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Abstract

We prove existence of weak solutions to an eigenvalue Steklov problem defined
in a bounded domain with a Lipschitz continuous boundary.
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1 Introduction
In a previous work [1], the solvability of the problem{ 4pu = 0 in Ω,

|∇u|p−2∂u

∂ν
= µ1m(x)|u|p−2u+ f(x, u)− h on ∂Ω,

(1.1)

was investigated, where Ω is a bounded domain in RN (N ≥ 2), with a Lipschitz
continuous boundary, 1 < p < ∞, m ∈ Lq(∂Ω), such that m+ = max(m, 0) 6≡ 0

and
∫
∂Ω

mdσ < 0, (N − 1)/(p − 1) < q < ∞ if p < N and q ≥ 1 if p ≥ N . Let

f : ∂Ω× R→R be a Carathéodory function satisfying the growth condition

|f(x, s)| ≤ a|s|r−1 + b(x) (1.2)
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for all s ∈ R and a.e. x ∈ ∂Ω. Here a is a positive constant, b ∈ Lr′(∂Ω) and r′

is the conjugate of r = pq/(q − 1). We also assume that the function f satisfies the
Landesman–Lazer conditions

lim
s→−∞

f(x, s) = α(x), lim
s→+∞

f(x, s) = β(x) a.e. x ∈ ∂Ω, (1.3)∫
∂Ω

β(x)ϕ1dσ <

∫
∂Ω

h(x)ϕ1dσ <

∫
∂Ω

α(x)ϕ1dσ, (1.4)

where h ∈ Lr′(∂Ω) and ϕ1 is the normalized positive eigenfunction associated to µ1,
which is the first positive eigenvalue of the following Steklov problem:

Find (u, µ) ∈ (W 1,p(Ω) \ {0})× R+ such that
4pu = 0 in Ω,

|∇u|p−2∂u

∂ν
= µm(x)|u|p−2u on ∂Ω.

(1.5)

Under the conditions (1.2), (1.3) and (1.4), it was proved that the problem (1.1) admits
at least a weak solution in W 1,p(Ω). Our purpose in this work is to study existence for
the Steklov problem{ 4pu = m1(x)|u|p−2u in Ω,

|∇u|p−2∂u

∂ν
= µ1m2(x)|u|p−2u+ f(x, u)− h on ∂Ω,

(1.6)

where Ω, p, q, f and h are assumed to satisfy the conditions indicated at the beginning of
the introduction. We further assume that the weight function m1 satisfies the following
assumption:

m1 ∈ L∞(Ω) and m1(x) ≥ cst > 0, (1.7)

where cst is a real positive number. We also assume that m2 is an indefinite weight
satisfying

m2 ∈ Lq(∂Ω) and m+
2 6≡ 0 on ∂Ω, (1.8)

where µ1 denotes the first positive eigenvalue of the Steklov problem
Find (u, µ) ∈ (W 1,p(Ω) \ {0})× R+ such that

4pu = m1(x)|u|p−2u in Ω,

|∇u|p−2∂u

∂ν
= µm2(x)|u|p−2u on ∂Ω.

(1.9)

It is well-known that

µ1 := inf
u∈W 1,p(Ω)

{
1

p

∫
Ω

|∇u|pdx+
1

p

∫
Ω

m1|u|pdx :
1

p

∫
∂Ω

m2(x)|u|pdσ = 1

}
.
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Recall that µ1 is simple (see [10]). Moreover, there exists a unique positive eigenfunc-

tion ϕ1 whose norm ‖u‖ :=

(∫
Ω

|∇u|pdx+

∫
Ω

m1|u|pdx
)1/p

in W 1,p(Ω) equals to

one. We say that u ∈ W 1,p(Ω) is a weak solution of (1.6) if∫
Ω

|∇u|p−2∇u∇ϕ+

∫
Ω

m1|u|p−2uϕdx

= µ1

∫
∂Ω

m2|u|p−2uϕdσ +

∫
∂Ω

f(x, u)ϕdσ −
∫
∂Ω

hϕdσ

for all ϕ ∈ W 1,p(Ω), where dσ is the N − 1 dimensional Hausdorff measure.
The growing attention in the study of the p-Laplacian operator is motivated by the

fact that it arises in various applications, for example, in non Newtonian fluids, reaction
diffusion problems, flow through porous media, glacial sliding, theory of superconduc-
tors, biology, etc. Classical Dirichlet problems involving the p-Laplacian have been
studied by various authors. We cite here the works [2–8]. However, nonlinear bound-
ary conditions have only been considered in recent years. For previous works for the
p-Laplacian with nonlinear boundary conditions of different type we refer to [1, 9, 10].
Here we extend some of the results for the Dirichlet p-Laplacian problem. We prove
existence of solutions for problem (1.6) under Landesman–Lazer conditions (see Theo-
rem 2.2). Our main tool is the minimum principle combined with variational arguments.

2 Existence of Solutions for a Steklov Problem
Throughout this section the weights m1, m2 are assumed to satisfy respectively the
conditions (1.7) and (1.8). Our purpose is, by using the minimum principle, to study the
solvability of the Steklov problem (1.6) under Landesman–Lazer conditions.

Theorem 2.1 (Minimum principle). Let X be a Banach space and Φ ∈ C1(X,R).
Assume that Φ satisfies the Palais–Smale condition and bounded from below. Then
c = inf

X
Φ is a critical point.

The following theorem is the main result in this work.

Theorem 2.2. Assume that (1.2), (1.3) and (1.4) are fulfilled. Then the problem (1.6)
admits at least a weak solution in W 1,p(Ω).

The following lemmas will be used in the proof of Theorem 2.2. They enable us to
prove the existence of a critical point. The functional energy associated to the problem
(1.6) is given by

Φ(u) =
1

p

∫
Ω

|∇u|pdx+
1

p

∫
Ω

m1|u|pdx−
µ1

p

∫
∂Ω

m2|u|pdσ−
∫
∂Ω

F (x, u)dσ+

∫
∂Ω

hudσ,
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where

F (x, t) :=

∫ t

0

f(x, s)ds.

Lemma 2.3. Assume that (1.2), (1.3) and (1.4) hold. Then Φ satisfies the Palais–Smale
condition (PS) on W 1,p(Ω).

Proof. Let (un) be a sequence in W 1,p(Ω) and c be a real positive number such that
|Φ(un)| ≤ c for all n and Φ′(un) → 0. We prove that (un) is bounded in W 1,p(Ω).
Indeed, let us assume, by contradiction, that ||un|| → +∞ as n → +∞. Let vn =
un
||un||

. Then vn is bounded and, for a subsequence still denoted by (vn), we have vn ⇀ v

weakly in W 1,p(Ω), vn → v strongly in Lp(Ω) and vn → v strongly in L
pq
q−1 (∂Ω). The

hypothesis |Φ(un)| ≤ c implies

lim
n→+∞

(
1

p

∫
Ω

|∇vn|pdx+
1

p

∫
Ω

m1|vn|pdx−
µ1

p

∫
∂Ω

m2|vn|pdσ

−
∫
∂Ω

F (x, un)

||un||p
dσ +

∫
∂Ω

h
un
||un||p

dσ

)
= 0.

Since, by hypotheses on p, h, un and using (1.3),

lim
n→+∞

(
−
∫
∂Ω

F (x, un)

||un||p
dσ +

∫
∂Ω

h
un
||un||p

dσ

)
= 0,

while
lim

n→+∞

1

p

∫
∂Ω

m2|vn|pdσ =
1

p

∫
∂Ω

m2|v|pdσ,

we have

lim
n→+∞

(∫
Ω

|∇vn|pdx+

∫
Ω

m1|vn|pdx
)

= µ1

∫
∂Ω

m2|v|pdσ.

Using the weak lower semi-continuity of the norm and the definition of µ1, we get

µ1

∫
∂Ω

m2|v|pdσ ≤
∫

Ω

|∇v|pdx+

∫
Ω

m1|v|pdx

≤ lim inf
n→+∞

(∫
Ω

|∇vn|pdx+

∫
Ω

m1|vn|pdx
)

= µ1

∫
∂Ω

m2|v|pdσ.

Because ‖u‖ :=

(∫
Ω

|∇u|pdx+

∫
Ω

m1|u|pdx
)1/p

is a norm on W 1,p(Ω) equivalent to

the usual norm, we have vn → v strongly in W 1,p(Ω) and

µ1

∫
∂Ω

m2|v|pdσ =

∫
Ω

|∇v|pdx+

∫
Ω

m1|v|pdx.
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This implies, by the definition of ϕ1 and
∫
∂Ω

m2dσ < 0, that v = ±ϕ1. Let

g(x, s) =

{
F (x, s)

s
, if s 6= 0;

f(x, 0), if s = 0.

Case 1: Suppose that vn → ϕ1. Then we have un(x)→ +∞ and

f(x, un(x))→ β(x) a.e. x ∈ ∂Ω,

g(x, un(x))→ β(x) a.e. x ∈ ∂Ω.

Therefore, the Lebesgue theorem implies that

lim
n+∞

∫
∂Ω

(pg (x, un(x))− f (x, un(x))) vndσ = (p− 1)

∫
∂Ω

β(x)ϕ1(x)dσ.

On the other hand, |Φ(un)| ≤ c implies that

− cp ≤
∫

Ω

|∇vn|pdx+

∫
Ω

m1|vn|pdx− µ1

∫
∂Ω

m2|vn|pdσ

−
∫
∂Ω

pF (x, un)dσ +

∫
∂Ω

hundσ ≤ cp, (2.1)

and Φ′(un)→ 0 implies that for all ε > 0 there exists n0 ∈ N such that

− ε ≤ −
∫

Ω

|∇un|pdx−
∫

Ω

m1|un|pdx+ µ1

∫
∂Ω

m2|un|pdσ

+

∫
∂Ω

f(x, un(x))un(x)dσ −
∫
∂Ω

h(x)un(x)dσ ≤ ε (2.2)

for all n ≥ n0. By summing up (2.1) and (2.2), we get∫
∂Ω

f(x, un(x))un(x)dσ −
∫
∂Ω

pF (x, un)dσ + (p− 1)

∫
∂Ω

h(x)un(x)dσ ≥ −cp− ε.

Dividing by ||un||, we obtain∫
∂Ω

f(x, un(x))vn(x)dσ−
∫
∂Ω

pg(x, un)vn(x)dσ+(p−1)

∫
∂Ω

h(x)vn(x)dσ ≥ −cp− ε
||un||

.

Passing to the limit, we obtain∫
∂Ω

h(x)ϕ1(x)dσ ≥
∫
∂Ω

β(x)ϕ1(x)dσ,
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which contradicts (1.4).

Case 2: Suppose that vn → −ϕ1. Then we have un(x)→ −∞ and

f(x, un(x))→ α(x) a.e. x ∈ ∂Ω,

g(x, un(x))→ α(x) a.e. x ∈ ∂Ω.

By summing up (2.1) and (2.2), we get∫
∂Ω

f(x, un(x))un(x)dσ −
∫
∂Ω

pF (x, un)dσ + (p− 1)

∫
∂Ω

h(x)un(x)dσ ≤ cp+ ε.

Dividing by ||un||, we obtain∫
∂Ω

f(x, un(x))vn(x)dσ−
∫
∂Ω

pg(x, un)vn(x)dσ+(p−1)

∫
∂Ω

h(x)vn(x)dσ ≤ cp+ ε

||un||
.

Passing to the limit, we get∫
∂Ω

α(x)ϕ1(x)dσ ≤
∫
∂Ω

h(x)ϕ1(x)dσ,

which contradicts (1.4). Finally, (un) is bounded in W 1,p(Ω), and for a subsequence
still denoted by (un), there exists u ∈ W 1,p(Ω) such that un ⇀ u weakly in W 1,p(Ω)

and un → u strongly in L
pq
q−1 (∂Ω). By the hypotheses on m2, h, un and using (1.3), we

deduce that
lim

n→+∞

∫
∂Ω

m2|un|p−2un(un − u)dσ = 0,

lim
n→+∞

∫
∂Ω

f(x, un(x))(un − u)dσ = 0,

lim
n→+∞

∫
∂Ω

h(un − u)dσ = 0.

On the other hand, we have

lim
n→+∞

Φ′(un)(un − u) = 0.

Therefore,

lim
n→+∞

∫
Ω

|∇un|p−2∇un∇(un − u)dx = 0,

and un → u strongly in Lp(Ω). Thus

lim
n→+∞

∫
Ω

|un|p−2un(un − u)dx = 0

and it follows from the (S+) property that un → u strongly in W 1,p(Ω).



Landesman–Lazer Conditions for the Steklov Problem 113

Lemma 2.4. Assume that (1.2), (1.3) and (1.4) are satisfied. Then Φ is bounded from
below.

Proof. It suffices to show that Φ is coercive. Suppose, by contradiction, that there exists
a sequence (un) such that ||un|| → +∞ and Φ(un) ≤ c. As in the proof of Lemma 2.3,
we can show that vn =

un
||un||

→ ±ϕ1. By the definition of µ1, we have

0 ≤
∫

Ω

|∇un|pdx+

∫
Ω

m1|un|pdx− µ1

∫
∂Ω

m2|un|pdσ.

Thus
−
∫
∂Ω

F (x, un(x))dσ +

∫
∂Ω

hundσ ≤ Φ(un) ≤ c. (2.3)

Case 1: Suppose that vn → ϕ1. Dividing (2.3) by ||un||, we obtain

−
∫
∂Ω

F (x, un(x))

||un||
dσ +

∫
∂Ω

hun
||un||

dσ ≤ Φ(un)

||un||
≤ c

||un||
.

Passing to the limit, we get

−
∫
∂Ω

β(x)ϕ1dσ +

∫
∂Ω

h(x)ϕ1dσ ≤ 0,

which contradicts (1.4).
Case 2: Assume that vn → −ϕ1. Dividing (2.3) by ||un||, we obtain

−
∫
∂Ω

F (x, un(x))

||un||
dσ +

∫
∂Ω

hun
||un||

dσ ≤ Φ(un)

||un||
≤ c

||un||
.

Passing to the limit, we get∫
∂Ω

α(x)ϕ1dσ −
∫
∂Ω

h(x)ϕ1dσ ≤ 0,

which contradicts (1.4).

Proof of Theorem 2.2. Assumption (1.2) implies that Φ is a C1-functional on W 1,p(Ω).
By Lemma 2.3, Φ satisfies the Palais–Smale condition and it is bounded from below by
Lemma 2.4. Furthermore, we proved in Theorem 2.1 that Φ attains its proper infimum
in W 1,p(Ω). We conclude that problem (1.6) admits at least a weak solution.
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