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Abstract
The first purpose of this paper is to investigate time-harmonic Maxwell’s equa-

tions in Lipschitz and multiply connected cavities of R3. We prove the wellposed-
ness of the current source problem by means of a new formulation. Our starting
point is the curl second order equation satisfied by the magnetic field. The use of
an appropriate compact operator is at the heart of the proof. Secondly, we propose
a discretization relying on spectral elements and numerical integration. Then we
prove the convergence of the discrete solutions to the exact one and we derive er-
ror estimates. Examples of numerical solutions are given and compared with those
obtained by a finite element method in the case of a simple geometry.

AMS Subject Classifications: 35P10, 47B25, 35Q61.
Keywords: Maxwell’s equations, spectral method, numerical approximation.

1 Introduction
Let Ω be a bounded open set of R3 with a boundary ∂Ω and a unit outward normal
n. The electromagnetic field in the cavity is described by time harmonic Maxwell’s
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equation:
curl E+ iωµH = 0,
curl H− iωϵE = j,

div (µH) = 0,
div (ϵE) = iω−1div j,

(1.1)

where E and H are respectively the electric and the magnetic intensities, and j is the
imposed source of electric current density.Parameters ϵ and µ refer to the permittivity
and the permeability of the medium. For a perfect conducting boundary ∂Ω, the electric
fields satisfy the boundary conditions

E× n|∂Ω = 0,
µH · n|∂Ω = 0.

(1.2)

The system of equations (1.1) and (1.2) involves several theoretical and numerical prob-
lems which have been emphasized in the litterature on the subject. When the domain
is smooth, the analysis of time-harmonic Maxwell equation has been carried through
successfully by means of the Maxwell operator (see, e. g., [9, 14]):

A =

(
0 −curl

curl 0

)
.

However, when the domain is nonsmooth, (Ω contains inward edges and corners), the
treatment of time-harmonic Maxwell’s equations involves some serious complications.
This is due mainly to the appearance of singularities near these corners and edges. As far
as we know, this fact was first underlined by Weck [18]. Then [5] studies the eigenvalue
problem for nonsmooth cavities and clarified the nature of singularities.

The first subject in this work is to treat the current source problem (1.1) and (1.2) in
a nonsmooth and multiply connected domains of R3. We propose a new approach based
on the curl− curl second order equations satisfied by the magnetic field H. Namely H
is the solution of the system:

curl(ϵ−1curl u)− ω2µu = curl(ϵ−1j),
div (µu) = 0.

(1.3)

The electric fields is given by E = (iωϵ)−1(curl H− j).
This paper is organized as follows: in Section 2, we firstly give a geometrical de-

scription of the domain and a review of some functional spaces. Then the well posed-
ness of the current source problem (1.3), with appropriated boundary conditions, is
given. The regularity of solutions is also discussed. In Section 3, we propose a spec-
tral method for solving (1.3). We provide some convergence result and we derive error
estimates. Section 4 presents a conforming Finite Element Method. Finally, Section 5
illustrates this work by some numerical results in a simple 3D geometry.
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2 The Continuous Problem
Section 2.1 provides the functional framework.

2.1 Geometrical Description of the Domain
Let Ω be a bounded open set of R3 and denote by ∂Ω its boundary. We assume that

1. The domain Ω is Lipschitz-continuous. The boundary ∂Ω is the union of p+1 con-
nected components Γ0, . . . ,Γp, where Γ0 is the boundary of the only unbounded
connected component of R3/Ω. Note that p = 0 when ∂Ω is connected.

2. Ω is connected but not necessarily simply-connected, we suppose that there exists
m smooth surfaces Σ1, . . . ,Σm (“cuts”) such that: for any i ∈ {1, . . . ,m}, Σi is
an open part of a smooth manifold Mi. For any i ∈ {1, . . . ,m}, the boundary of
Σi is contained in ∂Ω. The intersection Σi ∩ Σj , is empty if i ̸= j. The open set

Ω̊ = Ω/
m∪
i=1

Σi is simply connected and pseudo-Lipschitz [2].

By convention, we set m = 0 when Ω is simply-connected.
In the following we denote by (·, ·) the scalar product in L2(Ω) or in L2(Ω)3. For

any s ≥ 0, Hs(Ω) is the classical Sobolev space defined on Ω and Hs
0(Ω) is the closure

of D(Ω) in Hs(Ω). The dual space of Hs
0(Ω) is denoted by H−s(Ω).

In addition, for any i ∈ {1, . . . , p}, H
1
2 (Γ) denotes the space of traces on Γi of dis-

tributions in H1(Ω) and H− 1
2 (Γi) denotes its dual space. The duality product between

H− 1
2 (Γi) and H

1
2 (Γi) is denoted by ⟨·, ·⟩Γi

.
Similarly, for i ∈ {1, . . . ,m}, H

1
2 (Σi) is the space of restrictions to Σi of the distri-

butions belonging to H
1
2 (Mi) and H

1
2 (Σi)

′ is the dual space.
Now, we consider the spaces [12]:

H(div; Ω) = {v ∈ L2(Ω)3 | div v ∈ L2(Ω)},

H(curl; Ω) = {v ∈ L2(Ω)3 | curl v ∈ L2(Ω)}

equipped respectively with the norms

||v||H(div;Ω) = (||v||20,Ω + ||div v||20,Ω)
1
2 , ||v||H(curl;Ω) = (||v||20,Ω + ||curl v||20,Ω)

1
2 .

We consider also the following subspaces of H(div; Ω) and H(curl; Ω):

H0(div; Ω) = {v ∈ H(div; Ω) | v.n = 0 on Γ},

H0(curl; Ω) = {v ∈ H(curl; Ω) | v × n = 0 on Γ}.
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Now, we introduce the spaces

YT (Ω) = H0(div; Ω) ∩H(curl; Ω), YN(Ω) = H(div; Ω) ∩H0(curl; Ω)

equipped with the norm:

||v||Y = (||v||20,Ω + ||div v||20,Ω + ||curl v||20,Ω)
1
2 , (2.1)

and we set
GT = {v ∈ YT (Ω) | div v = 0, curl v = 0},
GN = {v ∈ YN(Ω) | div v = 0, curl v = 0}.

Lemma 2.1. The space GT and GN are finite dimensional such that dim GT = m,
dim GN = p. Moreover, there exists a basis (qi)i=1,...,m (resp. (fi)i=1,...,p) of GT (resp.
of GN ) such that:

∀i, j ∈ {1, . . . ,m} ⟨qi · n, 1⟩Σj
=

{
1 if i = j,
0 otherwise,

(2.2)

∀i, j ∈ {1, . . . , p} ⟨fi · n, 1⟩Γj
=

{
1 if i = j,
0 otherwise.

(2.3)

We denote by PT (resp. PN ) the orthogonal projection from YT (Ω) (resp. YN(Ω))
on GT (resp. on GN ) with respect to inner product associated with the norm || · ||Y .

We note that PN(v) =
m∑
i=1

⟨v · n, 1⟩Σi
qi, for any v ∈ L2(Ω)3 such that div v = 0

(see [2, 10]).
The following lemmas are due to Dominguez [10] when the domain is smooth and

to Amrouche et al. [2] when it is nonsmooth.

Lemma 2.2. The mapping

v −→ |v|YT (Ω) =

(
||div v||20,Ω + ||curl v||20,Ω +

m∑
i=1

|⟨v · n, 1⟩Σi
|2
) 1

2

is a norm on the space YT (Ω), equivalent to the norm || · ||Y .

Lemma 2.3. The mapping

v −→ |v|YN (Ω) =

(
||div v||20,Ω + ||curl v||20,Ω +

m∑
i=1

|⟨v.n, 1⟩Γi
|2
) 1

2

is a norm on the space YN(Ω), equivalent to the norm || · ||Y .

In the sequel, we set

α0 = inf
v∈YT (Ω),v ̸=0

|v|YT (Ω)

||v||0,Ω
. (2.4)

Then, according to Lemma 2.2, we have α0 > 0.
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2.2 Statement of the Problem: A Weak Formulation
Let us consider the system: given j ∈ L2(Ω)3, we look for u ∈ YT (Ω) satisfying:

curl curl u− k2u = curl j, (2.5)
div u = 0 (2.6)

curl u× n|∂Ω = j× n, (2.7)

where k is the wave number given by

k =
√
ϵµω (2.8)

with ϵ and µ are supposed nonnegative and constants. Observe that the boundary con-
dition (2.7) is meaning full if j ∈ H(curl,Ω) (thus curl u ∈ H(curl,Ω)). If j belongs
only to L2(Ω)3, then we interpret the problem (2.5)–(2.7) in a weaker from; a vector
field u in YT (Ω) is called a generalized or a weak solution of (2.5)–(2.7) if it satisfies:

(curl u, curl v) + γ(div u, div v) + δ(PT (u),PT (v))− k2(u,v)

= (j, curl v) , ∀v ∈ YT (Ω), (2.9)

where δ and γ are two nonnegative real constants.

Proposition 2.4. Let j ∈ L2(Ω)3 and suppose that k > 0 and that γ and δ are such that:
γ > 0, δ > 0 and

k2

γ
/∈ EV (∆neu),

k2

δ
̸= 1, (2.10)

where EV (∆neu) is the set of eigenvalues of the Laplace operator with an homogenous
Neumann condition. Then

• Any solution of (2.9) satisfies (2.5) and (2.6) in the sense of distributions.

• If j belongs to H(curl; Ω), then problems (2.9) and (2.5)–(2.7) are equivalent.

2.3 Well-Posedness of the Problem: The Case of Low Frequencies
When the wave number k is smaller than the parameter α0 defined by (2.4), existence
and uniqueness of solutions of (2.9) stem immediately from the Lax–Milgram theorem
and Lemma 2.2.

Proposition 2.5. Assume that γ ≥ 1, δ ≥ 1 and k < α0. Then, the problem (2.9) admits
one and only one solution u ∈ YT (Ω). Furthermore, we have

|u|YT (Ω) ≤ c
α2
0

α2
0 − k2

||j||0,Ω, (2.11)

where c is a constant depending only on Ω.

Remark 2.6. Note that if curl j ∈ L2(Ω)3 and j×n = 0 on ∂Ω, then the estimate (2.11)

can be replaced by the following |u|YT (Ω) ≤ c
α2
0

α2
0 − k2

||curl j||0,Ω.
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2.4 Well-Posedness of the Problem: The General Case
The aim of this section is to treat the problem (2.9) when k is not necessarily small. We
state the following theorem.

Theorem 2.7. Assume that j ∈ L2(Ω)3 and that (2.10) is fulfilled. Then, there exists a
countable sequence of real values {αi, i ∈ N}, tending to +∞ such that

1. If k /∈ {αi, i ∈ N}, then the problem (2.10) admits one and only one solution
u ∈ YT (Ω).

2. If k = αm for some m ∈ N, then the homogeneous problem (when j = 0) admits
a finite dimensional space Em of solutions, and the problem (2.9) is solvable in
YT (Ω) if, and only if, j satisfies (j, curl ϕ) = 0 for any ϕ in Em. If this condition
is fulfilled, then the solution of (2.9) is unique up to elements of Em.

2.5 Regularity of Solutions
The purpose of this section is to show some regularity properties of the solution when
the domain has a smooth boundary and when it is a parallelepiped (as involved by
pseudo-spectral and spectral methods). Note that the general case of a polygonal domain
contains some technical complications, due to the appearance of the singularities, and
which are beyond the scope of this paper (that the inclusion YT (Ω) ⊂ H1(Ω)3 does not
hold in general case, see, e.g., [8]).

Proposition 2.8. Assume that Ω is of class Cm,1 with m ≥ 2 and let j ∈ L2(Ω)3 such
that curl j ∈ Hm−2(Ω)3, j × n ∈ Hm−3/2(∂Ω)3. Then, the solution u of (2.9) belongs
to Hm(Ω)3.

When the domain is a parallelepiped, we have the following.

Proposition 2.9. Assume that Ω is a rectangular parallelepiped of R3, namely Ω =
]0, a1[×]0, a2[×]0, a3[. Suppose that j ∈ H(curl; Ω) and satisfies j × n = 0 on ∂Ω.
Then, the solution of the problem (2.9) belongs to H2(Ω)3. Moreover, if k < α0, then

||u||H2(Ω) ≤
c(Ω)

α2
0 − k2

||curl j||0,Ω.

Remark 2.10. Note that in both propositions, u is also solution of the classical problem
(2.5)–(2.7).

3 Approximation by a Spectral Method
The aim of this section is to solve time harmonic Maxwell’s equation using spectral
method. Even if a number finite element discretization exists for this type of problem,
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with and without domain decomposition (see, e.g., [1, 13] and the references therein, it
seems that only a few works deal with the spectral element method (see [3,7]). Here, we
suppose that Ω is a polyhedral domain of R3, which is not necessarily convex. More pre-
cisely, we assume that there exists d open rectangular parallelepipeds Ω1, . . . ,Ωd such
that the decomposition is conform. For simplicity, we suppose also that Ω is simply-
connected.

Now, let N ≥ 1 be an integer. For any open set O in R3, we denote by PN(O)
the space of polynomial functions of degree less than or equal to N with respect to
each variable. We recall the Gauss–Lobatto formula in [−1, 1]: ∀p ∈ P2N−1([−1, 1]),∫ 1

−1

p(x)dx =
m∑
i=0

ρip(ξi), where ξ0 = −1 < ξ1 < · · · < ξN = 1 are the zeros of

(1−x2)L′
N(x) (LN is the Legendre polynomial of degree N ) and ρ0, . . . , ρN are positive

real weights. For any m ∈ {1, . . . , d}, we denote by Ξ
(m)
N =

{
ξ(m)
α = (ξ

(m)
i , ξ

(m)
j , ξ

(m)
l );

α = (i, j, l)with|α| ≤ N
}
, ΞN =

1∪
m=1

Ξ
(m)
N . The grid of Ωm obtained by translation

and homothety in each direction of the nodes ξ0, ξ1, . . . , ξN and by ρα, |α| ≤ N , the
correponding weights (note that Ξ(m)

N ∩ Ξ
(j)
N is a grid of Ωm ∩ Ωj when the latter is not

empty). Now, (u, v)N =
d∑

m=1

∑
|α|≤N

ρ(m)
α u(ξ(m)

α )v(ξ(m)
α ) define the discrete product on the

space of continuous functions in Ω̄. Thus, if u and v are such that uv|Ωm
∈ P2N−1(Ωm),

m = 1, 2, . . . , d, then (u, v)N =

∫
Ω

u(x)v(x)dx. Similarly, (u,v)N =
3∑

i=1

(ui, vi)N

defines the scalar product for any continuous vector functions u and v. Moreover, for
any continuous ϕN such that ϕN |Ωm

∈ PN(Ωm),m = 1, . . . , d, we have [4]

||ϕN ||20,Ω ≤ (ϕN , ϕN)N ≤ 27||ϕN ||20,Ω. (3.1)

Now, we introduce the interpolation operator IN on the grid ΞN defined as follows: for
any m ∈ {1, . . . , d}, INf |Ωm ∈ PN(Ωm) and ∀ξ ∈ ΞN , INf(ξ) = f(ξ).

The discrete space is: Y N
T (Ω) = {u ∈ YT (Ω);u|Ωm ∈ PN(Ωm)

3, ∀m = 1, . . . , d}.
We set

α0,N = inf
ϕ∈Y N

T (Ω),ϕ ̸=0

{(curl ϕ, curl ϕ)N + (div ϕ, div ϕ)N}
1
2

(ϕ, ϕ)
1
2
N

. (3.2)

The following lemma is an immediate consequence of inequality (3.1) and Lemma 2.2.

Lemma 3.1. There exists a constant c0 > 0, not depending on N , such that

c0 ≤ α0,N ≤ 1

c0

for all N .
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We suppose now that the vector function j is continuous in Ω̄ and we consider the
discrete problem

aN(uN ,vN) = ln(vN),∀vN ∈ Y N
T (Ω), (3.3)

where aN(·, ·) and lN(·) are the discrete version of a(·, ·) and l(·) (the continuous scalar
product is replaced by the discrete one).

Theorem 3.2. Assume that k < α0,N . Then, the discrete problem (3.3) admits one and
only one solution. Furthermore, if the solution u of the continuous problem (2.5)–(2.7)
belongs to Hs(Ω)3 with s ≥ 1 if and only if j ∈ Hr(Ω)3 with r > 3/2, then

|u− uN |YT (Ω) ≤ c(Ω)
(
N1−s||u||Hs(Ω) +N−r||j||Hr(Ω)

)
. (3.4)

Moreover, if Ω is a rectangular parallelepiped and if in addition k < α0, then

||u− uN ||0,Ω ≤ c(Ω)

(α2
0 − k2)(α2

0,N − k2)

(
N−s||u||Hs(Ω) +N−r||j||Hr(Ω)

)
. (3.5)

Remark 3.3. Existence and uniqueness of the discrete solution is in fact guaranteed even
though k > α0,N provided that k is not an eigenvalue of the finite-dimensional problem
(3.3).

Now, let us describe briefly the implementation of the method. Suppose that j is
given at the nodes of the grid ΞN . For any ξ ∈ Ξ

(m)
N (m = 1, . . . , d), we denote by

l
(m)
ξ the Lagrange polynomials associated to the node ξ in the Ωm, thus the discrete

solution can be decompressed into the form: uN|Ωm
=

3∑
i=1

∑
ξ∈Ξ(m)

N

ui,ξl
(m)
ξ ei, where the

coefficients ui,ξ are unknown real numbers. The boundary condition uN · n = 0 on the
boundary implies ui,ξ = 0 if ξ ∈ ∂Ω and |ei · n| = 1.

4 A Finite Element Method
The approximation of time harmonic maxwell equations by finite element methods has
been widely studied in the literature (see, e.g., [6, 11, 15–17]). Here we describe briefly
a direct method based on nonconvergence free elements [6, 11].

Let Th = ∪K be a triangulation of Ω satisfying the following standard regular-
ity assumptions (conform decomposition). We define Y h

T (Ω) by: Y h
T (Ω) = {v ∈

C0(Ω̄)3;v|K is affine, ∀K;v(Mj) · n = 0, ∀Mj ∈ Γ}. A basis of Y h
Y (Ω) may be eas-

ily constructed using the basis ωj of P 1 elements: ωj is a continuous piecewise affine
function on Th which verifies: ωj(Mm) = δm,j . If we assume that the first I vertices are
internals, then a basis {ωj} of Y h

Y (Ω) is given by:

w3(m−1)+i = wmei, 1 ≤ m ≤ I, i = 1, 2, 3, (4.1)
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w3I+2(m−I−1) = wmTi, m > I, i = 1, 2, (4.2)

where (e1, e2, e3) is an orthonormal basis of R3 and (T1, T2) an orthogonal set of tangent

vectors. We set α0,h = inf
vh∈Y h

T (ω),vh ̸=0

(||curlvh||0,Ω + ||div vh||0,Ω)
1
2

||vh||
1
2
0,Ω

. It is quite obvious

that α0,h ≥ α0 thanks to the inclusion Y h
T (ω) ⊂ YT (Ω). We consider also the discrete

problem: find uh ∈ Y h
T (Ω) solution of

a(uh,vh) = (j, curl vh),∀vh ∈ Y h
T . (4.3)

We have the following (see, e.g., [6, 11]).

Proposition 4.1. Suppose that Ω is convex and that 0 ≤ k ≤ α0,h, the discrete problem
(4.3) admits one and only one solution uh. If, in addition, k < α0 and the solution u of
the continuous problem (2.9) belong to H2(Ω)3, then there exists two constants C1 and
C2, depending only on Ω, such that

||u− uh||YT (Ω) ≤
C1

α2
0 − k2

h||u||2,Ω, (4.4)

||u− uh||0,Ω ≤ C2

α2
0 − k2

h||u||2,Ω. (4.5)

5 Implementation and Numerical Results

In this part, we have to show and compare some numerical results obtained by the
Spectral Method (SM) and the Finite Element Method (FEM) exposed above. All the
tests are done in the box Ω =]− 1, 1[3. We note that in the both of methods, we are lead
to solve a square linear system of the form

AU = F, (5.1)

where the matrix A is very large since its size is of order 3N3, where N is the number
of nodes or vertices. A classical iterative algorithm (the Conjugate Gradient Algorithm)
is used for solving (5.1). Is well known that such an algorithm avoids the storage of the
matrix since it requires only the matrix-vector product. We use an analytical example in
the tests.

Figure 5.1 shows the behavior of the relative YT (Ω) and L2(Ω)3 errors versus the
discretization parameters h (FEM) and N (SM). The behavior of these errors confirms
the error estimates above. Note that the SM errors are quite smaller than FEM ones
when the number of the nodes and vertices is the same.
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(a) (FEM): The relative error
YT (Ω) versus h

(b) (SM): The relative error
YT (Ω) versus N (left) and N
(right) (k = 0.3π)

(c) (FEM): The relative error
L2(Ω)3 versus h

(d) (SM): The relative error
L2(Ω)3 versus N

Figure 5.1: The relative error versus h (left) and N (right).
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