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Abstract

We prove existence of solutions for strongly nonlinear elliptic equations of the
formA(u)+g(x, u) = f , whereA(u) = − div a(x, u,∇u) is a Leray–Lions oper-
ator defined onD(A) ⊂W 1

0Lϕ(Ω)→W−1Lψ(Ω) with ϕ and ψ two complemen-
tary Musielak–Orlicz functions, f is a distribution of the dual, and g a nonlinearity
with the sign condition but without any restriction on its growth.
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1 Introduction
Let Ω be a bounded subset of Rn. We consider the strongly nonlinear elliptic problem

A(u) + g(x, u) = f(x ∈ Ω), (1.1)

where A(u) = − div a(x, u,∇u) is an operator of Leray–Lions type, g is a nonlinearity
with the sign condition but any restriction on its growth. When g ≡ 0 we say that the
problem is quasilinear. Quasilinear problems have been extensively studied by Browder
and others in the context of the theory of mappings of monotone type from a reflexive
Banach space to its dual and in the case where a(·) has polynomial growth in u and
its gradient [2, 3, 13]. In the same context, an existence result for (1.1) has been pro-
vided by Hess [12]. From 1970, these results have been extended by Donaldson [4] and
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Gossez [6, 7] for quasilinear problems, and by Gossez [8] and Gossez and Mustonen
in [9] for the strongly nonlinear problems, to the case where the function a do not nec-
essarily have polynomial growth in u and its gradient. The Banach spaces in which the
problems are formulated (the Orlicz–Sobolev spaces) are not reflexive and the corre-
sponding mappings of monotone type are not bounded nor everywhere defined and are
not generally a priori globally bounded (and consequently are not generally coercive).

In the last decade several works have been concerned to extend the classical polyno-
mial growth to the nonstandard growth case in the so-called variable exponent Sobolev
spaces (see [11] and references within, and also [16]). Recently, M. Mihǎilescu and
V. Rǎdulescu in [14] and X. L. Fan and C. X. Guan in [5], obtained new results which
improved the already known existence results for the p(x)-Laplacian operator in the
Musielak–Orlicz–Sobolev spaces W 1Lϕ(Ω) under some assumptions such as the con-
dition ∆2 on ϕ and also the uniform convexity of ϕ which assure that the space Lϕ(Ω)
is reflexive. The study of variational boundary value problems for quasilinear elliptic
equations in the general case, when the Musielak–Orlicz–Sobolev spaces WmLϕ(Ω)
are not reflexive, was initiated by the author et al. in [1], with the assumption that the
conjugate function ψ of ϕ has the ∆2 property.

Our purpose in this paper is to study the problem (1.1) in the context of Musielak–
Orlicz–Sobolev spaces WmLϕ(Ω) with same assumptions as in [1]. The study of non-
linear partial differential equations in this type of spaces is strongly motivated by nu-
merous phenomena of physics, namely the problems related to non Newtonian fluids of
strongly inhomogeneous behavior with a high ability of increasing their viscosity un-
der a different stimulus, like the shear rate, magnetic or electric field [10]. Note that
the ∆2 condition on ψ in this paper is only used for building the suitable complemen-
tary system with nonattendance of the analogous of [6, Theorem 1.3] in the context of
Musielak–Orlicz–Sobolev spaces. This result can be applied, for example, for finding a
weak solution for the following equation:

− div
(
m(x, |∇u|)
|∇u|

· ∇u
)

+ u sin2(u) = f,

where m is the derivative of ϕ with respect to t. In the particular case when ϕ(x, t) =
1

p(x)
tp(x), our result gives an essential improvements of the known existence results for

(1.1) in the statement of the variable exponent Sobolev spaces W 1,p(x). Simply put, we
avoid assuming any conditions of Log–Hölder continuity type on p(·). Furthermore,
the essential supreme of the function p(·) takes the value of infinity. The following are
some examples of exponents for which our existence result is valid while the previously

results fail. (i) One dimensional case. Take Ω =] − 1, 1[ and p(x) =
1

1− x2
+

1

2
. (ii)

Two dimensional case. Consider the famous Zhikov’s example in which the Lavrentiev
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phenomenon occurs: let Ω = {x = (x1, x2) ∈ R2 : |x| < 1},

p(x) =

{
a1 if x1x2 > 0,
a2 if x1x2 < 0,

where 1 < a1 < 2 < a2.
The paper is organized as follows. In Section 2 we introduce some basic definitions

and properties in Musielak–Orlicz–Sobolev spaces as well as an abstract theorem valid
in any complementary system. Section 3 contains the main result of this paper.

2 Preliminaries
In this section we list briefly some definitions and facts about Musielak–Orlicz–Sobolev
spaces. For further definitions and properties we refer the reader to [1, 15]. We also
include an abstract surjectivity result.

2.1 Musielak–Orlicz–Sobolev Spaces
Let Ω be an open subset of Rn and let ϕ be a real-valued function defined in Ω × R+

and satisfying the following conditions:

a) ϕ(x, ·) is an N -function, i.e., convex, nondecreasing, continuous, ϕ(x, 0) = 0,
ϕ(x, t) > 0 for all t > 0, and

lim
t→0

ϕ(x, t)

t
= 0 for almost all x ∈ Ω,

lim
t→∞

ϕ(x, t)

t
=∞ for almost all x ∈ Ω.

b) ϕ(·, t) is a measurable function.

A function ϕ(x, t), which satisfies the conditions a) and b), is called a Musielak–Orlicz
function. For a Musielak–Orlicz function ϕ(x, t) we put ϕx(t) = ϕ(x, t) and we asso-
ciate its nonnegative reciprocal function with respect to t and ϕ−1

x , that is,

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

For any two Musielak–Orlicz functions ϕ and γ we introduce the following ordering:

c) If there exists two positives constants c and T such that for almost all x ∈ Ω

ϕ(x, t) ≤ γ(x, ct) for t ≥ T,

then we write ϕ ≺ γ and we say that γ dominate ϕ globally if T = 0 and near
infinity if T > 0.
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d) If for every positive constant c and almost everywhere x ∈ Ω we have

lim
t→0

(
sup
x∈Ω

ϕ(x, ct)

γ(x, t)

)
= 0 or lim

t→∞

(
sup
x∈Ω

ϕ(x, ct)

γ(x, t)

)
= 0,

then we write ϕ ≺≺ γ at 0 or near∞ respectively, and we say that ϕ increases
essentially more slowly than γ at 0 or near infinity, respectively.

In the following the measurability of a function u : Ω 7→ R means the Lebesgue mea-
surability. We define the functional

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx,

where u : Ω 7→ R is a measurable function. The set

Kϕ(Ω) = {u : Ω→ R measurable /%ϕ,Ω(u) < +∞}

is called the Musielak–Orlicz class (the generalized Orlicz class). The Musielak–Orlicz
space (the generalized Orlicz spaces) Lϕ(Ω) is the vector space generated by Kϕ(Ω),
that is, Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equivalently,

Lϕ(Ω) =

{
u : Ω→ R measurable /%ϕ,Ω

(
|u(x)|
λ

)
< +∞, for some λ > 0

}
.

Let
ψ(x, s) = sup

t≥0
{st− ϕ(x, t)},

that is, ψ is the Musielak–Orlicz function complementary to (or conjugate of) ϕ(x, t)
in the sense of Young with respect to the variable s. In the space Lϕ(Ω) we define the
following two norms:

||u||ϕ,Ω = inf

{
λ > 0/

∫
Ω

ϕ

(
x,
|u(x)|
λ

)
dx ≤ 1

}
,

which is called the Luxemburg norm, and the so-called Orlicz norm by

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak–Orlicz function complementary (or conjugate) to ϕ. These two
norms are equivalent [15].

The closure in Lϕ(Ω) of the bounded measurable functions with compact support in
Ω is denoted by Eϕ(Ω). It is a separable space and Eψ(Ω)∗ = Lϕ(Ω) [15]. We have
Eϕ(Ω) = Kϕ(Ω) if and only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ has the ∆2 property for
large values of t or for all values of t, according to whether Ω has finite measure or not,
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i.e., there exists k > 0 independent of x ∈ Ω and a nonnegative function h, integrable
in Ω, such that ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for large values of t, or for all values of t.

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to u ∈
Lϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

%ϕ,Ω

(
un − u
k

)
= 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ mDαu ∈ Lϕ(Ω)},

where α = (α1, α2, . . . , αn) with nonnegative integers αi |α| = |α1| + |α2| + · · · +
|αn| and Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called the
Musielak–Orlicz–Sobolev space. Let

%ϕ,Ω(u) =
∑
|α|≤m

%ϕ,Ω(Dαu) and ||u||mϕ,Ω = inf
{
λ > 0 : %ϕ,Ω

(u
λ

)
≤ 1
}

for u ∈ WmLϕ(Ω). These functionals are convex modular and a norm on WmLϕ(Ω),
respectively, and the pair 〈WmLϕ(Ω), ||u||mϕ,Ω〉 is a Banach space if ϕ satisfies the fol-
lowing condition [15]:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c. (2.1)

The space WmLϕ(Ω) is identified to a subspace of the product Π|α|≤mLϕ(Ω) = ΠLϕ;
this subspace is σ(ΠLϕ,ΠEψ) closed. Let Wm

0 Lϕ(Ω) be the σ(ΠLϕ,ΠEψ) closure
of D(Ω) in WmLϕ(Ω). Let WmEϕ(Ω) be the space of functions u such that u and its
distribution derivatives up to orderm lie in Eϕ(Ω), andWm

0 Eϕ(Ω) is the (norm) closure
of D(Ω) in WmLϕ(Ω). The following spaces of distributions will also be used:

W−mLψ(Ω) =

f ∈ D′(Ω); f =
∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)


and

W−mEψ(Ω) =

f ∈ D′(Ω); f =
∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)

 .

In the particular case when ϕ(x, t) =
1

p(x)
tp(x), we use the notations Lp(x)(Ω) =

Lϕ(Ω) and Wm,p(x)(Ω) = WmLϕ(Ω). These spaces are called the variable exponent
Lebesgue and Sobolev spaces.
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2.2 An Abstract Result

Definition 2.1. Let Y and Z be two real Banach spaces in duality with respect to a
continuous pairing < ·, · > and let Y0 and Z0 be subspaces of Y and Z, respectively.
Then (Y, Y0;Z,Z0) is called a complementary system if, by means of 〈·, ·〉, Y ∗0 can be
identified (i.e., is linearly homeomorphic) to Z and Z∗0 to Y .

Let (Y, Y0;Z,Z0) be a complementary system and T be a mapping from the domain
D(T ) in Y to Z which satisfy the following conditions, with respect to some element
ȳ ∈ Y0 and f ∈ Z0:

(i) (finite continuity) D(T ) ⊃ Y0 and T is continuous from each finite dimensional
subspaces of Y0 to the σ(Z, Y0) topology of Z,

(ii) (sequential pseudo-monotonicity) for any sequence {yi} with yi → y ∈ Y for
σ(Y, Z0), T (yi)→ z ∈ Z for σ(Z, Y0) and lim sup〈T (yi), yi〉 ≤ 〈z, y〉, it follows
that T (y) = z and < T (yi), yi >→ 〈z, y〉,

(iii) T (y) remains bounded in Z whenever y ∈ D(T ) remains bounded in Y and
〈y − ȳ, T y〉 remains bounded from above,

(iv) 〈y − y, Ty − f〉 → +∞ as ||y||Y → +∞ in D(T ).

Given a convex set K ⊂ Y and an element f ∈ Z0, we are interested in finding a
solution y of the variational inequality{

y ∈ K ∩D(T ),

〈y − z, Ty〉 ≤ 〈y − z, f〉 for all z ∈ K.

Theorem 2.2 (See [9]). Let (Y, Y0;Z,Z0) be a complementary system with Y0 and Z0

separable. Let K ⊂ Y be convex, σ(Y, Z0) sequentially closed and such that K ∩ Y0

is σ(Y, Z) dense in K. Let f ∈ Z0 and let T : D(T ) ⊂ Y → Z satisfy (i) to (iv) with
respect to some y ∈ K ∩ Y0 and the given f . Then the variational inequality (10) has
at least one solution y.

3 Main Result

Let Ω be a bounded open subset of Rn (n ≥ 2). Let ϕ and γ be two Musielak–Orlicz
functions such that γ � ϕ. Let A : D(T ) ⊂ W 1

0Lϕ(Ω) → W−1Lψ(Ω) be a mapping
(not everywhere defined) given by

A(u) = − div a(x, u,∇u),
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where a : Ω×R×Rn → Rn is a Carathéodory function satisfying, for a.e. x ∈ Ω, and
for all s ∈ R and all ξ, ξ∗ ∈ Rn, ξ 6= ξ∗,

|a(x, s, ξ)| ≤ k1

[
c(x) + ψ−1

x (γ (x, k2|s|)) + ψ−1
x (ϕ(x, k2|ξ|))

]
, (3.1)

[a(x, s, ξ)− a(x, s, ξ∗)] [ξ − ξ∗] > 0, (3.2)
k3ϕ(x, |ξ|) ≤ a(x, s, ξ)ξ, (3.3)

where c(x) belongs to Eψ(Ω), c ≥ 0 and ki > 0 for i = 1, 2, 3. We define the mapping
T by the formula

〈v, Tu〉 =

∫
Ω

a(x, u,∇u)∇vdx

for v ∈ W 1
0Lϕ(Ω). For the convex set K ⊂ W 1

0Lϕ(Ω) we need the following two
approximation properties:

(K1) For each u ∈ K∩L∞(Ω) there exists a sequence un ∈ K∩L∞(Ω)∩W 1
0Eϕ(Ω)

such that un → u for σ(ΠLϕ(Ω),ΠLψ(Ω)) with ||un||∞ bounded.
(K2) For each u ∈ K there exists a sequence un ∈ K ∩ L∞(Ω) and a constant c

such that un → u for σ(ΠLϕ(Ω),ΠLψ(Ω)) and |un(x)| ≤ c|u(x)| for a.e. x ∈ Ω and all
u in R.

Note that (K1) and (K2) together imply that K∩W 1
0Eϕ(Ω) is σ(ΠLϕ(Ω),ΠLψ(Ω))

dense in K.

Theorem 3.1. Assume that (3.1), (3.2) and (3.3) hold true. Let K be a convex set of
W 1

0Lϕ(Ω) satisfying the condition K1 and K2. Let g : Ω× R → R be a Caratheodory
function such that for each r ∈ R there exists hr ∈ L1(Ω) with

g(x, u) ≤ hr(x) (3.4)

for a.a. x ∈ Ω and all u ∈ R with |u| < r. Assume that

g(x, u)u ≥ 0, (3.5)

for a.a. x ∈ Ω and all u ∈ R. Then, given f ∈ W−1Eψ(Ω), there exists u ∈ W 1
0Lϕ(Ω)

such that g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω) and

〈u− v, T (u)〉+

∫
Ω

g(x, u)(u− v) ≤ 〈u− v, f〉 (3.6)

for all v ∈ K ∩ L∞(Ω).

Proof. The quadruple (W 1
0Lϕ(Ω),WmEϕ(Ω);W−1Lψ(Ω),W−1Eψ(Ω)) constitutes a

complementary system, by the statement of [1]. For this complementary system we use
the notation (Y, Y0;Z,Z0). Also by [1] we can deduce that the corresponding mapping
T of A satisfies the conditions (i)–(iv) of Theorem 2.2. We truncate g by letting:

gn(x, u) =

{
g(x, u) if |g(x, u)| ≤ n,

n sgn g(x, u) if |g(x, u)| > n.
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By (3.4), (3.5) and the fact that ū ∈ L∞(Ω), we have∫
Ω

gn(x, u)(u− ū)dx

=

∫
|u|>||ū||∞

gn(x, u)(u− ū)dx+

∫
|u|≤||ū||∞

gn(x, u)(u− ū)dx

≥
∫
|u|≤||ū||∞

gn(x, u)(u− ū)dx ≥ −2

∫
|u|≤||ū||∞

|gn(x, u)||ū|dx

≥ −2||ū||∞
∫

Ω

h||ū||∞dx

(3.7)

for all u ∈ Y . For u ∈ Y , put (Gnu)(x) = gn(x, u). Then the mapping T + Gn :
D(T ) ⊂ Y → Z satisfies (i) and (ii) (by [6, Proposition 2.2], (iii) (since for each
n, (Gnu) is bounded) and (vi) (by (3.7)). Consequently, by Theorem 2.2, there exists
un ∈ K ∩D(T ) such that

〈un − v, Tun〉+

∫
Ω

gn(x, un)(un − v) ≤ 〈f, un − v〉 (3.8)

for all v ∈ K. Take v = ū in (3.8). Then, using (3.7), we obtain:

〈un − ū, Tun − f〉 ≤ −
∫

Ω

gn(x, un)(un − ū)dx ≤ ||ū||∞
∫

Ω

h||ū||∞dx.

By this estimate we conclude that un remains bounded in Y , that Tun remains bounded

in Z and that
∫

Ω

gn(x, un)(un − ū)dx also remains bounded. Thus, passing to a sub-

sequence, we can assume that un → u ∈ Y for σ(Y, Z0) and a.e. in Ω and that
un → χ ∈ Z for σ(Z, Y0). Therefore, gn(x, un)→ g(x, u) a.e. in Ω. Moreover,∫

Ω

|gn(x, un)(un − ū)|dx =

∫
Ω

gn(x, un)(un − ū)− 2

∫
ū>un>0

gn(x, un)(un − ū)

− 2

∫
ū<un<0

gn(x, un)(un − ū)dx

≤ C

with C a constant independent of n. On the other hand, for all r > 0 we have

|g(x, un)| ≤ sup
|un|≤r+||ū||∞

|g(x, un)|+ 1

r
|g(x, un)(un − ū)|

≤ hr+||ū||∞ +
1

r
|g(x, un)(un − ū)|.

Hence, ∫
E

|gn(x, un)|dx ≤
∫
E

hr+||ū||∞dx+
C

r
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for some measurable subset E of Ω. For |E| sufficiently small and r =
2C

ε
, we obtain∫

E

|gn(x, un)|dx < ε

2
+
ε

2
< ε,

since hr+||ū||∞ ∈ L1(Ω). Thus, by Vitali’s theorem, we get gn(x, un) → g(x, u) in
L1(Ω). Using Fatou’s lemma, we obtain:∫

Ω

g(x, u)udx ≤ lim inf

[∫
Ω

gn(x, un)(un − ū)dx+

∫
Ω

gn(x, un)ūdx

]
< +∞.

This implies that g(x, u)u ∈ L1(Ω). We turn now to (3.8). Fatou’s lemma gives that

lim sup〈un, Tun〉 ≤ 〈v, χ〉+

∫
Ω

g(x, u)(v − u) + 〈f, u− v〉 (3.9)

for all v ∈ K ∩Y0∩L∞(Ω). By K1 and K2 we conclude that (3.9) holds also for v = u,
which implies

lim sup〈un, Tun〉 ≤ 〈u, χ〉.

Hence, by (ii), u ∈ D(T ), χ = Tu and 〈un, Tun〉 → 〈u, Tu〉. Therefore,

〈u− v, Tu〉+

∫
Ω

g(x, u)(u− v) ≤ 〈u− v, f〉,

which completes the proof.
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