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Abstract

We prove existence of weak solutions to an eigenvalue Steklov problem defined
in a bounded domain with a Lipschitz continuous boundary.
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1 Introduction

In a previous work [1], the solvability of the problem

{ Apu =0 in 2,

1.1
‘VU,pQ—gu = pm(z)[ulP?u+ f(z,u) —h ondf, .1y
v

was investigated, where (2 is a bounded domain in RN (N > 2), with a Lipschitz
continuous boundary, 1 < p < oo, m € L9(99), such that m* = max(m,0) # 0

and/ mdo < 0, (N—-1)/(p—1) <¢g< ooifp< Nandg > 1ifp > N. Let
00
f 09 x R —R be a Carathéodory function satisfying the growth condition

|f(z,s)| < als|"™" + b(x) (1.2)
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for all s € R and ae. = € dQ. Here a is a positive constant, b € L™ (99) and 7'
is the conjugate of » = pq/(q — 1). We also assume that the function f satisfies the
Landesman—Lazer conditions

EEH f(z,s) = a(z), Ein f(z,s) = p(x) ae.xz € 0, (1.3)
B(x)prdo < / h(z)prdo < / a(z)pido, (1.4)
o) o9 o9

where h € L”/(GQ) and ¢, is the normalized positive eigenfunction associated to fi1,
which is the first positive eigenvalue of the following Steklov problem:

Find (u, ) € (W'?(Q)\ {0}) x R such that

APU’ = 0 in Q, (15)
|Vu|p_2% = pm(z)|uf?u on 0S.
v

Under the conditions (1.2), (1.3) and (1.4), it was proved that the problem (1.1) admits
at least a weak solution in W'*(Q). Our purpose in this work is to study existence for
the Steklov problem

Apu = my(z)|ulPu in €2,
(1.6)

0
[Vl 225 = (@)l + f(r,u) = b on %,
14
where €2, p, ¢, f and h are assumed to satisfy the conditions indicated at the beginning of
the introduction. We further assume that the weight function m, satisfies the following

assumption:
my € L*(2) and my(x) > cst > 0, (1.7)

where cst is a real positive number. We also assume that ms is an indefinite weight
satisfying
my € LI(02) and m3 # 0 on 09, (1.8)

where 111 denotes the first positive eigenvalue of the Steklov problem

Find (u, ) € (W'?(Q)\ {0}) x R such that

Aé,u = my(2)|uffu in (1.9)
|Vu|p_26—u = pma(x)|ulP?u on OS2
v

It is well-known that

1 1 1
pi = inf {—/ \VulPdx + —/m1|u|pdx ; —/ mo(z)|ulPdo = 1}.
wewtr(Q) (P Jo D Ja D Joa
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Recall that g, is simple (see [10]). Moreover, there exists a unique positive eigenfunc-
1/p
tion ¢ whose norm ||ul| := (/ |Vul|Pdx + / m1|u]pdx) in W'P(Q) equals to
Q Q

one. We say that u € W'?(() is a weak solution of (1.6) if

/|Vu|p_2Vqu0+/m1]u|p_2ugodx
Q Q

= I m2|u|p_2u4pda+/ f(x,u)gpda—/ hodo
B) o9 o9

for all o € W'P(Q), where do is the N — 1 dimensional Hausdorff measure.

The growing attention in the study of the p-Laplacian operator is motivated by the
fact that it arises in various applications, for example, in non Newtonian fluids, reaction
diffusion problems, flow through porous media, glacial sliding, theory of superconduc-
tors, biology, etc. Classical Dirichlet problems involving the p-Laplacian have been
studied by various authors. We cite here the works [2-8]. However, nonlinear bound-
ary conditions have only been considered in recent years. For previous works for the
p-Laplacian with nonlinear boundary conditions of different type we refer to [1,9, 10].
Here we extend some of the results for the Dirichlet p-Laplacian problem. We prove
existence of solutions for problem (1.6) under Landesman—Lazer conditions (see Theo-
rem 2.2). Our main tool is the minimum principle combined with variational arguments.

2 Existence of Solutions for a Steklov Problem

Throughout this section the weights my, mo are assumed to satisfy respectively the
conditions (1.7) and (1.8). Our purpose is, by using the minimum principle, to study the
solvability of the Steklov problem (1.6) under Landesman—Lazer conditions.

Theorem 2.1 (Minimum principle). Let X be a Banach space and ® € C'(X,R).
Assume that © satisfies the Palais—Smale condition and bounded from below. Then
c= igl(f ® is a critical point.

The following theorem is the main result in this work.

Theorem 2.2. Assume that (1.2), (1.3) and (1.4) are fulfilled. Then the problem (1.6)
admits at least a weak solution in WP (Q).

The following lemmas will be used in the proof of Theorem 2.2. They enable us to
prove the existence of a critical point. The functional energy associated to the problem
(1.6) is given by

1 1
d(u) = —/ |Vu|pd$+—/m1|u|pdx—& m2|u|pd0—/ F(x,u)dcﬂ—/ hudo,
P Ja P Ja D Joq Gi9) 0
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where .
F(z,t) ::/ f(z, s)ds.
0

Lemma 2.3. Assume that (1.2), (1.3) and (1.4) hold. Then ® satisfies the Palais—Smale
condition (PS) on W"P(Q).

Proof. Let (u,) be a sequence in W'?(Q) and c be a real positive number such that
|®(u,)| < cfor all n and ®'(u,) — 0. We prove that (u,) is bounded in W*?(Q).
Indeed, let us assume, by contradiction, that ||u,|| — 400 as n — +oo. Let v, =

Unp
Tall !
weakly in W'P(Q), v,, — v strongly in LP(€2) and v,, — v strongly in La-1(9<). The
hypothesis |®(u,)| < ¢ implies

1 1
lim —/ |an|pd:x+—/m1|vn|pdx—&/ ma|v,|Pdo
=t \ P Jo b Ja D Joq

F
_/ MdH/ PRI B
oo |[un|lP o0 |[unll?

Since, by hypotheses on p, h, u,, and using (1.3),

F n n
lim (—/ Mdcr—l—/ h— da) =0,
notoo \ - Jag  ||uall? oo |luallP

1 1
lim — m2|vn|pda——/ mae|v|Pdo,
n=teo P Jan D Joa

lim (/ |an|pdx+/m1|vn|pdx> :,ul/ me|v|Pdo.
n—=t+oo \ Jo Q oQ

Using the weak lower semi-continuity of the norm and the definition of 1, we get

Then v, is bounded and, for a subsequence still denoted by (v,,), we have v,, — v

while

we have

f m2|v|pda§/|Vv|pdx—|—/m1|v|pdx
Q Q

o0
< liminf (/ Vo, |Pdx + / m1|vn|pdaz>
n—-+oo Q Q

= [ me|v|Pdo.
)

1/p
Because ||ul| := (/ |Vul|Pdz + / m1|u|pdx) is a norm on W'?(Q)) equivalent to
Q Q

the usual norm, we have v,, — v strongly in W'?(Q) and

T m2|v|pda:/ |Vv|pdx+/m1|v|pdx.
o0 Q Q
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This implies, by the definition of (; and meodo < 0, that v = +¢;. Let
o0

F(x,s) .
g@,s):{ s o MeA0
f(z,0), ifs=0.

Case 1: Suppose that v,, — 1. Then we have u, (x) — +oo and
flz,u,(x)) = B(z) ae. x € 09,

g(z,u,(z)) — p(x) ae. x € 0N.
Therefore, the Lebesgue theorem implies that
lim [ (pg (2, un(2)) = f (2, un(2))) vndo = (p = 1) [ Blx)pi(x)do.
n+oo J50 onN

On the other hand, |®(u,)| < c implies that

—cpg/|an|pdx—l—/m1]vn]pdas—,u1/ ma|v,[Pdo
Q Q o9

—/ pF(a:,un)da—l—/ hu,do < cp, (2.1)
o9 o0

and ®'(u,,) — 0 implies that for all ¢ > 0 there exists ny € N such that

—e< —/ ]Vun|pdx—/m1|un\pd:v+,u1/ ma|un,|[Pdo
Q Q a0

+ - f (@, un(x))un(z)do — /m h(z)u,(z)do < e (2.2)

for all n > ny. By summing up (2.1) and (2.2), we get

fz,un(2))uy(z)do — /

pF(z,u,)do + (p — 1)/ h(x)u,(z)do > —cp — ¢.
o0

o0 o0

Dividing by ||u,||, we obtain

£ (@ () () do— / —ep—c

po(e,wn)a(w)dr (1) [ hia)u w)do >
o

o0 o0 |[un|

Passing to the limit, we obtain

/8 )i = [ Ba)ea)ds

o0
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which contradicts (1.4).

Case 2: Suppose that v,, — —¢7. Then we have u, (x) — —oo and
f(z,u,(z)) = ax) ae. z € 09,

g(x,u,(z)) — a(z) ae. x € 05
By summing up (2.1) and (2.2), we get

flz,un(2))uy(z)do —/

pF(z,u,)do + (p — 1)/ h(z)u,(x)do < cp+e.
o9

0N o0

Dividing by ||u,||, we obtain

fz, un(x))vn(x)da—/

p9($,un)vn($)d0+(p—1)/ h(z)v,(z)do <
a0

o0 a0 [[n]| .

Passing to the limit, we get

[ aweiwin < [ nweain,

o0

which contradicts (1.4). Finally, (u,) is bounded in W'*(Q), and for a subsequence
still denoted by (u,,), there exists u € W'P(Q) such that u,, — u weakly in W'?((Q)

and u,, — wu strongly in Lit (092). By the hypotheses on ma, h, u,, and using (1.3), we
deduce that

lim M tn|P ™1 (U, — u)do = 0,
n—-+oo 90

n1—1>I—Poo 00 f('r?un(‘r))(un - u)da = 07

lim h(u, — u)do = 0.
n—+o0 [50

On the other hand, we have

lim @' (uy,)(u, —u) = 0.

n—-+o0o
Therefore,
lim / |V, P 2Vu,V (u, — u)dr = 0,
Q

n—+oo

and u,, — w strongly in L”(Q2). Thus

n—-+o0o

lim / |t [P, (0, — 1)dx = 0
Q

and it follows from the (S™) property that u,, — u strongly in W' (Q). O
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Lemma 2.4. Assume that (1.2), (1.3) and (1.4) are satisfied. Then ® is bounded from
below.

Proof. Tt suffices to show that ® is coercive. Suppose, by contradiction, that there exists
a sequence (u,,) such that ||u,|| — 400 and ®(u,) < c. As in the proof of Lemma 2.3,

we can show that v,, = ﬁ — +y. By the definition of j;, we have
Up,
0< / |Vu,|Pds + / my|u,|Pde — ,ul/ ma|u,|Pdo.
Q Q o9
Thus
—/ F(z,u,(x))do +/ hu,do < ®(u,) < c. (2.3)
o9 o9

Case 1: Suppose that v,, — ;. Dividing (2.3) by ||u,||, we obtain

[ Eol),, o, O]
o0 s}

1 o llunll™ = unll ™ [funll

Passing to the limit, we get

[ B@)pdo + / h(2)erdo < 0,
o0 o0

which contradicts (1.4).
Case 2: Assume that v,, — —¢;. Dividing (2.3) by ||u,||, we obtain

_/8Q F<x7un(m))d0+/@ hu,, do < D(uy,) < €

[|n]| o llunll 7 lunll ™ Jlunll

Passing to the limit, we get
/ a(x)prdo — / h(z)prdo <0,
a9 89

which contradicts (1.4). [

Proof of Theorem 2.2. Assumption (1.2) implies that ® is a C''-functional on W'?(2).
By Lemma 2.3, ® satisfies the Palais—Smale condition and it is bounded from below by
Lemma 2.4. Furthermore, we proved in Theorem 2.1 that ¢ attains its proper infimum
in W1?(€2). We conclude that problem (1.6) admits at least a weak solution. ]
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