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Abstract
We study the existence of eigenvalues for a two parameter Steklov eigenvalues

problem with weights. Moreover, we prove the simplicity and the isolation results
of the principal eigenvalue. Finally, we obtain the continuity and the differentia-
bility of this principal eigenvalue.
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1 Introduction
Consider the two parameter Steklov eigenvalues problem{

∆pu = λm1(x)|u|p−2u in Ω,

|∇u|p−2∂u

∂ν
= µm2(x)|u|p−2u on ∂Ω,

(1.1)
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where Ω is a bounded domain in RN(N ≥ 2) with smooth boundary ∂Ω, ν is the
unit outward normal to ∂Ω, λ ∈ R+ is a parameter, µ is a number and the operator
∆p := div

(
|∇u|p−2∇u

)
is the p-Laplacian with 1 < p < ∞. The weight function m1

satisfies the following assumption:
m1 ∈ L∞(Ω) and m1(x) ≥ const > 0. (1.2)

We also assume that the weight function m2 is indefinite, which satisfies the following
assumption:

m2 ∈ Lq(∂Ω) and m+
2 6≡ 0 on ∂Ω, (1.3)

such that q > (N − 1)/(p− 1) if 1 < p ≤ N and q ≥ 1 if p > N .
The growing attention in the study of the p-Laplacian operator is motivated by

the fact that it arises in various applications, for example, non Newtonian fluids, re-
action diffusion problems, flow through porus media, glacial sliding, theory of super-
conductors, biology, and so forth — see [4, 9] and the references therein. The case
λ = 0 was considered by Torné in [8]: he showed, using the infinite dimensional
Ljusternik–Schnirelman theory [7], that problem (1.1) admits a sequence of eigenval-
ues and he investigated some nodal properties of eigenfunctions associated to the first
and second eigenvalues. Amongst other results he proved that if max(m2, 0) 6= 0 and∫
∂Ω

m2dσ < 0, then the first positive eigenvalue is the only eigenvalue associated to

an eigenfunction of definite sign and any eigenfunction associated to the second posi-
tive eigenvalue has exactly two nodal domains. In this case we have shown in [1] the
existence of another nondecreasing unbounded sequence of positive eigenvalue of the
problem (1.1) by using a deformation lemma. We also established some properties for
the first and the second positive eigenvalues. Bonder and Rossi studied the case λ = 1
and m1 ≡ 1: they proved that there exists a sequence of variational eigenvalues and that
the first eigenvalue is isolated, simple and monotone with respect to the weight [5].

The plan of this paper is the following. In Section 2 we use a variational method
to prove the existence of a sequence of eigenvalues for the problem (1.1). In Section 3,
we establish the simplicity and the isolation results of the principal eigenvalue. Finally,
in Section 4 we establish the continuity of the eigenpair (µ1(λ), u(λ)) in λ and the
differentiability of the principal eigenvalue µ1(λ).

2 Existence of Eigenvalues

A sequence of eigenvalues of problem (1.1) can be obtained as follows: the space
W 1,p(Ω) will be endowed with the usual norm

‖u‖ :=

(∫
Ω

|∇u|pdx+

∫
Ω

|u|pdx
)1/p
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and the weak solutions of (1.1) are defined by∫
Ω

|∇u|p−2∇u∇ϕdx+ λ

∫
Ω

m1(x)|u|p−2uϕdx = µ

∫
∂Ω

m2(x)|u|p−2uϕdσ (2.1)

for all ϕ ∈ W 1,p(Ω), where dσ is the N − 1 dimensional Hausdorff measure. We can
introduce the equivalent norm

‖u‖λ :=

(∫
Ω

|∇u|pdx+ λ

∫
Ω

m1|u|pdx
)1/p

and consider the even functional

φλ(u) =
1

p
‖u‖pλ ∀u ∈ Σ,

where

Σ :=

{
u ∈ W 1,p(Ω);

1

p

∫
∂Ω

m2|u|pdσ = 1

}
.

For any k ∈ N? let

Fk :=
{
A ⊂ Σ; there exists a continuous odd surjection h : Sk−1 → A

}
,

where Sk−1 represents the unit sphere in Rk. Next we define

µk(λ) := inf
A∈Fk

max
u∈A

φλ(u). (2.2)

The set Fk is nonempty (see [1]), thus µk(λ) is well defined.
The following theorem studies the particular case λ = 0, where the eigenfunctions

of problem (1.1) are p-harmonics. This theorem was proved in [1].

Theorem 2.1 (See [1]). In the case λ = 0, we have the following assertions.

1. Assume that (1.3) holds. Then µk(0) given by (2.1) is a nondecreasing and un-
bounded sequence of positive eigenvalues.

2. Assume that (1.3) holds and
∫
∂Ω

m2 dσ < 0. Then µ1(0) > 0 is the first positive

eigenvalue of problem (1.1). Moreover, µ1(0) is simple and isolated and it is the
only nonzero eigenvalue associated to an eigenfunction of definite sign. Also,
µ2(0) is the second positive eigenvalue of problem (1.1) and any eigenfunction
associated to µ2(0) has exactly two nodal domains.

Now we study the case λ > 0, where the eigenfunctions of the problem are no longer
p-harmonic. The proof is an adaptation of the variational method of [1], which is based
on the deformation lemma. The following theorem is the main result of this section.
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Theorem 2.2. Let m1 and m2 be two weight functions satisfying assumptions (1.2)
and (1.3), respectively. If λ > 0, then µk(λ) given by (2.2) is a nondecreasing and
unbounded sequence of positive eigenvalues.

Lemma 2.3. Functional φλ satisfies the Palais–Smale condition on Σ.

Proof. Let (uk) ⊂ Σ and c > 0 such that |φλ(uk)| ≤ c and φ′λ(uk) = A′λ(uk) −
Aλ(uk)B

′(uk) → 0 in (W 1,p(Ω))′, where Aλ(u) =
1

p
‖u‖pλ and B(u) =

1

p

∫
∂Ω

m2|u|p.

The sequence (uk) is bounded since φλ is coercive for a subsequence uk → u weakly in
W 1,p(Ω). It remains to show that uk → u strongly in W 1,p(Ω). Using the compactness
property of the trace mapping, it follows that A′λ(uk)→ cB′(u) strongly in (W 1,p(Ω))′,
where c = lim

k→+∞
Aλ(uk). As A′λ : W 1,p(Ω)→ (W 1,p(Ω))′ is an homeomorphism, then

uk → u = (A′λ)
−1[cB′(u)] strongly in W 1,p(Ω).

Since φλ is of class C1(Ω) and the Palais–Smale condition has been verified, we can
apply a deformation lemma which plays a fundamental role in proving that φλ has a crit-
ical value. Observe that, since φλ is even on Σ, the deformation preserves symmetries
(see [6, p. 79]).

Lemma 2.4 (Deformation lemma). Let β ∈ R be a regular value of φλ on Σ and let
ε̄ > 0. Then there exists ε ∈ (0, ε̄) and a continuous one-parameter family of homeo-
morphisms, ψ : S × [0, 1]→ S, with the following properties:

1. ψ(u, t) = u, if t = 0 or if |φλ(u)− β| ≥ ε̄ for all u ∈ Σ;

2. φλ(ψ(u, t)) is nonincreasing in t for any u ∈ S;

3. if φλ(u) ≤ β + ε for all u ∈ Σ, then φλ(ψ(u, 1)) ≤ β − ε;

4. ψ(−u, t) = −ψ(u, t) for any t ≥ 0 and any u ∈ Σ.

Proof of Theorem 2.2. Let λ > 0 and suppose, by contradiction, that µk(λ) is a regular
value. Using ε̄ = 1 and β = µk(λ) (in Lemma 2.4), let ε ∈ (0, 1) and ψλ be the objects
guaranteed by the deformation lemma above. By definition, there is anA ∈ Fk such that
sup
u∈A

φλ(u) ≤ µk(λ) + ε. But if h : Sk−1 → A is a continuous odd surjection, then so is

ψ(h(·), 1) : Sk−1 → ψ(A, 1). Thus, ψ(A, 1) ∈ Fk such that sup
u∈ψ(A,1)

φλ(u) ≤ µk(λ)−ε,

which contradicts the definition of µk(λ).
Now we prove that µk(λ) is nondecreasing. Let ε > 0, there exist A ∈ Fk+1 such

that µk+1(λ) + ε ≥ max
u∈A

φλ(u) and there exist h : Sk → A a continuous odd surjection.

Put A′ = h
(
Sk−1 × {0}

)
, we have A′ ⊂ A and A′ ∈ Fk; indeed h : Sk−1 → A′ such

that h = h ◦ b where b : Sk−1 → Sk−1 × {0} : (x1, x2, . . . , xk) → (x1, x2, . . . , xk, 0).
Thus µk(λ) ≤ max

u∈A′
φλ(u) ≤ max

u∈A
φλ(u) ≤ µk+1(λ) + ε.
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It remains to prove that the sequence µk(λ) is unbounded. For all k and λ ≥ 0 we
have µk(λ) ≥ µk(0). Under Theorem 2.1, the sequence µk(0) is unbounded, thus the
sequence µk(λ) is also unbounded.

3 Qualitative Properties of the Principal Eigenvalue
Assume in this section that the weights m1 and m2 satisfy, respectively, (1.2) and (1.3).
Now, we are concerned with the study of the principal eigenvalue µ1(λ) defined by the
following variational characterization:

µ1(λ) = inf
u∈Σ

{
1

p

∫
Ω

|∇u|pdx+
λ

p

∫
Ω

m1|u|pdx
}
. (3.1)

Let us note that all solutions of problem (1.1) are of class C1,α(Ω) in the case λ = 0
(see [8]) and are of class C1,α(Ω̄) in the case λ > 0 (see [2]).

Theorem 3.1. For any λ > 0, the eigenvalue µ1(λ) defined by (3.1) is simple and the
eigenfunctions associated to µ1(λ) are either positive or negative in Ω.

The proof is a straightforward adaptation of our work in [1], so we only make a
sketch in order to make the paper self contained. The following lemma derives from
Picone’s identity.

Lemma 3.2. Let u and v be two nonnegative eigenfunctions associated to some eigen-
values µ and µ̃, respectively. Then

0 ≤ (µ− µ̃)

∫
∂Ω

m2(x)updσ (3.2)

and equality holds if, and only if, v is multiple of u.

Proof of Theorem 3.1. By Theorem 2.2, it is clear that µ1(λ) is an eigenvalue of prob-
lem (1.1) for any λ > 0. Let u be an eigenfunction associated to µ1(λ) so that |u| is a
minimiser for (3.1) and is thus an eigenfunction associated to µ1(λ). It follows from the
maximum principle of Vazquez that |u| > 0 in Ω and we conclude that u has constant
sign. Taking µ = µ̃ = µ1(λ) in (3.2), we see that any eigenfunction v associated of
µ1(λ) must be a multiple of u, so that µ1(λ) is simple.

To prove the isolation of µ1(λ), we need the two following lemmas.

Lemma 3.3. Let (k, q) ∈ N∗×N and let λ ∈ R+. If µk(λ) = µk+1(λ) = · · · = µk+q(λ),
then γ(K) ≥ q+1 whereK := {u ∈ Σ;u is an eigenfunction associated to µk(λ)} and
γ(K) is the Krasnoselski genus of K.

The Lemma 3.3 is proved by applying a general result from infinite dimensional
Ljusternik–Schnirelmann theory.
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Lemma 3.4. For each λ > 0, µ1(λ) is the only positive eigenvalue, having an eigen-
function that does not change sign on the boundary ∂Ω.

Proof. For the proof, we use Lemma 3.2. Taking µ = µ1(λ) in (3.2), we see that no
eigenvalue µ̃ > µ1(λ) can be associated to a positive eigenfunction. Thus µ1(λ) is the
only positive eigenvalue associated to an eigenfunction of definite sign.

Theorem 3.5. For each λ > 0, µ1(λ) is isolated.

Proof. It suffices to prove that µ2(λ) is indeed the second positive eigenvalue of problem
(1.1), i.e., µ1(λ) < µ2(λ) for all λ > 0 and if µ1(λ) < µ < µ2(λ), then µ is not an
eigenvalue of problem (1.1). By Theorem 3.1, γ(K1) = 1 where the set K1 is defined
by K1 := {u ∈ Σ;u is an eigenfunction associated to µ1(λ)}. Thus, by Lemma 3.3,
µ1(λ) < µ2(λ). By contradiction, we suppose that µ is an eigenvalue of problem (1.1).
Let u be an eigenfunction associated to µ. Since µ 6= µ1(λ), we deduce by Lemma 3.4
that u+ = max(u, 0) 6= 0 and u− = min(u, 0) 6= 0. It follows from (2.1) that∫

Ω

|∇u+|pdx+ λ

∫
Ω

m1(x)|u+|pdx = µ

∫
∂Ω

m2(x)|u+|pdσ,∫
Ω

|∇u−|pdx+ λ

∫
Ω

m1(x)|u−|pdx = µ

∫
∂Ω

m2(x)|u−|pdσ.

Assume that u is normalized in such a way that

1

p

∫
∂Ω

m2(x)|u+|pdσ =
1

p

∫
∂Ω

m2(x)|u−|pdσ = 1.

Let K := {αu+ + βu−;α, β ∈ R with |α|p + |β|p = 1} and h : S1 → K : (a, b) →
|a|

2
p
−1au+ + |b|

2
p
−1bu−, where S1 := {(x, y) ∈ R2;x2 + y2 = 1}. We have that h is a

continuous odd surjection. Consequently, K ∈ F2 and therefore

µ2(λ) ≤ max
|α|p+|β|p=1

(
1

p

∫
Ω

∣∣∇ (αu+ + βu−
)∣∣p dx+

λ

p

∫
Ω

m1(x)|αu+ + βu−|pdx
)

= µ.

This is a contradiction. The proof of the isolation of µ1(λ) is complete.

4 Continuity and Differentiability in λ
The assumptions on weights m1 and m2 in this section are those of Section 3. We

assume again that
∫
∂Ω

m2dσ < 0. The following investigation adopts the scheme of

Binding and Huang [3]. Let λ ∈ R+ and (µ1(λ), u(λ)) be the corresponding eigenpair.
Henceforth we normalize the eigenfunction u(λ) to u(λ) ∈ Σ with u(λ) > 0. In the
following theorem, we consider continuity of the eigenpair in λ and differentiability of
the principal eigenvalue µ1(λ) in λ.
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Theorem 4.1. For any bounded domain Ω, the function λ→ µ1(λ) is differentiable on
R+ and the function λ→ u(λ) is continuous from R+ into W 1,p(Ω). More precisely,

µ′1(λ0) =
1

p

∫
Ω

m1(x)(u(λ0))pdx ∀λ0 ≥ 0. (4.1)

Proof. By (3.1), it is easy to see that λ→ µ1(λ) is a concave function in R+
∗ . Continuity

of λ → µ1(λ) in R+
∗ follows from the concavity. It remains to show right continuity

from zero. Let ϕ be an eigenfunction associated to µ1(0). For all λ ≥ 0

µ1(0) ≤ µ1(λ) ≤ 1

p

(∫
Ω

|∇ϕ|pdx+ λ

∫
Ω

m1|ϕ|pdx
)
.

Passing to the limit as λ→ 0+, we have µ1(λ)→ µ1(0) as λ→ 0+.
To prove the continuity of λ → u(λ), we proceed as follows. Let Λ ⊂ R+ be

bounded. For λ ∈ Λ, since

µ1(λ) =
1

p

∫
Ω

|∇u(λ)|pdx+
λ

p

∫
Ω

m1(x)|u(λ)|pdx ≤ const,

u(λ) is bounded in W 1,p(Ω), u(λ)→ u0 weakly in W 1,p(Ω) and strongly in Lp(Ω) and
strongly in Lp(∂Ω) as λ→ λ0 ∈ Λ. Passing to the limit in the equality∫

Ω

|∇u(λ)|p−2∇u(λ)∇ϕdx+ λ

∫
Ω

m1|u(λ)|p−2uϕdx

= µ1(λ)

∫
∂Ω

m2|u(λ)|p−2u(λ)ϕdσ,

(4.2)

we have ∫
Ω

|∇u0|p−2∇u0∇ϕdx+ λ0

∫
Ω

m1|u0|p−2u0ϕdx

= µ1(λ0)

∫
∂Ω

m2|u0|p−2u0ϕdσ.

(4.3)

On the other hand, u0 6≡ 0 (since u0 ∈ Σ). Thus u0 is an eigenfunction associated to
µ1(λ0). By simplicity of µ1(λ0), we have u0 = u(λ0). Taking ϕ = u0 in (4.3),

1

p

∫
Ω

|∇u0|pdx+
λ0

p

∫
Ω

m1(x)|u0|pdx = µ1(λ0). (4.4)

For ϕ = u(λ) in (4.2), we get

1

p

∫
Ω

|∇u(λ)|pdx+
λ

p

∫
Ω

m1(x)|u(λ)|pdx = µ1(λ). (4.5)

Letting λ→ λ0 in (4.5), we have

lim
λ→λ0

1

p

∫
Ω

|∇u(λ)|pdx = −λ0

p

∫
Ω

m1(x)|u0|pdx+ µ1(λ0) =
1

p

∫
Ω

|∇u0|pdx.
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Since u(λ)→ u0 strongly in Lp(Ω), ‖u(λ)‖ → ‖u0‖ as λ→ λ0. Finally, by the uniform
convexity of W 1,p(Ω), we conclude that u(λ) → u0 = u(λ0) strongly in W 1,p(Ω)
as λ → λ0. For the differentiability of λ → µ1(λ), it suffices to use the variational
characterization of µ1(λ) and of µ1(λ0), so that

λ0 − λ
p

∫
Ω

m1(x)(u(λ))pdx ≤ µ1(λ0)− µ1(λ) ≤ λ0 − λ
p

∫
Ω

m1(x)(u(λ0))pdx

for all λ, λ0 ∈ R. Dividing by λ− λ0 and letting λ→ λ0, we obtain (4.1).
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