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Abstract

We propose some numerical tests for local mesh refinement using the PCD
(piecewise constant distributions) method. The PCD method is a new discretization
technique of boundary value problems. It represents the unknown distribution as
well as its derivatives by piecewise constant distributions but on distinct meshes.
With the PCD method, we can introduce a local mesh refinement without the use of
slave nodes. It has the advantage of producing the most compact discrete schemes,
even with the presence of a local mesh refinement. Here we investigate some
numerical experiments, using local mesh refinement, to show the convergence of
the PCD method, the interest of the local mesh refinement and the dependence of
the convergence results with the interface boundary.

AMS Subject Classifications: 65N12, 65N15.
Keywords: PCD method, submeshes, approximate variational formulation, local mesh
refinement, compact discrete schemes, O(h)-convergence rate.

1 Introduction
The PCD method is a new boundary value problem (BVP) discretization method which
represents the unknown distribution as well as its derivatives by piecewise constant dis-
tributions but on distinct meshes. The only difficulty of the method consists in the
appropriate choice of these meshes. Once done, it becomes rather straightforward to
introduce an appropriate approximate variational formulation of the exact BVP on this
piecewise constant distributions space. With this method we can introduce a local mesh

Received May 7, 2012; Accepted November 14, 2012
Communicated by Delfim F. M. Torres



126 A. Tahiri

refinement without the use of slave nodes that appear in some finite element discretiza-
tions or in finite volume methods with a local mesh refinement, see [2–4, 8]. Compared
with other discretizations, the PCD method has the advantage of producing the most
compact discrete schemes, independently of the presence or not of the local mesh re-
finement. In this paper, we investigate some numerical tests to show the convergence
of the presented method, first without local refinement and then with local refinement.
Also, we try to illustrate the dependence of the convergence results with the interface
boundary. To keep the presentation of this new discretization as simple as possible, we
restrict this contribution to the analysis of the 2D diffusion equation on a rectangular
mesh with a refined subregion. The convergence analysis and technical results of the
PCD method can be found in [5–7].

We consider solving the following BVP on a rectangular domain Ω:

−div(p(x)∇u(x)) + q(x)u(x) = s(x) x in Ω, (1.1)

u(x) = 0 x on ∂Ω . (1.2)

We assume that p(x) is bounded and strictly positive on Ω, q(x) is bounded and nonneg-
ative on Ω and we have a well posed problem. We note that the extension of the theory
to general boundary conditions does not raise any difficulties. The discrete version of
this problem will be based on its variational formulation:

find u ∈ H such that ∀ v ∈ H a(u, v ) = (s, v), (1.3)

where H = {v ∈ H1(Ω), v = 0 on ∂Ω}, (s, v) denotes the L2(Ω) scalar product and

a(u, v) =

∫
Ω

p(x)∇u(x) · ∇v(x)dx +

∫
Ω

q(x)u(x)v(x)dx. (1.4)

2 Preliminaries

2.1 The PCD Discretization
The principle of the PCD method is given in three steps. First, we split the domain Ω
under investigation into elements Ωℓ such that

Ω =
M∪
ℓ=1

Ωℓ , Ωk ∩ Ωℓ = ∅ if k ̸= ℓ.

Second, we define different submeshes on each element Ωℓ to represent elements of
H1(Ω) and their derivatives. Third, we require that the discrete representations of el-
ements of H1(Ω) must be continuous across the elements boundaries, i.e., along the
normal to the element boundary. We denote the representation of v ∈ H1(Ω) by vh and
the representation of its derivatives ∂i v (i = 1, 2) by ∂hi vh (i = 1, 2). The operators
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Figure 2.1: Regular element.

∂hi (i = 1, 2) are the finite difference quotients taken along the element edges, in the
case of the rectangular elements.

Figure 2.1 gives an example of submeshes used to define vh|Ωℓ
, ∂h1 vh|Ωℓ

and ∂h2 vh|Ωℓ

on a regular rectangular element Ωℓ; vh|Ωℓ
is the piecewise constant distribution with 4

values vhi on the regions denoted i (i = 1, . . . , 4) on Figure 2.1 (a); ∂h1 vh|Ωℓ
is the

piecewise constant distribution with constant values:

( ∂h1 vh )1 =
vh2 − vh1

h1

, ( ∂h1 vh )2 =
vh4 − vh3

h1

on the regions denoted 1 and 2 on Figure 2.1 (b). Similarly, ∂h2 vh|Ωℓ
is the piecewise

constant distribution with constant values:

( ∂h2 vh )1 =
vh3 − vh1

h2

, ( ∂h2 vh )2 =
vh4 − vh2

h2

on the regions denoted 1 and 2 on Figure 2.1 (c).
In addition, vh must be continuous across the boundaries of the element. Thus, for

example, if the bottom boundary of Ωℓ is common with the top boundary of Ωk, then
one must have vh1(Ωℓ) = vh3(Ωk) and vh2(Ωℓ) = vh4(Ωk).
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Figure 2.2: Irregular element.

Figure 2.2 gives an example of submeshes used to define vh|Ωℓ
, ∂h1 vh|Ωℓ

and ∂h2 vh|Ωℓ

in the case of an irregular element, i.e., an element located along the bottom boundary
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of the refined zone. In this case vh|Ωℓ
assumes 5 values vhi, i = 1, . . . , 5 (Figure 2.2

(a)); ∂h1 vh|Ωℓ
assumes 3 values (Figure 2.2 (b)):

( ∂h1 vh )1 =
vh2 − vh1

h1

, ( ∂h1 vh )2 =
vh4 − vh3

h11

, ( ∂h1 vh )3 =
vh5 − vh4

h12

,

where h1 = h11 + h12. Finally, ∂h2 vh|Ωℓ
assumes 2 values (Figure 2.2 (c)):

( ∂h2 vh )1 =
vh3 − vh1

h2

, ( ∂h2 vh )2 =
vh5 − vh2

h2

.

Also here vh must be continuous across the element boundaries. Thus, if the top bound-
ary of Ωℓ is common with the bottom boundaries of the 2 cells Ωk1 and Ωk2 of widths
h11 and h12, we have vh3(Ωℓ) = vh1(Ωk1), vh4(Ωℓ) = vh2(Ωk1) = vh1(Ωk2) and
vh5(Ωℓ) = vh2(Ωk2).

Figure 2.3 (left) provides an example of a rectangular element mesh with a refined
zone in the right upper corner. On the same figure we also represent the Hh0-mesh used
to define globally the piecewise constant distribution vh. The local mesh refinement is
obtained by subdividing the elements (coarse elements), of the zone to be refined, into 4
elements (fine elements). The submeshes defined previously on the regular elements are
still valid for the fine elements. The elements are denoted by Ωℓ, ℓ ∈ L = { 1, . . . ,M}
(M is the number of elements). We similarly denote the cells of the Hh0-mesh by Ωℓ0

with ℓ ∈ J = { 1, . . . , NG}, where NG is the number of the grid nodes and N denotes
the number of unknowns. It is important to note that each node of the mesh may be
uniquely associated with a cell of Hh0-mesh. We therefore denote them by Nℓ, ℓ ∈ J .
We denote by h the mesh size defined by h = max(hℓ), where hℓ = diam(Ωℓ) (ℓ ∈ L)
and we denote by hℓ1 and hℓ2, the width and the height of the element Ωℓ. We assume
that the discretization is regular. We hereby mean that there exist positive constants
C1, C2 > 0 independent of h such that:

C1 h ≤ hℓ1 , hℓ2 ≤ C2 h ∀ ℓ ∈ L . (2.1)

We split the domain Ω into two subdomains ΩC (the coarse zone) and ΩR (the refined
zone) with Ω = ΩC ∪ ΩR. Finally, we denote by ΩI the union of all irregular elements,
ΩI = ∪ℓ Ωℓ such that Ωℓ ∩ ΩR = ∅ and Ωℓ ∩ ∂ΩR ̸= ∅. The subdomain ΩI is a
strip in Ω with an O(h)-width and has the interface boundary as part of its boundary.
Before closing this section we note that triangular elements may also be introduced. In
this way, the method can accommodate any shape of the domain under investigation
through the combined use of a local mesh refinement and triangular elements, see [5].
We note that the use of rectangular and triangular elements is not a restriction of the
PCD discretization. Other elements and other forms of submeshes on such elements
can be used, see [1]. The notation C is used throughout the paper to denote a generic
positive constant independent of the mesh size.
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Element mesh Hh0–mesh

Figure 2.3: Discrete meshes with local mesh refinement.

2.2 Discrete Problem
We denote by Hh0 the space of piecewise constant distributions used to define vh equipped
with the L2(Ω) scalar product. We further denote by Hh the space Hh0 equipped with
the inner product:

( vh , wh )h = ( vh , wh ) + ( ∂h1 vh , ∂h1 wh ) + ( ∂h2 vh , ∂h2 wh ). (2.2)

The discrete problem to be solved in Hh is defined by:

find uh ∈ Hh such that ∀ vh ∈ Hh ah(uh, vh ) = (s, vh), (2.3)

where

ah(uh , vh ) =
2∑

i=1

( p(x) ∂hi uh , ∂hi vh )Ω + ( q(x)uh , vh )Ω . (2.4)

By introducing the basis (ϕi) i∈J of the space Hh we get the linear system A ξ = b,
where A is the stiffness matrix defined by A = ( ah(ϕj , ϕi ) )(i, j)∈J , b is the vector
with components defined by bi = ( s , ϕi )Ω and ξ the unknown vector.
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Also, it should be stated that the presented method has the advantage of producing
the most compact discrete schemes and the most sparse stiffness matrix resulting from
the approximate problem independently of the presence or not of the local mesh refine-
ment. As usual, the error bounds that can be obtained depends on the regularity of u.
Here, we assume that u ∈ H2(Ω). In this case, u is continuous on Ω and we can define
its interpolant uI in Hh through

uI(Nℓ ) = u(Nℓ) for all nodes Nℓ , ℓ ∈ J . (2.5)

On the other hand, we have shown in [5, 7] the following theoretical results.

Lemma 2.1. Under the general assumptions and the notations defined above, there
exists a positive constant C independent of the mesh size h such that for all v in H2(Ω)(

∥v − vI∥2 + ∥∂1v − (∂h1vI)∥2 + ∥∂2v − (∂h2vI)∥2
) 1

2 ≤ Ch∥v∥2,Ω , (2.6)

where vI denotes the interpolant of v in Hh.

The result given in the previous lemma is independent of the presence or not of the
local mesh refinement.

Theorem 2.2. Let Ω be a rectangular bounded open set. Assume that the unique vari-
ational solution u of (1.1) belongs to H2(Ω). Then, there exists a constant C > 0
independent of h, such that:(

∥u − uh ∥2 + ∥ ∂1 u − (∂h1 uh) ∥2 + ∥ ∂2 u − (∂h2 uh) ∥2
) 1

2 ≤ C h ∥u ∥2,Ω ,

where uh is the solution of the problem (2.3) without local refinement.

Theorem 2.3. Let Ω be a rectangular bounded open set. Assume that the unique vari-
ational solution u of (1.1) belongs to H2(Ω). Then, there exists a constant C > 0
independent of h, such that:

(
∥u − uh ∥2 + ∥ ∂1 u − (∂h1 uh) ∥2 + ∥ ∂2 u − (∂h2 uh) ∥2

) 1
2

≤ C h ∥u ∥2,Ω + C h
1
2 ∥u ∥2,ΩI

,

where uh is the solution of the problem (2.3) with a local mesh refinement and ΩI is a
strip in Ω.

If the solution u is only in H1(Ω), then we can still prove the convergence of uh to
u under some assumptions on u on the strip ΩI , which contains the interface boundary
(see [5]).
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3 Numerical Experiments
In this section we investigate two numerical examples. In the first one, the solution is
very smooth and the mesh does not require a local refinement. This example is consid-
ered to illustrate the theoretical results and to establish the dependence factors without
any influence from the behavior of the exact solution. In the second example, the ex-
act solution has an anomaly around the center of the domain. This example shows the
interest of a local refinement and it also determines the best strategy for such a local
refinement.

Sometimes we solve very large problems (very large linear systems) just with the
purpose of determining an approximation of the solution in a part of the domain. To this
end, we introduce a local error estimator and we try to determine its behavior. We show
the contribution of a local mesh refinement to get a better accuracy for this estimator
with a lower computational cost.

3.1 Presentation
Consider the problem:

−div (∇u(x, y)) = s(x, y) in Ω and u(x, y) = 0 on ∂ Ω.

We consider the following error estimators: εr0 the relative L2-error estimator and εr1 the
relative H1-error estimator defined by:

εr0 =
∥u − uh ∥0

∥u ∥0
and εr1 =

| (uI − uh)
tA (uI − uh) |

1
2

∥uI ∥h
=

∥uI − uh ∥h
∥uI ∥h

,

where u is the exact solution of (1.3) and uI its interpolant in Hh.
The domain under investigation for our examples is Ω =]0 , 1[×]0 , 1[. The sub-

regions to be refined are Ω1 = [ 1/4 , 3/4 ] × [ 1/4 , 3/4 ] and Ω2 = [ 3/8 , 5/8 ] ×
[ 3/8 , 5/8 ].

In each example, the approximate mean flux in a subregion ΩF = [ 31/64 , 33/64 ]×
[ 31/64 , 33/64 ] is computed and we try to give the behavior of the error between the
exact flux and the computed one. We denote by |ΩF | the area of ΩF , F the exact mean
flux in ΩF and Fh the approximate mean flux in ΩF . Finally, we denote by η the relative
local error estimator defined by:

η =
|F − Fh |

F
, where F =

1

|ΩF |

∫
ΩF

u(x)dx and Fh =
1

|ΩF |

∫
ΩF

uh(x)dx.

We note that the error given in Theorem 2.3 can be written as:(
∥u − uh ∥2 + ∥ ∂1 u − (∂h1 uh) ∥2 + ∥ ∂2 u − (∂h2 uh) ∥2

) 1
2

≤ C h ∥u ∥2,ΩC
+ C h ∥u ∥2,ΩR

+ C h0.5 ∥u ∥2,ΩI
, (3.1)
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where ΩC is the coarse zone, ΩR the refined zone and ΩI is a strip in the domain Ω with
an O(h)-width. Thanks to Theorem 2.2 and Theorem 2.3, one may write for the both
error estimators εr0 and εr1:

max ( εr0 , ε
r
1 ) ≤ C h without local refinement

max ( εr0 , ε
r
1 ) ≤ C h 0.5 with local refinement.

With our numerical investigations, we try to determine numerically the convergence
rates of the error estimators defined above.

3.2 Example 1

h−1 N εr0 εr1 η

8 49 1.908×10−2 1.931×10−2 1.756×10−2

16 225 4.819×10−3 4.891×10−3 3.952×10−3

32 961 1.207×10−3 1.226×10−3 9.639×10−4

64 3969 3.021×10−4 3.069×10−4 2.471×10−4

128 16129 7.554×10−5 7.674×10−5 7.143×10−5

256 65025 1.888×10−5 1.918×10−5 2.088×10−5

Table 1: Example 1, without local refinement.

In this example we choose the source term s(x, y) such that the exact solution is
u(x, y) = x(1−x)y(1−y). We have a very smooth solution and we do not need a local
refinement. This example is used for theoretical considerations to illustrate the behavior
of this method with the local mesh refinement and to illustrate its dependence factors.

From Tables 1–3, we observe a monotonic improvement of the accuracy in both
error estimators: they decrease when the mesh size h decreases (when the number of
unknowns N increases). That proves the convergence of the presented method indepen-
dently of the presence or not of a local mesh refinement.

Since the exact solution u(x, y) is very smooth, the presented method has the stan-
dard O(h2)-convergence rate for both error estimators with uniform mesh and without
local refinement. εr0 and εr1 are reduced by a factor of 4 when the mesh size is reduced by
a factor of 2, see Table 1. Therefore, under higher regularity assumptions, the presented
method has the standard O(h2)-convergence rate.

We observe from Tables 2–3, for all refinement cases, that εr0 is reduced by a factor
of 2 when the mesh size is reduced by a factor of 2. Also, we observe that εr1 is re-
duced by a factor of 2 when the mesh size is reduced by a factor of 4. That proves an
O(h)-convergence rate for εr0 and an O(h0.5)-convergence rate for εr1. We have a bet-
ter accuracy with a smaller refined zone (smaller strip and lower number of unknowns)
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h−1 N εr0 εr1 η

8 65 1.768×10−2 6.288×10−2 9.417×10−3

16 281 4.923×10−3 3.538×10−2 2.303×10−3

32 1169 1.543×10−3 2.224×10−2 9.903×10−4

64 4769 5.977×10−4 1.480×10−2 7.760×10−4

128 19265 2.724×10−4 1.014×10−2 4.649×10−4

256 77441 1.326×10−4 7.058×10−3 2.485×10−4

Table 2: Example 1, with local refinement in Ω2.

than the large zone (large strip and an important number of unknowns). That proves,
in absence of any influences, we get better results with smaller strip having the lower
length of the interface boundary. Therefore, in these refinement cases, the error bound
given in (3.1) is governed by C h0.5 ∥u ∥2,ΩI

(the strip contribution). The better results
are obtained with the lower length of the interface boundary. To have a better accuracy
we must reduce the impact of this term by reducing the length of the interface boundary.

We note that the local estimator η has nearly the same behavior as the L2-error
estimator εr0 in all cases (Tables 1–3). Our numerical results are in agreement with the
theoretical results. Moreover, we can improve the estimation of the convergence rate
for the L2-error estimate by εr0 ≤ C h. In the next example, we try to confirm this
convergence rate of the L2-error estimator.

h−1 N εr0 εr1 η

8 105 2.093×10−2 0.1310 4.371×10−2

16 433 8.707×10−3 8.317×10−2 6.264×10−3

32 1761 4.070×10−3 5.550×10−2 3.001×10−3

64 7105 1.997×10−3 3.807×10−2 1.786×10−3

128 28545 9.941×10−4 2.650×10−2 9.707×10−4

256 114433 4.966×10−4 1.859×10−2 5.014×10−4

Table 3: Example 1, with local refinement in Ω1.

3.3 Example 2
In this example we choose the source term s(x, y) such that the exact solution is:
u(x, y) = x(1−x)y(1−y)β(x, y), where β(x, y) = exp(−100{(x−0.5)2+(y−0.5)2}).
We have a smooth solution with a sharp peak at the point (0.5, 0.5). This solution varies
much more rapidly in Ω1 than the remaining part of Ω. We have an exponential vari-
ation of u(x, y) which starts from the boundary of the subregion Ω1. Since the exact
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h−1 N εr0 εr1 η

8 49 1.005 0.9599 0.6950
16 225 0.4231 0.5668 0.3918
32 961 0.2219 0.3094 0.2412
64 3969 0.1122 0.1582 0.1036

128 16129 5.631×10−2 7.954×10−2 5.713×10−2

256 65025 2.817×10−2 3.982×10−2 3.092×10−2

Table 4: Example 2, without refinement.

solution u(x, y) has a sharp peak and an important variation in the subregion Ω1, the
presented method cannot have the standard O(h2)-convergence rate using the uniform
mesh but only an O(h)-convergence rate. We observe that εr0 and εr1 are reduced by a
factor of 2 when the mesh size is reduced by a factor of 2, see Table 4. Comparing the

h−1 N εr0 εr1 η

8 65 0.4855 0.5824 0.2299
16 281 0.2568 0.3279 2.998×10−2

32 1169 0.1309 0.1799 1.931×10−2

64 4769 6.532×10−2 0.1018 8.403×10−3

128 19265 3.254×10−2 6.114×10−2 4.410×10−3

256 77441 1.623×10−2 3.889×10−2 2.310×10−3

Table 5: Example 2, with local refinement in Ω2.

results in the Tables 5–6, we obtain better results with a local refinement than the results
reported in Table 4 using uniform mesh. The local refinement improves the accuracy of
the approximate solution with a lower computational costs. Also in this example, we
observe that for all refinement cases, the L2-error εr0 has an O(h)-convergence rate and
a nearly similar behavior of εr0 and η. Table 5 shows that the H1-error εr1 has a nearly
an O(h0.5)-convergence rate (around of an O(h0.65)-convergence rate). In Table 6, the
H1-error εr1 has an O(h)-convergence rate even with the local refinement. The argument
is that the variation of u(x, y) is entirely located in the zone Ω1. In other words, the term
∥u∥2,Ω1 in (3.1) is so important that the error estimator εr1 depends only on it. Here, the
error is only governed by this term that has a very large effect on the error behavior.
Unlike than in the previous example, we obtain better results with the large zone Ω1

that the small zone Ω2. Moreover, we have an improvement for the local error with this
large zone, see column 5 of Tables 5–6 for the estimator η. We explain this by the fact
that the variation of the exact solution u(x, y) lies entirely in the subregion Ω1, unlike
than the subregion Ω2 which contains only a part of this variation. We conclude that the
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h−1 N εr0 εr1 η

8 105 0.3702 0.5127 6.817×10−2

16 433 0.1831 0.2505 2.500×10−2

32 1761 9.352×10−2 0.1271 1.173×10−2

64 7105 4.776×10−2 6.393×10−2 3.243×10−3

128 28545 2.434×10−2 3.205×10−2 7.547×10−4

256 114433 1.233×10−2 1.605×10−2 3.529×10−4

Table 6: Example 2, with local refinement in Ω1.

best refinement strategy consists in choosing the smallest subregion (to be refined) but
it must contains all variations of the exact solution.

4 Concluding Remarks
Using a regular mesh, the theoretical results have shown that an O(h)-convergence
rate could be derived for the presented method. By introducing a local mesh refine-
ment, the theoretical results have shown that the proposed method presents an O(h0.5)-
convergence rate. The numerical examples presented here are in agreement with these
theoretical results. The experimental results have further shown that under higher regu-
larity assumption, the presented method has the standard O(h2)-convergence rate. If the
considered problem has an anomaly, then the local refinement gives a better precision,
locally and globally, with a lower computational costs. Both theoretical and experi-
mental results show the dependence of the error bounds with the length of the interface
boundary. The best refinement strategy consists in choosing the smallest subregion (to
be refined) but it must contains all variations of the exact solution. In the case that we
have a material discontinuity, discontinuities of the coefficients p or q in (1.1), the zone
to be refined must include these material discontinuities. An important conclusion to be
drawn from the above experimental results is that the L2-error has an O(h)-convergence
rate by using a regular mesh or a locally refined mesh. The perspective of this work is
to prove an analogue Aubin–Nitsche lemma to justify this L2-error convergence rate.
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