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Abstract

We consider a model describing the dynamics of hematopoietic stem cells with
periodic chemotherapy. The model is governed by a system of two nonautonomous
ordinary differential equations with one delay. Its dynamics are studied in terms of
local stability of the trivial steady state by using the Floquet theory. We illustrate
our result by some numerical simulations. The existence of a periodic solution at
a critical value of the delay is obtained numerically for some functional examples
of periodic chemotherapy.

AMS Subject Classifications: 34K18, 34K60.
Keywords: Hematopoietic stem cells model, delayed differential equations, stability,
periodic chemotherapy.

1 Introduction
The population of hematopoietic stem cells (HSC) give rise to all of the differentiated
elements of the blood: the white blood cells, red blood cells, and platelets, which may be
either actively proliferating or in a resting phase. After entering the proliferating phase,
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a cell is committed to undergo cell division at a fixed later time τ . The generation
time τ is assumed to consist of four phases, G1 the pre-synthesis phase, S the DNA
synthesis phase, G2 the post-synthesis phase and M the mitotic phase. Just after the
division, both daughter cells go into the resting phase called the G0-phase. Once in
this phase, they can either return to the proliferating phase and complete the cycle or
die before ending the cycle. The (HSC) model that we consider is a classical G0 model,
see [15] and references therein. The full model for this situation consists of a pair of (age
structured) reaction convection evolution equations with their associated boundary and
initial conditions [10]. Using the method of characteristics [19], these equations can be
transformed into a pair of nonlinear first-order differential delay equations, see [10, 12]
and references cited therein,

dN

dt
= −δN − β(N)N + 2e−γτβ(Nτ )Nτ ,

dP

dt
= −γP + β(N)N − e−γτβ(Nτ )Nτ ,

(1.1)

where β is a monotone decreasing function of N which has the explicit form of a Hill

function (see [10]) β(N) = β0
θn

θn +Nn
. The symbols in equation (1.1) have the follow-

ing interpretation: N is the number of cells in nonproliferative phase, Nτ = N(t − τ),
P the number of cycling proliferating cells, γ the rate of cells loss from proliferative
phase, δ the rate of cells loss from nonproliferative phase, τ the time spent in the prolif-
erative phase, β the feedback function, rate of recruitment from nonproliferative phase,
β0 > 0 the maximal rate of reentry in the proliferating phase, θ ≥ 0 is the number
of resting cells at which β has its maximum rate of change with respect to the resting
phase population, n > 0 describes the sensitivity of reintroduction rate with changes in
the population, and e−γτ accounts for the attenuation due to apoptosis (programmed cell
death) at rate γ. The model (1.1) was intensively studied by many authors, see for exam-
ple [10]. For numerical study, typical values of the parameters for humans are given by
Mackey (1978) [10] as δ = 0.05d−1, β0 = 1.77d−1, τ = 2.2d, and n = 3. The value of
θ is 1.62×108 cells Kg−1, but this is immaterial for dynamic considerations. For values
of γ in the range 0.2d−1, the consequent steady state is unstable and there is a periodic
solution whose period T at the bifurcation ranges from 20 to 40 days, see (Fowler and
Mackey, 2002) [5]. In [10] the author proves that the stability of the non trivial steady
state depend on the value of γ. When γ = 0, this steady state cannot be destabilized
to produce dynamics characteristic of periodic hematopoiesis. On the other hand, for
γ > 0, increase in γ lead to a decrease in the (HSC) numbers and a consequent decrease
in the cellular efflux (given by δN ) into the differentiated cell lines. This diminished
efflux becomes unstable when a critical value of γ is reached, γ = γ1, at which a su-
percritical Hopf bifurcation occurs. For all values of γ satisfying γ1 < γ < γ2, there
is a periodic solution of the above model whose period is in good agreement with that
seen in periodic hematopoiesis. At γ = γ2, a reverse bifurcation occurs and greatly
diminished (HSC) numbers as well as cellular efflux again become unstable. In [13],
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authors numerically investigate the influence of each parameter (τ , δ, γ, β0 and n) on
the oscillation characteristics. In [12], authors consider the limiting case (n = +∞)
of the above model in order to compute an explicit solution, give an exact form of the
period and the amplitude of oscillations. They illustrate these results numerically and
show that the main parameters controlling the period are (τ , δ, γ, β0 and n) mainly in-
fluence the amplitude. These authors consider n = 12 as a good approximation of high
Hill coefficient for their numerical simulations. The Hill coefficient n is often regarded
as a cooperativity coefficient, describing the number of agents (molecules, proteins or
complexes) required to activate or deactivate a given process. If n is interpreted to be
the number of ligand molecules required to active or deactivate a receptor site, then val-
ues of n = 12 or larger would not be biologically realistic. However, there are other
situations in which cascade effects are known to create switch like phenomena [4]. In
these circumstances, both experimental data and theoretical modelling suggest that the
large values of n considered are quite realistic [12].

It is generally believed that normal and malignant cell population have different cell
cycle times (Andersen and Mackey (2000) [1], Baserga (1981) [2]), and thus they will
be described by different parameters in the above model. In particular, in untreated
leukemic cells the apoptotic rate γ is significantly smaller than in normal cells (Palucka
et al., (1999) [11]; Fukuma et al., (2000) [6]; Jones et al., (2000) [9]; Rasool et al.,
(2000) [14]), and the time τ spent in the proliferating phase is longer relative to normal
cells in the bone morrow, see also (Andersen and Mackey 2001) [1].

In this paper, we consider model (1.1) with periodic chemotherapy, see [1]. The
chemotherapy increases the apoptotic rate of cells in the proliferating phase P : that
means γ1(t) = γ + γc(t). The parameter γc(t) is the loss rate due to the chemother-
apy with period w. To derive the system of model equation that includes the effect of
non phase specific chemotherapy, note that the number of cells recruited from the non
proliferating phase N and back into the cell cycle will, until division, obey

dN

dt
(t) = −(γ + γc(t))N(t)

and integrating between t− τ and t the solution to this equation is given by

N(t) = N(t− τ) exp

(
−γτ −

∫ t

t−τ

γc(s)ds

)
. (1.2)

The integral of γc represents the fact that all proliferative cells are affected by the history
of γc from t − τ to time t. We consider the case when the delay is proportional to the
period of chemotherapy and the case when the delay is very close to the proportional
value of chemotherapy. Thus, when chemotherapy acts non specifically throughout the
cell cycle (duration τ ) the system of governing equations is given by (see [1]):

dN

dt
= −δN − β(N)N + 2e−γτ−

∫ t
t−τ γc(s)dsβ(Nτ )Nτ ,

dP

dt
= −γ1(t)P + β(N)N − e−γτ−

∫ t
t−τ γc(s)dsβ(Nτ )Nτ .

(1.3)
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The paper is organized as follows. In Section 2, we recall some results on Floquet
multipliers. Section 3 is devoted to the stability analysis of the trivial steady state. In
Section 4, we illustrate our results by numerical simulations. The existence of a periodic
solution is obtained numerically for some functional examples of periodic chemother-
apy, when the delay crosses some critical value of the delay. We end with a conclusion.

2 Preliminaries [8]

Consider the system

dx(t)

dt
+

m∑
j=1

Bjx(t− kjw) = 0, (2.1)

where Bj(t+w) = Bj(t) and kj ∈ N. One has that µ = eλt is a characteristic multiplier
of equation (2.1) if, and only if, there is a nonzero n-vector v(t) = v(t + w) such that
x(t) = v(t)eλt satisfies equation (2.1). Therefore,

dv(t)

dt
+

(
λI +

m∑
j=1

Bje
−kjwλ

)
v(t) = 0,

v(t+ w) = v(t).

(2.2)

If V (t, λ) with V (0, λ) = I is the principal matrix (see [8]) solution of equation (2.2)1,
then v(t) = v(t, λ)v(0) and the initial value v(0) ̸= 0 must be chosen in such a way
that equation (2.2)2 is satisfied. Because v(0) ̸= 0 exists if, and only if, λ satisfies the
characteristic equation

det(V (w, λ)− I) = 0, (2.3)

if all roots of the characteristic equation (2.3) have negative real parts, then the zero
solution x = 0 of equation (2.1) is uniformly asymptotically stable.

3 Stability Analysis

Consider now the model (1.3) and the total size of stem cells T (t) = N(t) + P (t). By
addition of the two equations of system (1.3), we have

dN

dt
= −δN − β(N)N + 2e−

∫ t
t−τ γ1(s)dsβ(Nτ )Nτ ,

dT

dt
= −γ1(t)P (t)− δN(t) + e−

∫ t
t−τ γ1(s)dsβ(Nτ )Nτ ,

(3.1)
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where γ1(t)P (t) + δN(t) is the total death rate. We consider that γ1(t)P (t) + δN(t) =
γ2(t)T (t) and γ2(t) is w-periodic. System (3.1) is written as follows:

dN

dt
= −δN − β(N)N + 2e−

∫ t
t−τ γ1(s)dsβ(Nτ )Nτ ,

dT

dt
= −γ2(t)T (t) + e−

∫ t
t−τ γ1(s)dsβ(Nτ )Nτ .

(3.2)

Proposition 3.1. Each solution of system (3.2), with nonnegative initial conditions, is
nonnegative.

Proof. We follow the proof given in [3] for the autonomous case. Assume that there
exists t1 such that N(t1) = 0 and N(t) > 0 for t < t1. From equation (3.2)1, we have

dN

dt
(t1) = 2e−

∫ t1
t1−τ γ1(s)dsβ (N(t1 − τ))N(t1 − τ) > 0.

Then N(t) > 0 for t > 0. Suppose that there exists t2 > 0 such that T (t2) = 0 and
T (t) > 0 for t < t2. From equation (3.2)2, we have

dT

dt
(t2) = e−

∫ t2
t2−τ γ1(s)dsβ(N(t2 − τ))N(t2 − τ) > 0.

We deduce that T (t) > 0 for t > 0.

Proposition 3.2. For every solution (N(t), T (t)) of (3.2) such that lim
t→+∞

N(t) = 0, we

have lim
t→+∞

T (t) = 0.

Proof. Let
m1 = inf

t∈[0,w]
γ1(t) and M1 = sup

t∈[0,w]

γ1(t)

and
m2 = inf

t∈[0,w]
γ2(t) and M2 = sup

t∈[0,w]

γ2(t).

As lim
t→+∞

N(t) = 0, there exists T1 such that N(t) < ε
m2e

m1τ

2β0

for t ≥ T1. Using the

variation of constant formula in equation (3.2)2, we have

T (t) = e−
∫ t
0 γ2(σ)dσT (0) +

∫ t

0

e−
∫ t
s γ2(σ)dσe−

∫ s
s−τ γ1(σ)dσβ(N(s− τ))N(s− τ)ds.

By boundedness, we have:

T (t) ≤ e−m2tT (0) + e−m1τ

∫ t

0

e−m2(t−s)β(N(s− τ))N(s− τ)ds

≤ e−m2t

(
T (0) + e−m1τ

∫ t

0

em2sβ(N(s− τ))N(s− τ)ds

)
.
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Setting α = s− τ , we get:

T (t) ≤ e−m2t

(
T (0) + e(m2−m1)τ

∫ t−τ

−τ

em2αβ(N(α))N(α)dα

)
.

For t− τ > T1,

T (t) ≤ e−m2t

(
T (0) + e(m2−m1)τ

∫ T1

−τ

em2αβ(N(α))N(α)dα

)
+ e−m2te(m2−m1)τ

∫ t−τ

T1

em2αβ(N(α))N(α)dα.

As T (t) > 0 for t > 0 and β is bounded by β0, we deduce that

T (t) ≤ e−m2t

(
T (0) + e(m2−m1)τ

∫ T1

−τ

em2αβ(N(α))N(α)dα

)
+ ε

m2e
m1τ

2
e(m2−m1)τe−m2t

∫ t−τ

T1

em2αdα

≤ e−m2t

(
T (0) + e(m2−m1)τ

∫ T1

−τ

em2αβ(N(α))N(α)dα

)
+ ε

em1τ

2
e(m2−m1)τ

(
e−m2τ − em2(T1−t)

)
≤ e−m2t

(
T (0) + e(m2−m1)τ

∫ T1

−τ

em2αβ(N(α))N(α)dα

)
+

ε

2
.

Let T2 > 0 such that

e−m2t

(
T (0) + e(m2−m1)τ

∫ T1

−τ

em2αβ(N(α))N(α)dα

)
<

ε

2
for t > T2.

Then, for t > max(T2, T1 + τ), we deduce that T (t) < ε and

lim
t→+∞

T (t) = 0.

This concludes the proof.

Corollary 3.3. For every solution (N(t), P (t)) of (1.3) such that lim
t→+∞

N(t) = 0, we

have lim
t→+∞

P (t) = 0.

Proof. As P (t) = T (t)−N(t), the proof follows from the last propositions.

Remark 3.4. The stability of the trivial equilibrium point (0, 0) of system (1.3) is de-
duced from the equation modelling the cells in the resting phase N .



Periodic Chemotherapy in Nonspecific Phase 143

Considering the model without treatment (1.1), by linearizing around the zero solu-
tion, the characteristic matrix is given by

∆(λ) = (λ+ γ)(λ+ δ + β0 − 2β0e
−γτ−λτ ). (3.3)

The trivial equilibrium of (1.1) is asymptotically stable if there are no solutions of
∆(λ) = 0 with Re(λ) ≥ 0 and this happens if, and only if, 2β0e

−γτ < δ + β0.
Consider now the system (1.3)1. The linearized equation around the zero solution is

given by
dN

dt
= −δN − β0N + 2β0e

−γτf(t)Nτ , (3.4)

where f(t) = e−
∫ t
t−τ γc(s)ds is w-periodic. Suppose also that, for some k ∈ N − {0},

τ = kw. Then equation (3.4) is written as follows:

dN(t)

dt
= B0(t)N(t) +B1(t)N(t− kw), (3.5)

where B0 = −δ−β0 and B1 = 2β0e
−kwγf(t). To study the stability of the zero solution

(0, 0), let N(t) = eλtv(t) with v(t+ w) = v(t), ∀t ≥ 0. Then equation (3.5) becomes

dv(t)

dt
= (−λ+B0(t) +B1(t)e

−kwλ)v(t) (3.6)

and the solution of equation (3.6) is given by

v(t) = e−
∫ t
0 (−λ+B0(s)+B1(s)e−kwλ)dsv(0), (3.7)

where v(0) ̸= 0 is the initial value. The principal matrix is as follows:

V (t, λ) = e−
∫ t
0 (−λ+B0(s)+B1(s)e−kwλ)ds

such that
V (0, λ) = I.

Then the characteristic equation is

det(V (w, λ)− I) = 0. (3.8)

To localize the characteristic exponents, one needs to solve the following equation:

△ = λ+ δ + β0 − 2β0e
−kwγe−

kwλ 1

w

∫ w

0

f(s)ds = 0. (3.9)

The following result states the uniform stability of the zero solution (0, 0).
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Theorem 3.5. If

δ + β0 > 2β0e
−kwγ 1

w

∫ t

0

f(s)ds, (H1)

then the zero solution of (1.3) is uniformly asymptotically stable.

Proof. From equation (3.4) and [16–18], all roots of the characteristic equation (3.9)

have negative real parts if, and only if, δ + β0 > 2β0e
−γτ 1

w

∫ t

0

f(s)ds. Then the

characteristic multipliers of equation (3.4) have modulus < 1. This implies that the zero
solution of (1.3) is uniformly asymptotically stable.

In what follows, we consider that τ > kw and τ − kw = r ≪ ε is small enough. As
before, let N(t) = eλtv(t) with v(t+ w) = v(t), ∀t ≥ 0. Then equation (3.4) becomes

dv1(t)

dt
= (−λ− δ − β0) v1(t) + 2β0e

−γτe−λτf(t)v1(t− r). (3.10)

As v is a continuous solution, by Taylor expansion we have v(t− r) = v(t) + o(r). By
neglecting the term o(r), equation (3.10) is written as follows:

dv(t)

dt
=
(
−λ− δ − β0 + 2β0e

−γτe−λτf(t)
)
(t). (3.11)

The monodromy matrix [7] is given by

A = e
∫ w
0 (−λ−δ−β0+2β0e−γτ e−λτf(t))dt.

The characteristic exponents are determined from the following equation:

λ+ δ + β0 − 2β0e
−γτe−λτ 1

w

∫ w

0

f(t)dt = 0. (3.12)

Then, all roots of equation (3.12) have negative real part if, and only if,

δ + β0 − 2β0e
−γτ 1

w

∫ w

0

f(t)dt > 0.

We have | eλ |< 1 and we deduce that all roots of the monodromy matrix have modulus
< 1 and we deduce that the zero solution (0, 0) of equation (3.11) is uniformly asymp-
totically stable and the same for equations (3.10) and (1.3) for the time delay τ ≈ kw.
We deduce the following result.

Proposition 3.6. If τ > kw and τ−kw = r ≪ ε is small enough, then the zero solution
(0, 0) of equation (1.3) is uniformly asymptotically stable if, and only if,

δ + β0 − 2β0e
−γτ 1

w

∫ w

0

f(t)dt > 0. (H2)
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To obtain the switch of stability, one needs to find a purely imaginary root of equa-
tion (3.12). Replacing λ = iη in equation (3.12) and by separating the real and imagi-
nary parts, we have {

M −N(τ) cos(ητ) = 0,
η +N(τ) sin(ητ) = 0,

(3.13)

where M = δ + β0 and N(τ) = 2β0e
−γτ 1

w

∫ w

0

f(t)dt:


τ =

1

η
arccos

(
− M

N(τ)

)
∈ (0, π) for 0 ≤

∣∣∣∣ M

N(τ)

∣∣∣∣ ≤ 1,

η =
√

N2(τ)−M2 for 0 ≤
∣∣∣∣ M

N(τ)

∣∣∣∣ < 1.
(3.14)

Then, we can deduce the following result of switched stability.

Corollary 3.7. i) If (H2) is satisfied and there is no purely imaginary root of equation
(3.12), then the zero solution (0, 0) of equation (1.3) is uniformly asymptotically stable
for all τ−kw = r ≪ ε small enough. ii) If (H2) is not satisfied, then there exists a τ0 for
which the zero solutions (0, 0) of equation (1.3) loses the uniform asymptotic stability,

where τ0 is obtained by solving the following equations: τ =
1

η
arccos

(
− M

N(τ)

)
and

η =
√
N2(τ)−M2.

4 Numerical Simulations
If (H2) is not satisfied, then equation (3.12) has a purely imaginary root. In this case
there exists a characteristic multiplier with modulus equal to 1 and one can look for
the occurrence of the Neimarck–Sacker bifurcation. Here we prove the existence of a
periodic solution at a critical value of the delay numerically, for a functional example
of periodic chemotherapy. A theoretical analysis of the Neimarck–Sacker bifurcation is
our aim in a forthcoming paper. With the parameters defined in the Introduction and by
using the Matlab software (DDE Solver) and γc(t) = cos(t) 2π-periodic, we obtain the
numerical results of Figures 4.1–4.3.

5 Conclusion
In 2001, Andersen and Mackey studied the system (1.1) which models the growth of
normal and malignant cells by taking into account the resting phase G0 [1]. In the
same paper [1], the authors propose the model (1.3) describing the effect of periodic
chemotherapy, proving that periodic chemotherapy can induce resonance under high cell
kill rate. In our paper, we consider the same model with periodic chemotherapy. Under
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Figure 4.1: Stability of of the trivial equilibrium point (0, 0) for τ = 2π.
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Figure 4.2: Stability of of the trivial equilibrium point (0, 0) for τ − 2π = r = 0.05.

certain conditions on the parameters values, we prove that the zero solution is uniformly
asymptotically stable when the delay is proportional to the period of chemotherapy and
when the delay is very close to the proportional value of period of chemotherapy. That
implies that there is a decay of tumor size in the presence of chemotherapy and after
some time the tumor disappears. By choosing the same parameter values introduced
in [1], we give some numerical simulations of our result. For some functional example
of periodic chemotherapy, we simulate numerically the existence of a periodic solution,
which is called in biology Jeff’s phenomenon, for some critical value of the delay.
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