. Assume (4.1) holds. Then the functional φ is coercive for λ1(m) > 1.

Proof. Suppose by contradiction that there exist a sequence un ∈ W 1,p(Ω) and c ≥ 0
such that ||un|| → +∞ and |Φ(un)| ≤ c. The condition c ≥ |Φ(un)| implies that

c ≥ 1

p

∫
Ω

|∇un|pdx−
∫
∂Ω

F (x, un)dσ. (4.2)

From Remark 4.3, we have

c ≥ 1

p

∫
Ω

|∇un|pdx−
1

p

∫
∂Ω

(m(x) + ε)|un|pdσ −
∫
∂Ω

dε(x)dσ. (4.3)

Let ε > 0 be such that λ1(m + ε) > 1 (the continuity of m → λ1(m) is used here,
see [4, Proposition 3.3]). Thus

c ≥
(

1− 1

λ1(m+ ε)

)
1

p

∫
Ω

|∇un|pdx−
∫
∂Ω

dε(x)dσ. (4.4)

Put vn =
un
||un||

. Dividing (4.4) by ||un||p, we obtain

c

||un||p
≥
(

1− 1

λ1(m+ ε, p)

)
1

p

∫
Ω

|∇vn|pdx−
1

||un||p

∫
∂Ω

dε(x)dσ. (4.5)

Since vn is a bounded, for a further subsequence still denoted by vn ⇀ v weakly in
W 1,p(Ω) and vn → v strongly in Lp(Ω), on the other hand, we have∫

Ω

|∇v|pdx+

∫
Ω

|v|pdx ≤ lim inf
n→+∞

(∫
Ω

|∇vn|pdx+

∫
Ω

|vn|pdx
)
.

Passing to the limit in (4.5), we obtain 0 =

∫
Ω

|∇v|pdx. Thus v = c1 = const and

||vn||1,p → ||v||1,p. Since W 1,p(Ω) is uniformly convex (then reflexive), vn → c1

strongly in W 1,p(Ω). Dividing (4.3) by ||un||p and passing to the limit, we have

0 ≥ −|c1|p

p

∫
∂Ω

(m(x)+ε)dσ. As ε is arbitrary, we obtain
|c1|p

p

∫
∂Ω

m(x)dσ ≥ 0. Since∫
∂Ω

m(x)dσ < 0, we have c1 = 0 and, consequently, ||vn|| → 0. This contradicts

||vn|| = 1. We conclude that φ is coercive.
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Lemma 4.5. Assume that (1.4) and (4.1) hold. Then the energy functional φ is weakly
lower semicontinuous.

Proof. It suffices to see that the trace mapping W 1,p(Ω)→ L
pq
q−1 (∂Ω) is compact.

Proof of Theorem 4.1. From Lemma 4.5, we know that φ is weakly lower semicontinu-
ous, while by Lemma 4.4 φ is coercive. Thus, φ is continuously differentiable and the
proof is complete.

Corollary 4.6. Suppose that m ∈ Mq. If λ1(m) > λ > 0. Then problem (1.3) admits
at least a solution for f(x, u) = λm|u|p−2u+ g(x) with g ∈ Lp′(∂Ω).
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[14] O. Torné, Steklov problem with an indefinite weight for the p-Laplacian, Electron.
J. Differential Equations 2005 (2005), no. 87, 8 pp.


