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Abstract

Given a multi-leveled meromorphic linear differential system, we deduce from
the factorization theorem explicit formule allowing to express all the first level’s
Stokes multipliers in terms of connection constants in the Borel plane, generaliz-
ing thus the formule displayed by M. Loday—Richaud and the author in the case
of single-leveled systems. As an illustration, we develop three examples. No as-
sumption of genericity is made.
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1 Introduction

All along the article, we are given a linear differential system (in short, a differential
system or a system) of dimension n > 2 with meromorphic coefficients of order r + 1
at 0 in C, r € N*, of the form

wl% _ A@)Y, A(z) € M,(C{z}), A(0) £ 0 (L.1)

together with a formal fundamental solution at 0

~

Y(z) = F(x)z"e@/

normalized as follows:

Received May 5, 2012; Accepted October 8, 2012
Communicated by Martin Bohner



248 Pascal Remy

o F(x) e M,(C[[z]]) is a formal power series in x satisfying F'(z) = I,, + O(z™),
where [, is the identity matrix of size n and where 7; is an integer > 1 fixed
below,

J
o [ = @()‘jjnj + Jn;) where J is an integer > 2, the eigenvalues \; verify 0 <
j=1

Re();) < 1 and where

(0 ifn; =1

J

0 -+ -+ 0
is an irreducible Jordan block of size n;,

e (Q(1/x) is a diagonal matrix with polynomial entries in 1/x of the form

°()-@s()n o()=2lc]

Recall that any meromorphic linear differential system with an irregular singular
point at O can always be reduced to System (1.1) by means of a finite algebraic extension
x —> z¥, v € N¥, of the variable = and a meromorphic gauge transformation ¥ ——
T(x)Y where T'(x) has explicit computable polynomial entries in = and 1/x [2].

In addition, we suppose that there exist j and ¢ such that ¢; # ¢, otherwise ﬁ(x) is
a convergent series and System (1.1) has no Stokes phenomenon.

Under the hypothesis that System (1.1) has the unique level r > 1 (see Def. 2.1
below for the exact definition of levels), M. Loday—Richaud and the author displayed
in [9] (case r = 1) and [16] (case r = 2) formule making explicit the Stokes multipliers

~

of F(z) in terms of connection constants in the Borel plane. More precisely, these

constants are given by the singularities of the Borel transforms 1:"[”] (1) of the sub-series

s (t),u =0,....,r —1land ¢t = 2", of terms r by r of F(z), also called r-reduced

series of F'(z).

In the present paper, we suppose that System (1.1) is a multi-leveled system. Our
aim is to makewexplicit formula similar to those in [9, 16] for the first level’s Stgkes
multipliers of F(x) (Section 3.6, Theorem 3.12), i.e., the Stokes multipliers of F'(z)
associated with the smallest level ; > 1 of System (1.1).

Such formule, obtained by various integral methods such as Cauchy-Heine integral
and Laplace transform, were already given by many authors under sufficiently generic
hypothesis (see [1,3,4] for instance).
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Here, besides no assumption of genericity is made, our approach is quite different
and is based on the factorization theorem of (x) (see [7, 14, 15], Section 2.3 below)
and on the results of [9, 16].

More precisely, we proceed in two steps. First, we show that a “good normalization”
of the r;-summable factor of F'(z) allows to see the first level’s Stokes multipliers of
F (x) as Stokes multipliers of convenient systems with a single level equal to r; (Section
3.2). Thus, according to [9,16], the first level’s Stokes multipliers of F (x) are expressed
in terms of connection constants in the Borel plane relative to these single-leveled sys-
tems.

Second, we prove that these connection constants are actually given by the singu-

larities of the Borel transforms IAF[U] (1), u =0,...,71 — 1, of the r;-reduced series of
F(z) (Sections 3.4 and 3.5). To this end, we prove a resurgence theorem for the -

~ [u

reduced series F' (¢) of F(x) (Theorem 3.7) and we display a precise description of

the singularities of the Borel transforms F° . (1) (Theorem 3.9).
In Section 4, as an illustration of the first level’s connection-to-Stokes formule, we
develop three examples.

2 Preliminaries

2.1 Some Definitions and Notations

We recall here below some definitions about levels and singular directions —also called
anti-Stokes directions— of System (1.1).
e Given a pair (g;, ¢¢) such that ¢; # g, we denote

1 Qo 1
(g5 — ae) (;) = T e +o (x’“ﬂ) , e # 0.

Definition 2.1 (Levels of System (1.1)). All the degrees r;, of polynomials ¢; — g, # 0
are called levels of System (1.1). Notice that, according to normalizations of System
(1.1), levels are integers. One sometimes refers to this case as the unramified case.

We denote by R := {r; < 1y < ... <r,}, p e N¥ the set of all levels of System
(1.1). Notice that r; > 1 and r, < r the rank of System (1.1). Actually, if r, < 7,
all the polynomials ¢;, j = 1,...,J, have the same degree r and the terms of highest
degree coincide. One then reduces this case to the case 7, = r by means of a change
of unknown vector of the form Y = Ze?1/*) with a convenient polynomial ¢(1/z) €
o 'C[x']. Recall that such a change does not affect levels or Stokes—Ramis matrices
of System (1.1).

When p = 1, System (1.1) is said to be with the unique level r1. Recall that, for such
a system, the connection-to-Stokes formula® were already displayed in [9] (case r; = 1)
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and [16] (case r; > 2). Henceforth, we suppose p > 2, i.e., System (1.1) has at least
two levels. N
e Let us now split the matrix F'(z) into J column-blocks

~

F(az)z[ﬁ';l(m) Fee) - ﬁ”"(m)]

fitting to the Jordan structure of L (the size of F**(z) is n x ny for all £).

Definition 2.2 (Anti—StokeNs directions, Stokes values). 1. The anti-Stokes directions
of System (1.1) (or F'(x)) are the directions of maximal decay of the exponentials
el =1)(1/7) with q; — q¢ # 0. The coefficients «;, generating these directions
are called Stokes values of System (1.1). The k™ level’s anti-Stokes directions
of System (1.1) (or F(x)) are the anti-Stokes directions of System (1.1) given by
the exponentials (4 =90)(1/%) with r;¢ = 7. In this case, o, is called k™ level’s
Stokes value of System (1.1).

2. Let £ € {1,...,.J}. The anti-Stokes directions associated with F*'(z) are the
anti-Stokes directions of F (x) given by the exponentials ela=a)(1/2) for all j such
that ¢; — qo # 0. The k™ level’s anti-Stokes directions associated with F*(z) are
the anti-Stokes directions of F (z) given by the exponentials e(%~9%)(/2) for all j
such that ¢; — ¢, # 0 and 7, = 4. In this case, o is called k™ level’s Stokes
value of System (1.1) associated with F**(z).

Notice that a given anti-Stokes direction of System (1.1) or of ﬁ';e(a:) may be with
several levels. Notice also that the denomination “anti-Stokes directions” is not univer-
sal. Indeed, such directions are called sometimes “Stokes directions”.

2.2 Stokes—Ramis Automorphisms

Given a non anti-Stokes direction € R/27Z of System (1.1) and a choice of an argu-
ment of 0, say its principal determination 6* €] — 27, 0]', we consider the sum of Y in
the direction # given by

~

Yo(z) = Srl,rz,---,rp;G(F)(x)YO,G* (z)

where sm,mw,,«p;g(ﬁ) is the uniquely determined (71,72, ...,7,)-sum of F at 6 and
where Y - () is the actual analytic function Yj g- () := x7e?(//*) defined by the choice

arg(z) close to 0* (denoted below arg(z) ~ 0*). Recall that s,., ,, .. »,.o(F) is an analytic
function defined on a sector bisected by ¢ with opening larger than 7/r, [12].

IAny choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice
0 < arg(z = 1/z) < 27 of the principal determination at infinity, we suggest to choose —27 < arg(z) <
0 as principal determination about 0 as well as about any w at finite distance.
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When 6 € R/277 is an anti-Stokes direction of System (1.1), we consider the two

~ ~

lateral sums s, ,, ..o~ (F) and s, ., ., g+ (F) respectively obtained as analytic con-

~ ~

tinuations of s, ., r..0—<(F) and s, ,, - .9+2(F) to a sector with vertex 0, bisected
by 6 and opening 7/r,. Notice that such analytic continuations exist without ambi-
guity when ¢ > 0 is small enough. We denote by Y- and Yj+ the two sums of YV

~

respectively defined for arg(z) =~ 6" by Yp-(2) := s, ;. p0- (F)(2)Y0,+(2) and

~

You (2) 1= 8py rgryio (F)(2)Yo,00 ().

The two lateral sums s,., ., .9~ (ﬁ’) and s, ., o+ (ﬁ) of I are not analytic con-
tinuations from each other in general. This fact is the Stokes phenomenon of System
(1.1). Tt is characterized by the collection, for all anti-Stokes directions 6 € R/27Z of
System (1.1), of the automorphisms

St@* : }/9+ — Yrgf

that one calls Stokes-Ramis automorphisms relative to Y.

The Stokes-Ramis matrices of System (1.1) are defined as matrix representations in
GL,(C) of the Stp:’s.

Definition 2.3 (Stokes—Ramis matrices). One calls the matrix of Sty in the basis Y+ 2
the Stokes—Ramis matrix associated with Y in the direction . We denote it by [,, + Cy-.

Notice that the matrix [,, + Cy- is uniquely determined by the relation

Yo- (z) = Yo+ () (L, + Cp+) for arg(z) ~ 6.

Split the matrix Cp« = [ij] into blocks fitting to the Jordan structure of L (CJ:’ is a

n; x ng-matrix). The block Cgie is zero as soon as e(4~%)(1/%) g not flat in the direction
0. When (4~ 2)(1/%) is flat in the direction § and r;,(= deg(q; — q¢)) = 73, the entries
of the block CJi* are called k™ level’s Stokes multipliers of EF**(x) in the direction 0.

Recall that the aim of this article is to display formule making explicit the first
level’s Stokes multipliers in terms of connection constants in the Borel plane. Our
approach is based on the factorization theorem of F () which we recall in Section 2.3
below.

2.3 Factorization Theorem and Stokes—Ramis Matrices

The factorization theorem (Theorem 2.4 below) states that F (x) can be written essen-
tially uniquely as a product of r,-summable formal series Fj(x) for the different levels

%In the literature, a Stokes matrix has a more general meaning where one allows to compare any two
asymptotic solutions whose domains of definition overlap. According to the custom initiated by J.-P.
Ramis [15] in the spirit of Stokes’ work, we exclude this case here. We consider only matrices providing
the transition between the sums on each side of a same anti-Stokes direction.
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ri of System (1.1). It was first proved by J.-P. Ramis in [14, 15] by using a techni-
cal way based on Gevrey estimates. A quite different proof based on Stokes cocycles
and mainly algebraic was given later by M. Loday—Richaud in [7]. Both proofs are
nonconstructive. However, as we shall see in Section 3, the factorization theorem pro-
vides sufficient information about the first level to allow to make explicit the first level’s
connection-to-Stokes formulee in full generality.

Theorem 2.4 (Factorization theorem, [7,14,15]). Let R = {r; <1y < ... <1,} denote
the set of levels of System (1.1) *. Then F(z) can be factored in

~ ~

F(z) = Fy(a) -+ Fy(2) Fi (),

where, for all k = 1,...,p, Fi(z) € M,(C[[z]]) is a ry-summable formal series with
singular directions the k' level’s anti-Stokes directions of System (1.1). This factoriza-
tion is essentially unique: Let

be another decomposition of F (x). Then, there exist p — 1 invertible matrices
Pi(z),..., P, 1(z) € GL,(C{z}[z™'])

with meromorphic entries at 0 such that C:'l = Plﬁl, Cwlk = PkﬁkP,;_llfor k=2,...,p—
1 and ép = ﬁpPp:ll. In particular, we can always choose Fy, so that F (x) = I, +
O(z™) forallk =1,...,p"

Denote G(x) := }N?p(x) .- Fy(z). Denote also by

~

Ai(z) == G A(x)G — xT’“CN}_lE

the matrix of the system obtained from System (1.1) by the formal gauge transformation
Y = G(z)Y;. Then [7], A;(z) is analytic at 0 and the matrix Y;(z) := F}(z)2leQ1/?)
is a formal fundamental solution of the system
ay
T = A (2)Y. 2.1

z 1(2) (2.1)
Notice that System (2.1) has, like System (1.1), the levels r; < r; < ... < r,. Notice
also that Y7 (x) has same normalizations as Y (z).

3Recall that we suppose p > 2 in this paper.

*Actually, such conditions, like the initial condition F(z) = I,, + O(z"*), allow us to have “good”
normalizations for the r;-reduced series and thus to simplify calculations below (see Sections 3.3 to 3.6).
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The structure of A; (z) will be made precise in Theorem 3.3 below. In particular, we
shall show that the matrix A;(z) (and, consequently, the matrix F;(z)) can always be
chosen with a convenient “block-diagonal form”.

Consider now 0 € R/277 a first level’s anti-Stokes direction of System (1.1). Recall
that # may also be a k™ level’s anti-Stokes direction for some &k € {2, ..., p}.

By construction, @ is also a first level’s anti-Stokes direction of System (2.1). Denote
then by I,, + C) o~ the Stokes—Ramis matrix associated with }N/l in the direction 6 and
split as before C g = [C{g] into blocks C{g of size n; x ny fitting to the Jordan
structure of L. Recall that C{fg* = 0 as soon as e(%~%1/2) js not flat in the direction 6.

Proposition 2.5 below determines the Stokes multipliers of E (x) in the direction 6.

Proposition 2.5 (See [7,13,15]). Let j, 0 € {1,...,.J} be such that /%~ U/%) js flat in
the direction 6. Let r;, denote the degree of (¢; — qu)(1/x) (see Section 2.1). Then,

0 :
it _ { Cy ifrj0 =11
1.6 O, g ifrje€{ra, ..., rp}

In other words, Proposition 2.5 states that

1. the nontrivial Stokes multipliers of the /" column-block F;*(z) are those of the
first level,

2. the first level’s Stokes multipliers of £7*(z) and F**(z) coincide.

3 Main Results

Any of the J column-blocks F*(z) (¢ = 1,...,.J) of F(x) associated with the Jordan
structure of L (matrix of exponents of formal monodromy) can be positioned at the
first place by means of a permutation P on the columns of XN/(:E) Observe that the
same permutation P acting on the rows of ?(x) allows to keep initial normalizations of
Y (). More precisely, the new formal fundamental solution PY ()P reads PY (z)P =
PF(z)Pzt ' PPeP ' QUDP with PF(2)P = I, + O(z™).

Thereby, we can restrict our study to the first column-block F (x) denoted below
F(x) (the size of f(z)is n x ny). Note that f(z) = I, + O(z"*), where I, ,, denotes
the first n; columns of the identity matrix 7,,.

Remark 3.1. 1t is worth to notice here that, by means of a convenient permutation on
the columns and the rows with indices > n; + 1 of Y (z), we can always order the
polynomials ¢;, 7 = 2,...,J, as we want, while maintaining the initial normalizations

of Y () and the first place of f(z).
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3.1 Setting the Problem

In addition to normalizations of ?(m), we suppose that
)\1 =0 and g1 = O, (31)

conditions that can be always fulfilled by means of the change of unknown vector Y =
et (2 7.

According to (3.1), the anti-Stokes directions of System (1.1) associated with f(x)
are the directions of maximal decay of the exponentials ¢%%/%) with q; # 0 (cf. Def.

2.2,2.). Denote then by
R={r<...<r), =1,

the set of degrees in 1/x of polynomials ¢; # 0. Obviously, R' R (the degrees r}’s
are levels of System (1.1)), rl’,, = r, the highest level of System (1.1) and r; < ry < Tp-
Notice that, when 7{ > ry, there exists no first level’s anti-Stokes direction (hence, no

first level’s Stokes multipliers) for f(z). Henceforward, we suppose p’ > 2 and | = ry.
The aim of Section 3 is to display formula making explicit the first level’s Stokes

multipliers of f(x) in terms of the connection constants of the Borel transforms JA”[U] (1)

~

of the r;-reduced series }’[u] (t) of f(z) (Theorem 3.12), generalizing thus formula
given in [9, 16] for single-leveled systems.

~

Recall that the r;-reduced series of f(z) € M, ,, (C|[[x]]) are the formal series

}[u] (t) € My, (C[[t]]), w = 0,...,r1 — 1, defined by the relation

~[0] 1]

fl@)y=F (=) + w}p] (™) +...+a" 7 f (). (3.2)

~ ~[0
Notice that the normalization f(x) = I,,,, + O(z") implies f [ ](t) = I, + O(t) and
P = o) foru=1,... .1 — 1.

Our approach is based on the relation between F'(z) and F} (x) (Factorization Theo-
rem 2.4 and Proposition 2.5) and on Block-Diagonalisation Theorem 3.3 below allowing

to “reduce” System (2.1) into a convenient single-leveled system.

3.2 A Block-Diagonalisation Theorem

According to Remark 2.1, we suppose from now on that the polynomials ¢; for j =
2, ..., J are ordered so that the matrix () read in the form

R=Q10Q®...®Qy (3.3)
where

e (), is formed by all the polynomials ¢; = 0 and all the polynomials g; of degree
r1, 1.€., by all the polynomials g; of degrees < 74,
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o fork =2,...,p', Qyis formed by all the polynomials g; of degree , and its lead-
Sk
ing term Q. := 2 Qk |z—o has a block-decomposition of the form 6—) Qrelmy,
=1
with Qk,[ € C* and Qk’g # Qh@ if ¢ # v,

We denote by Ny, k = 1,...,p/, the size of the square matrix ), and we split the matrix
L of exponents of formal monodromy like Q:

L=L®Ly®...® Ly with L, € My, (C).

Observe that each sub-matrix Lj has a Jordan structure induced by the one of L.
Block-Diagonalisation Theorem 3.3 below states that, up to analytic gauge transfor-
mation, System (2.1) can be split into p’ sub-systems fitting to the block-decomposition
(3.3), i.e., the matrix A;(z) can be reduced into a block-diagonal form like Q.
Recall that a (formal, meromorphic) gauge transformation Z = T'(z)W transforms
any system of the form

x”lcfj—z/ = A(x)W
into the system
xTJrld—Z = TA(x)Z, where TA(z)=TA(x)T "+ x”ld—TT’l.
dx dx

Let us start with a technical lemma based on the results of [10].
Lemma 3.2. Letd € {2,...,p'}. Denote

e Ney=Ny+...+ Ng1and Ney = N_g+ Ny,

o L y=0L1®.. ®Ly1and Leg= L_4® Ly,

¢ Qua=1D.. ®Qu1and Qeq = Qea ® Qu.
Consider a system

xrw‘il_vf — A(@)W, A(z) e My_,(Clz}) (3.4)

together with a formal fundamental solution at 0 of the form

—~

W(z) = f](x)ngdngd(l/ﬁ)

where H(z) € Mny_,(C[[z]]) verifies H(z) = In_, + O(z™). Suppose that H(z) is -
summable. Then, there exists an invertible matrix Ty(x) € GLy_,(C{z}) with analytic
entries at 0 such that

1. Ty(z) = In_, + O(2™),
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2. the gauge transformation Z = Ty(x)W transforms System (3.4) into a system

r£i+1d_Z _ A<d(l‘) 0
T T l 0 Ad(as)] A (3.5)

with A<d(x) € MN<d((C{$}) and Ad(x) € MNd((C{m})’

3. the formal fundamental solution Z(x) = Ty(z)W (z) of System (3.5) has a block-
diagonal decomposition

~

Z(x) = Hog(x)a"<ac@<i/) @ ()2 Q1)
where
(a) the formal series H_4(z) € My_,(C[[x]]) and Hy(x) € My, (C[[]]) verify
H_q(z) = Ha(z) = L. + O(2™),

(b) the matrix Z_g(x) = H_q(x)z"<e9<{V) is q formal fundamental solution

of the system

2T =S = (@) 2, (3.6)
(¢c) the matrix Zy(x) = Hy(z)a"e2*V® is a formal fundamental solution of
the system
A2
rdJrl_ _ Z )
x d Ad(x) d

Moreover, both formal series H_4(x) and Hy(x) are r1-summable.

Proof. Since H(0) = I N.,» the matrix A(x) of System (3.4) reads

/ dQ<d /
_ rytl < Ty
Alz) =z . 17 B(z)

with B(x) analytic at 0. Hence, according to the block-decomposition (3.3) of the matrix
@, the heading term A(0) = Oy_, ® (—7,Q4) of A(z) has the block-decomposition

A(O) = ON<d @ <@ _T&Qd,fjmcaz)

(=1

with Qe # 0 and Q. # Qre if £ # (. Thus, by applying [10, Thm. 1.5], there
exists an invertible matrix Ty (z) € GLn_,(C[[z]]1/m, [z !]) with meromorphic 1/r/-
Gevrey entries at 0 ° such that the matrix 7¢! 4(z) has a block-decomposition like A(0).

>Recall that a series Z amx™ € C[[«]] is said to be 1/k-Gevrey and denoted Z amz™ € C[[z]]1/x

when the series Z ( dm

m
——& 1S convergent.
)k g
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Observe that the entries of 741 A(x) are in general meromorphic 1/7/-Gevrey and not
convergent. Denote then by A (), £ = 0, ..., 54, the blocks of 741 A(z). By construc-
tion, the sub-systems

i, dW
ratl L — AOW., (=0, ...
x dx ('Z') ) P y Sd
have levels < 7/,. Therefore, [10, Thm. 1.4] applies: forall £ = 0, . .., s4, there exists an

invertible matrix Tég (x) with meromorphic 1/r/-Gevrey entries at 0 such that the matrix

Tia A© (x) has meromorphic entries at 0. Finally, by normalizing if neccessary the
formal fundamental solutions of these last systems by means of convenient polynomial
gauge transformations in x and 1/z, we deduce from calculations above that there exists
a matrix Ty(z) € GLn_,(C[[z]]/», [x']) satisfying Points 2. and 3. of Lemma 3.2.
Notice that Point 1. results from equalities

Ty(x)H (z) = Hog(x) ® Hy(z) = Iy_, + O(z™) (3.7)

and from the assumption H (z) = I N<q +O(2"™). Notice also that, by construction, the
formal series H_4(z) and Hy(z) are both summable of levels < /. In particular, the

first equality of (3.7) and the hypothesis “H () is r1-summable” show that T};(z) is both
1/r!-Gevrey and summable of levels < 7, (indeed, r; < ), foralld = 2,...,p"). Thus,

due to [12, Prop. 7, p. 349], Ty(z) is analytic at 0. Therefore, Ty(z)H (x) keeps being
r1-summable and, consequently, H_,(z) and Hy(x) are also both r-summable. This
ends the proof of Lemma 3.2. U

Note that the hypothesis “H (x) is r1-summable” plays a fundamental role in the
proof of Lemma 3.2. Note also that Lemma 3.2 can be again applied to sub-system
(3.6) when d > 3...and so on as long as d # 2.

In the case of System (2.1), an iterative application of Lemma 3.2 starting with
d = p’ allows us to state the following result:

Theorem 3.3 (Block-diagonalisation theorem). There exists an invertible matrix T'(x) €
GL,,(C{z}) with analytic entries at 0 such that

1. T(z) =1, + O(z™),
2. the gauge transformation Z; = T (x)Y; transforms System (2.1) into a system

dZ
xT“% = TA(2)Z, (3.8)

where the matrix T A (x) € M, (C{x}) has a block-diagonal decomposition like

Q:
TA(z) = (p—_D Ay i (z) with Ay i (x) € My, (C{z}),
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3. the formal fundamental solution Z,(z) = T(z)Y,(x) of System (3.8) has a block-
diagonal decomposition

~ p, ~
A (x) _ (_B Fljk(x)kaer(l/r)
k=1

where, forallk =1,....7,

(a) Fyp(z) e My, (C[[2]]) verifies Fyx(z) = Iy, + O(z™),

(b) the matrix Zy ;(x) = Fy g (x)2" 9V is a formal fundamental solution of
the system
1 d7
’I”k +1 lﬂk
‘ dx

(recall that r‘;ﬁ is the degree of Qy, vy = 1 and 7’; S =T, =T).

= Al,k(x)Zl,k (3.9)

In particular, the matrix T(x) Fy (x) has the block-decomposition

T(z)Fy(z) = (p@ Ey(z)

and all the formal series F\ x(x) are ry-summable.

Notice that, by construction, System (3.9) has (multi)-levels < rj, when k = 2,...p’
and has the unique level r; when k£ = 1 (indeed, r; is the smallest level of System (1.1),
hence, of Systems (3.9) for all k).

Let us now make two remarks about the interest of Block-Diagonalisation Theorem
3.3:

1. Since T'(x) is analytic at 0, the “unicity” of Factorization Theorem 2.4 implies

/

~ p ~
that we can respectively choose for F} (z) and A;(x) the two matrices ) F} ()

k=1
and T A, ().

2. With these choices, Proposition 2.5 implies that the first level’s Stokes multipliers

~

of f(x) are actually the Stokes multipliers of the system with the unique level r;

dz
gfl“ﬁ = Ay (2) 21, (3.10)

associated with the first n; columns f'(z) of F| 11(x).

Denote as before by JN”/[U] (t),u =0,...,7 — 1, the r;-reduced series of f'(z) and by

},[u] (7) their Borel transforms. According to Point 2. above and normalizations of the
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formal fundamental solution Zy () = Fy1(x)z"1e?:(/%) of System (3.10) (cf. Thm.
3.3,3.), [9, Thm. 4.3] and [16, Thm. 4.4] tell us that the first level’s Stokes multipliers

~ ) . ~1u]
of f(x) are expressed in terms of the connection constants of the f " (7)’s.
Hence, to state the first level’s connection-to-Stokes formule, we are left to prove

. /[v] .
that the connection constants of the f (7)’s are also connection constants of the

}'[u] (1)’s. To this end, we shall compare the structure of the singularities of the Borel

transforms }[u] (1) and }I[u] (r)forallu =0,...,r — 1.

Lemma 3.4 below allows us to connect }[u] and }'I[U].

3.3 A Fundamental Identity

According to Factorization Theorem 2.4, the first n; columns f(z) of F(z) are related
to the first n; columns f’(z) of F1(x) by the relation

oy =B Bwie. @ =, 7O ]

O(Ngt..c 4N, )
where
e Fi(z)is rp-summable and Fy,(z) = I,, + O(z"*) forallk = 2, ... p,
° 0<N2+”.+Np,)xm denotes the null-matrix of size (N2 + ... + N,) X ny.

Denote by

o F(t):= : € My nn, (C[[t]]) the matrix of size rin x n; formed by
~[r1—1]

Ol

the r1-reduced series of f(z),

~[u /U]
'f][_](t):[ F ]forallu=0,...,r1—1and

[u]

Denote also by ﬁ‘ku (t),u=0,...,m — 1, the r;-reduced series of E, ().
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Then, the r;-reduced series ]Ne[u] (t) of f(z) are related to the ri-reduced series
‘?l[u] (t) of f'(x) by the relation

F(t) = Fy(t)-- Fao(t)F1 (1) (3.11)
where
B [0] ~ [r1—1] ~[1] =
F’f](t) Fk[l] (1) tF, (1)
1 ~ |0
X o o
Fi(t) == : : for all k.
[ zl] fr% (1) tﬁ,[%]” (1)
e - X
| F. (1) e Pt Fio(t)

Notice that F,(t) = I,,, + O(t) and F(t) is "k _summable with "= > 1 for all k =
1 1

2,...,p. In particular, the Borel transform F,(7) of F},(t) reads for all k in the form
Fk = 0l + Gk with Gk an entire function on all C with exponential growth of
order < ry/(r,, — r1) at infinity [1, p. 81]. Denoting ry; := ri/(ry, — r1), we have
r1p < ... <1712 Hence, since the Borel transformed identity of (3.11) reads

>

zﬁp*...*Fg*fl,

the following lemma:

~1u]

Lemma 3.4. The Borel transforms ]A”[u] (1) of JN”[U]( t) and the Borel transforms f (1)
of},[u] (t) are related, for all u = 0, ..., ry — 1, by the relations

~Mu] ~t[u]
}[u] _ f L E, f
2T ...
O(N+ +Npyr)xn1 0(N2+ +Ny)xn1

where E,, is an entire function on all C with exponential growth of order < 11 at
infinity. Recall that r1 5 = 1r9/(r9 — 11).

We are now able to compare the structure of the singularities of the Borel transforms

jA“[u] and }I[u] forallu =0,...,m — 1.

Let us first start by a resurgence theorem to locate their possible singular points.

We denote below
o (L) = (JJB (1),
1 T - et qj T n;

where ¢;(1/z) is a polynomial in 1/z of the form

1 Ujri =1 ajp 1 (1
x " xrT X x x
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Recall that n; denotes the size of the 4™ Jordan block of the matrix L of exponents of
formal monodromy of System (1.1) (cf. page 248). In particular, the sub-matrix L; of
L corresponding to ()7 has the Jordan structure

Ji

Ly = @\, + Jn,)-

j=1

Recall also that, by definition of (); (cf. Section 3.2), the polynomials ¢; for j =
1,...,J; are zero or of degree r;. In particular,

g =0<aj,, =0.
We denote also by

e S51(Q):=1{q;; j=1,...,J;} the set of polynomials ¢; of degree < r; of ), i.e.,
the set of all the polynomials of ()1,

o Oy :={aj,, ;j=1,...,J1} the set of first level’s Stokes values of System (1.1)
associated with f(x) (cf. Def. 2.2, 2.)

Notice that, following Section 3.1, a;,, = 0 (since ¢; = 0) and there exists j €
{1,...,J1} such that a;,, # 0. Notice also that € is also the set of Stokes values
of System (3.10) associated with f’(z).

3.4 Resurgence Theorem

Recall that a resurgent function is an analytic function at 0 € C which can be analyti-
cally continued to an adequate Riemann surface ‘R associated with a so-called singular
support 2 < C. For a more precise definition, we refer to [17] and [9, Def. 2.1 and
2.2]. Recall that the difference between R, and the universal cover of C\2 lies in the
fact that R, has no branch point at 0 in the first sheet.

In the linear case, the singular support € is a finite set containing 0. In a more
general framework, convolutions of singularities may occur what requires to consider
for (2 a lattice, possibly dense in C (cf. [5, 11, 17] for instance).

To state Resurgence Theorem 3.7 below, we need to extend the classical definition
of sectorial regions of C used in summation theory into the one of sectorial regions of
Rq. These regions are called v-sectorial regions (cf. [9, Def. 2.3]) and are defined for
all v > 0 small enough by the data of

e an open disc D, centered at 0 € C,
e an open sector X, with bounded opening at infinity,

e a tubular neighborhood N, of a piecewise-C' path v connecting D, to ¥, after a
finite number of turns around points of €2,
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such that the distance of D, to Q* = Q\{0} and the distance of NV, U 3, to 2 have to
be greater than v.

Figure 3.1 - A v-sectorial region

Definition 3.5 (Resurgent function with exponential growth of order < p). Given p > 0,
a resurgent function defined on R, is said to be with exponential growth of order < p
and with singular support () when it grows at most exponentially at infinity with an

. . —— gp
order < p on any v-sectorial region A, of Rq. We denote by Res,, the set of resurgent
functions with exponential growth of order < p and with singular support €.

=<1 . . . .
When p = 1, any function of Res(, 1is said to be summable-resurgent with sin-

—~— sum — <1
gular support Q2. Following notations of [9], we denote Res, for Resy, the set of
summable-resurgent functions with singular support 2.

Definition 3.6 (Resurgent series with exponential growth of order < p). Given p > 0, a
formal series is said to be a resurgent series with exponential growth of order < p and

. . . —— gp
with singular support () when its formal Borel transform belongs to Res, . The set of
resurgent series with exponential growth of order < p and with singular support €2 is

—~— <p ~~— sum ~—xl1
denoted Res, . As above, we denote Res, for Resq, the set of summable-resurgent
series with singular support €.

We are now able to state the result in view in this section.
Theorem 3.7 (Resurgence Theorem). With notations as above:

1. Forallu=0,...,r —1,
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2. Forallu=0,...;r —1,

[u] ~— <T1,2 ()
(t) € Resq, ~, wherery =

f

7”2—7“1.

Proof. Point 1. is proved by applying [9, Thm. 2.7] (case r; = 1) and [16, Thm. 1.2]
(case r; = 2) to the single-leveled system (3.10). Point 2. is straightforward from Point
1. and Lemma 3.4. [

In particular, Theorem 3.7 tells us that, forallu = 0, ..., r; —1, the Borel transforms
}'/[u] (1) and }'[u] (7) are all analytic on the same Riemann surface Rgq,, their possible
singular points being the first level’s Stokes values of €2y, including O out of the first

sheet. Section 3.5 below is devoted to the analysis of these singularities.

3.5 Singularities in the Borel Plane

For the convenience of the reader, we first recall some vocabulary used in resurgence
theory (see [5, 11, 17] for instance).

Denote by O the space of holomorphic germs at 0 on C and O the space of holo-
morphic germs at 0 on the Riemann surface C of the logarithm. One calls any element
of the quotient space C := (5/ O © a singularity at 0.

A singularity is usually denoted with a nabla. A representative of the singularity gz

in O is called a major of Z and is often denoted by .

Given w # 0 in C, the space of the singularities at w is the space C translated from
0 to w. Then, a function @, is a major of a singularity at w if @, (w + 7) is a major of a
singularity at 0.

3.5.1 Front of a Singularity

For any w € €2y, we call first level’s front of w (or simply front of w when we refer to
the single-leveled system (3.10)) the set

Fri(w) :={g; € S1(Q) ; aj,, = w}

of polynomials ¢;(1/x)’s of degree 1, the leading term of which is —w/z".
Since r; is the smallest level of Systems (1.1) and (3.10), F'r1(w) is a singleton:

o= (-2 0. (2)

®The elements of C are also called micro-functions by B. Malgrange [11] by analogy with hyper- and
micro-functions defined by Sato, Kawai and Kashiwara in higher dimensions.
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where ¢, = 0 or ¢ ,(1/x) is a polynomial in 1/z of degree < r — 1 and with no
constant term.
When ¢, = 0, w is said to be with monomial front; the corresponding singularities

of }'[u] (1) and }'/[u] (1), u=0,...,71 — 1, at w are then called singularities with mono-
mial front. As in the case of single-leveled systems, the study of these singularities is
sufficient to state the first level’s connection-to-Stokes formula in full generality (see
Section 3.6.2 below).

3.5.2 Structure of Singularities with Monomial Front

Forallu = 0,...,r; — 1, the behavior of the functions }'[u] (7) and }’l[u] (7) at any point
w € ); depends on the sheet of the Riemann surface R, where we are, i.e., it depends
on the “homotopic class” of the path ~ of analytic continuation followed from 0 (first

v v
sheet) to a neighborhood of w. We denote by fL“L (resp. f :E“;) the singularity defined

by the analytic continuation of }[u] (1) (resp. ]A"l[u] (7)) along the path ~.

Besides, given a matrix M split into blocks fitting to the Jordan structure of L (ma-
trix of exponents of formal monodromy of System (1.1), cf. p. 248) or L; (matrix of
exponents of formal monodromy of System (3.10), cf. p. 261), we denote by M7 the
4" row-block of M. So, M7 is an;xp-matrix forallj =1,..., J(resp. j =1,...,J;)
when M is a n x p-matrix (resp. N; x p-matrix). Recall that n; is the size of the 4
Jordan block of L and L;.

v
Since System (3.10) has the unique level 1, the structure of the singularities f ;[“7] at
any point w € Q;\{0} with monomial front was displayed in [9, Thm. 3.7] (case r; = 1)
and [16, Thm. 3.5] (case r; = 2). More precisely, we have the following.

Proposition 3.8 (Singularities with monomial front of }’,[u]). Fixu e {0,...,m — 1}

and w € Q1\{0} a singular point of }’/[u] (1) with monomial front. For any path -y on

\Y 1
C\Q from 0 to a neighborhood of w, the singularity fM admits a major fﬁj of the
form

~1u]j;e X—w o Iy Muljse_— Iny f[uljse
fo, (WHT)=77 "7 KW 0+ remf (1)
forall 3 =1,..., Jy with a remainder
ri—1

where

1[u]j; . Tl
e K L‘E“W]j ** denotes a constant n; x ni-matrix such that K quh * = 0 as soon as

Ujry # W,
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e . . . . . "~ sum
o R (X) denotes a polynomial matrix with coefficients in Resq, _,, whose the

Ag, 05w,y
columns are of log-degree
[(ne—1) (ne—=1)+1 -+ (ng=1)+ (1 —1)] ifX\#0
N[(] =
[ng ne+1 --- ng—l—(nl—l)] i]c)\g=0.

The constants K :E“W]J ** and the remainders remgf‘w]j ** depend on the path of analytic
continuation «y and on the chosen determination of the argument around w. Recall (cf.
[9, Def. 3.10] and [16, Def. 4.3]) that the connection constants of }'I[u] (1) at w are
the entries of the nontrivial matrices K :E“H' =K :E“V]i” obtained with the following
choices:

e 77 is a path going along the straight line [0, w] from 0 to a point 7 close to w and
avoiding all singular points of 2;"]0, w] to the right (see Figure 3.2 below),

e we choose the principal determination of the variable 7 around w, say arg(r) €
| —27,0] as in Section 2.2 (cf. Note 1).

0= ¢
Figure 3.2

By using Lemma 3.4 and [9, Lem. 3.2], we deduce from Proposition 3.8 above the
following theorem:

Theorem 3.9 (Singularities with monomial front of JA”[U]). Fixue{0,...,r1 — 1} and

w € Q\{0} a singular point of}'[u] (1) with monomial front. For any path v on C\{)

\% ~[u
from O to a neighborhood of w, the singularity fL“]v admits a major f LL of the form

V[u]j§° Aj_u, Jnj u] N B JInq N
_ - Jse u]jse
Fonr (wWH+T)=7"1 Tn KGYcr o +remg (1)
forall j =1,..., J with a remainder
ri—1 Y

where
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o K L“L“ denotes a constant n; x n,-matrix such that

Oann1 if‘j¢{]"7‘]1} Ora'jvrl #w
K[ULj;- _
K ZU[UV]J * otherwise,
<7
o R/\M <.~ (X) denotes a polynomial matrix with coefficients in Resq, ll_i whose the
columns are of log-degree N|{| (cf. notation just above).
Observe that the nontrivial constant matrices K" ’[ ]]’ and K" [ ] J:* obtained in Propo-
sition 3.8 and Theorem 3.9 coincide. In particular, the connection constants of ]A”,[u] (1)
v v
at w can be directly calculate by considering the singularity f L[Uu] c=Ff L“L+
Definition 3.10 (Connection constants of }[u] (1) at w). Givenu € {0,...,r — 1}, we

. nd . .. .
call connection constants of f ~(7) at w the entries of the nontrivial constant matrices
KL]+ :—K[] Vforj=1,...,J;and aj,, =w.

[u ]

Notice that, in practice, the matrix K _”;* for j = 1,...,J; and a;, n = w can be

determined as the coefficient of the monomlal Ay=w)/m=1 ip the major f (w + 7).
We are now able to state the first level’s connection-to-Stokes formulz.

3.6 First Level’s Connection-to-Stokes Formula

Recall (cf. Def. 2.2, 2.) that the first level’s anti-Stokes directions of System (1.1)
associated with f ( ) are the directions of maximal decay of the exponentials e 1/2)
with ¢; € S§1(Q) and ¢; # 0 (we refer to page 261 for the notations). Therefore, each
nonzero first level’s Stokes value a;,, € 2} := 2;\{0} generates a collection of r; first
level’s anti-Stokes directions 6y, 0y, ...,0, 1 € R/277Z respectively given by the 7
roots of a;,,. Of course, when r; = 1, such a collection just reduces to the direction
6y € R/2nZ given by a;,,. Note besides that, when r; > 2, the directions 6’s are
regularly distributed around the origin « = 0.

Such a collection (6)) being chosen, we assume, to fix ideas, that their principal
determinations ¢, €| — 2, 0] verify

—2r <O _ <..<0]<0;<0

Notice that a first level’s Stokes value w € Qf generates the collection (6x)k—o.. 1
if and only if w € 4 ,,¢, the set of nonzero first level’s Stokes values of System (1.1)
associated with f(z) and with argument 76,

Forall k = 0,...,r — 1, we denote by I,, + Cp: the Stokes—Ramis matrix of Y in
the direction 6. Let cy; be the first ny columns of Cy:. As previously, we split cpx into
row-blocks cg)k' fitting to the Jordan structure of L.
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The first level’s Stokes multipliers of f(x) in the direction 6, are the entries of cgg for
j=1,...,Jiand a;,, €€, . We shall make explicit here below formula to express

N . ~lul,
these entries in terms of the connection constants of the f ’s,u = 0,...,r, — 1. To
this end, we need the following more precise definition:

Definition 3.11. When j = 1,...,J; and a;,, = w € )y ,,¢,, the entries of the matrix

~

C;ikf are called first level’s Stokes multipliers of f(x) associated with w in the direction
Oy,

3.6.1 Case of Singularities with Monomial Front

We denote by

o p = 6722'71'/7“1,
o A= Ajln, + Jy; the jth Jordan block of the matrix L of exponents of formal
monodromy of System (1.1).

Let w € €4 ,,4, be a nonzero first level’s Stokes value of System (1.1) associated with

f (x) generating the collection (Qk)k=07,__7r1_1. We assume besides, in this section, that
the front of w is monomial.
As we said at the end of Section 3.2, [9, Thm. 4.3] and [16, Thm. 4.4] tell us

that the first level’s Stokes multipliers of f(x) associated with w in the directions 6y,
k=0,...,r — 1, are expressed in terms of the connection constants at w of the Borel

A~/

transforms f Ll (1)’s, u = 0,...,7 — 1. On the other hand, we showed in Section 3.5
above that these connection constants are also the connection constants at w of the Borel
transforms }'[u] (7)’s. Consequently, the connection-to-Stokes formulz relative to f'(x)
disRIayed in [9, 16] coincide with the first level’s connection-to-Stokes formula relative
to f(x). Hence, the following theorem holds.

Theorem 3.12 (First level’s connection-to-Stokes formule). Let j = 1,...,.J; be such
that a;,, = w. Then, the data of (c;%')k:07_,,,rl,1 and of (K%ﬁ.)uzo,...,mfl are equiva-
lent and are related, for all k = 0, ... ,r; — 1, by the relations
Cj;' _ lel k(UI"j _AJ)I[U]j;' kJny (3 12)
or = ~ P1 w P1 :
where
u]j;e Nty Ing [u]gse I
IL[U*]J’ ::J T LT Kw*fer e Tdr (3.13)
Yo

and where ~, is a Hankel type path around the nonnegative real axis R™ with argument
from =27 to 0.
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An expanded form providing each entry of First Level’s Connection-to-Stokes For-
mula(3.12) is given in [16, Cor. 4.6]. This can be useful for effective numerical cal-
culations. We recall this expanded form below in the particular case where the matrix

L of exponents of formal monodromy is diagonal: L = 6—) Aj (we keep denoting by

j=1
j =1,...,J; the indices of polynomials ¢; € S;(Q)). In this case, the matrices cgz' and
K BL*]]+. are reduced to just one entry which we respectively denote ng and K LU]JJF
Since the Jordan blocks J,; are zero for all j, Identity (3.13) becomes
I —T ¥
j T Jrl 71Kt[uqi]f;re_7d7' = 2i7r—e i Kgi]ﬂ
% r(1- 2
Therefore, for all 7 = 1,...,J; such that a;,, = w, the first level’s Stokes multipliers

c;; are related to the connection constants K L“Jﬁ by the formule

r—1 —im 2l
] o . k(u—/\j)
=207 3

= F (1 . )\Jrzu)

3.6.2 General Case

K‘[d“*]ﬂr forallk =0,...,r — 1. (3.14)

Let us now consider a nonzero first level’s Stokes value w € €y ,9, of System (1.1)
r—1- Recall that the first level’s

~

associated with f(z) generating the collection (6y,)x—o
front of w reads

-----

Fry(w) = {qw G) = s (i)}

where ¢y, = 0 or ¢1,,(1/x) is a polynomial in 1/z of degree < r — 1 and with no
constant term (cf. Section 3.5.1).
When w is with monomial front (i.e., ¢; ., = 0), Theorem 3.12 above allows us to

~

express the first level’s Stokes multipliers of f(z) associated with w in terms of con-
nection constants in the Borel plane. In particular, in the special case where r; = 1,
Theorem 3.12 allows us to calculate all the first level’s Stokes multipliers since all the
singularities of f are with monomial front.

In the case when r; > 2 and w is not with monomial front (i.e., ¢, # 0), a result
of the same type exists, but requires to reduce w into a first level’s Stokes value with
monomial front by means of a convenient change of the variable x in System (1.1) (see
Lemma 3.13 below). Recall that such a method was already used in [16] to state the
connection-to-Stokes formul in the case of systems with a single level > 2.

Lemma 3.13 (M. Loday—Richaud, [6]).
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1. There exists, in the x-plane (also called Laplace plane), a change of the variable
x of the form

v — Y
l+ay+...+ a1yt

, 1, ..., 0. 1 €C (3.15)

such that the polar part p; ,,(1/y) of ¢1..,(1/x(y)) reads

G-

Pwl|=)=—1

Yy Yy

2. The Stokes—Ramis matrices of System (1.1) are preserved by the change of vari-
able (3.15).

Observe that, although Lemma 3.13 be proved in [6] in the case of systems of di-
mension 2 (hence, with a single level), it can be extended to any system of dimension
n = 3. Indeed, the change of variable (3.15) being tangent to identity, it “preserves”
levels, Stokes values and summation operators.

Lemma 3.13 allows us to construct a new system, denoted below (S), verifying the
following properties:

e (S) has levels r; < ry < ... < r, and satisfies normalizations as System (1.1)
(cf. page 247),

e (.5) has the same first level’s Stokes values as System (1.1),
e wis a first level’s Stokes value of (S) with monomial front,
e (.5) has the same Stokes—Ramis matrices as System (1.1).

Hence, applying Theorem 3.12 to System (S), we can again express the first level’s

~

Stokes multipliers of f(z) associated with w in terms of connection constants in the
Borel plane. Note however that these constants are calculated from System (S) and not
from System (1.1).

3.6.3 Effective Calculation of the First Level’s Stokes Multipliers

According to Theorem 3.12, the effective calculation of the first level’s Stokes multipli-

~

ers of f(x) is reduced, after possibly applying Lemma 3.13, to the effective calculation

~

of the connection constants of the Borel transforms f . (1)’s of the ri-reduced series
~l ~
f(@)s of f(x).
For the convenience of the reader, we briefly recall here below how to characterize
el

the series f " (¢)’s and their Borel transforms }[u] (T)’s.
e Caser; = 1:

~ ~[0 ~

The series f . (t)’s are reduced to just one series f [ ](t) = f(x); we keep denoting
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the variable x for ¢. According to normalizations of the formal fundamental solution
Y (x) of System (1.1) (cf. p. 247), the formal series F'(x) is uniquely determined by the
homological system

dF r+1 dQ

r+1-7" _ _ - i r
z A(x)F — FAy(z), Ao(z):==x o T L

of System (1.1) jointly with the initial condition F (0) = I,, [2]. Hence, by considering

~

its first n; columns, we deduce that f(x) is uniquely determined by the system

af _
dr

oV T A()f — xf (3.16)

.1’2

~

jointly with the initial condition f(0) = I, ,, (first n; columns of the identity matrix of
size n). Recall that ¢; = 0 and \; = 0 (cf. Assumption (3.1)).

e Caser; = 2:
In this case, a system characterizing the formal series 7"[“] (t)s,u =0,...,r —1,is
provided by the classical method of rank reduction [8] by considering the homological
system of the r-reduced system associated with System (1.1). More precisely, writing
System (1.1) in the form

x““% = A(@)Y,  A(w) = 2" Ax) € My (Cla}z™])

one can prove, similarly as in the case r; = 1, that the formal series

1]

is uniquely determined by the system

ot = Aw)f -8, G.17)

ri—1

A(t) = : ; P utl,

u
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where A(t),u = 0,...,7, — 1, denote the r,-reduced series of A(z).
¢ Then, by applying the formal Borel transformation to Systems (3.16) and (3.17),

we obtain convolution equations satisfied by the Borel transforms )A"[u] (T)’s,u=0,...,
r1 — 1. In the special case where r; = 1, we simply denote f(¢) for jA“[O] (7).

Recall that the formal Borel transformation is an isomorphism from the C-differential

algebra ((C[[t]], +, -,t2%) to the C-differential algebra (0C @ C[[7]], +, *, 7-) that

: . . . d
changes ordinary product - into convolution product * and changes derivation t2%

into multiplication by 7. It also changes multiplication by n into derivation — al-

-
lowing thus to extend the isomorphism from the meromorphic series C[[t]][t '] to

C[o™. k e Nl @ C[[]].

4 Examples

To end this article, we develop three examples. Although the given systems may seem
a little bit involved, they are simple enough to allow the exact calculation of the con-
nection constants and so of the first level’s Stokes multipliers. This “simplicity” is due
to the fact that the matrices of these systems are triangular. Of course, for more general
systems, such exact calculations no longer hold in general.

4.1 An Example with a Three-Leveled System

We consider the system

0 0 0 07
4 2 l-3 0 0
2z Tt 4+ —
RLLGS 3 33 2 Y 4.1)
dx -3z 2z 2z 0 0 :
z? 0 0 2x+2% 0
|2t 4+ 2P 0 0 0 1]

1
e [ = diag (0, 5,0,0,0),
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1 0000
fol) 10 0 0
o F(z)=|fs(x) » 1 0 0] verifies F(z) = I5 + O(x). More precisely,
fiz) 00 10
| fs(x) 0 0 0 1]
Fola) = 0G2), Fow) = 2+ 0(?), Jule) = —2 +0(2), Fla) = 0.

We denote as before by f(z) the first column of F/(z).

System (4.1) has levels (1,2, 3) and the set €2; of first level’s Stokes values associated

~

with f(z) is Q1 = {0,1,2}. In particular, System (4.1) admits the direction § = 0
(direction of maximal decay of the exponentials e~ * and e7%/7) as unique first level’s

~

anti-Stokes directions associated with f(z). Note that this direction is also a second and

~

a third level’s anti-Stokes direction associated with f(x).
Obviously, the Stokes—Ramis matrix I5 + Cj is of the form

00000
cc 0000
Co=|cg » 0 0 0
cg 000 0
cg 0000

The Stokes multipliers cg and cg are respectively the first level’s Stokes multipliers of

~

f(z) associated with the first level’s Stokes values £ = 1 and £ = 2. The Stokes multi-
pliers c; and ¢} are respectively a second level’s and a third level’s Stokes multiplier.

Our aim is the calculation of ¢ and cj. Observe that, due to Theorem 3.12, c (resp.

cp) is expressed in terms of the connection constants of f (&) at & =1 (resp. £ = 2).
Indeed, the two first level’s Stokes values 1 and 2 are both with monomial front.

~

According to (3.16), f(x) is uniquely determined by the system

0 0 0 0 0

22 1420 0 0

3

2 df —3x 20 2 0
xd—— 2 f

x 1 0 0 =+1 0

* 1

22+ 22 0 0 —

| W
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~

jointly with the initial condition f(0) = I5; (first column of the identity matrix of size
5). Therefore, the f;’s are the unique formal series solutions of the equations

(L dF;
2@J2 TN ¥ _ 9.2
:de <1+3>f2 2
dfy, 2~
$2£——f4+f4=1
de =z
.< ~
d . -
2£—2f3=—3a:+23:f2
dx
dfs 1 ~
szg—ﬁj},:f—i—x:&

satisfying the condition J?](J;) = O(x). As aresult, their Borel transforms fj’s verify
the equations

dfs s 2 L
—2d—£ HE+Dfa=0 . L0)=—3
Bfs - 2 N df:
R O U
Hence, for all || < 1,
[ f2() =-301-97"+3
~ — _ A\1/3
6) = 21 + 65;_13(1 €)
T :
file) = —5 exp (% n g)
N 3 3
\ f5(8) = 1"‘% — of1 (', ;; %) — gOFl (', §§ %)

where (F} (-, b; £) denotes the confluent hypergeometric function with parameters (-, b).
In particular, f, and f5 are entire on all C and, for j = 2, 3, the analytic continuations
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ffw ’s of the fj’s to the right of points w € {1, 2} verify

]?21(1 + &)

2+ €) e Cle)

3+30V3, 4

fh(+€) e Cley + €8Ce}

_ 9466+ (94 91V3)(1+ &)Y

+3

f(2+6)

§

Pascal Remy

Consequently, the connection matrices K ;. and K, ; of f(& ) at the points £ = 1

and ¢ = 2 are given by

0
, _ 3+3iV3
K17+: 1+ = 9
0
0

0
0

Ko = ks, =9iV3
0

Since the matrix L of exponents of formal monodromy is diagonal, it results from (3.14)
that the Stokes multipliers ¢ and ¢ are related to the connection constants k:f . and k;’ n

above by the relations

—im/3

['(2/3)

2 _o; 2
Co = 2m— ki |

3 _ o 1.3
Co = 2imhky |

(recall that p; = e 2

™ and k = 0 since r; = 1). Hence,

o  bum
Co = =

T(2/3)

= —187V3

4.2 An Example with Rank Reduction

We consider now the system

dY
4_
v dzx

= [2* —22°

—X

0 0
2t 0 Y
0 3+2°

and its formal fundamental solution Y (z) = F'(2)e?/*) where

(4.2)
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1 1 1 1
oY) (041 1),
T T T X

1 00
o F(z)=|fa() 1 0] verifies F(z) = Is + O(z*). More precisely,
N 3 5 N 3 5
falz) = S 7 +0(z% and f3(x) = S O(z%). (4.3)

2 4 3 9

System (4.2) has levels (2, 3) and 2; = {0, 1}. In particular, the first level’s anti-Stokes
directions of System (4.2) associated with the first column f(z) of F'(z) are given by
the unique collection (6y = 0,0, = —7) generated by 7 = 1. Note that f, = 0 is also a

second level’s anti-Stokes direction associated with f(z). Obviously, the Stokes—Ramis
matrices I3 + Cy and I3 + C'_ are of the form

0 00 0 00
Co=]cg 0 0| and C_,= [, 0 0
= 00 0 00

Indeed, f(x) is the unique column of F'(x) which is divergent.

As in the previous example, the first level’s Stokes value 7 = 1 is with monomial
front. Hence, Theorem 3.12 implies that the two first level’s Stokes multipliers cg and

i , ~[0 ~[
c¢? _ are expressed in terms of the connection constants of f [ ](7') and f [ ](7‘) atT = 1.

According to Relation (3.2), the 2-reduced series of f(x) are of the form

1 0
0= |F0| ad 70 =|F0
F5(0) Folt)

where the }j (t)’s are power series in t satisfying jN"j (t) = O(t). More precisely, it
results from (4.3) that

Fo(t) = 2 + Ot fs(t) = —§—I+O(t3)
7o) = 0 R =L L ow).
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Following (3.17), the matrix f(t) := [{[1] ] € Mg 1(C][t]]) is uniquely determined

by the system

0 0 0 0 0 0 7
—2t> 2 0 2 0 0
df —t 0 0 0 0 3+t
2t25= 0o 0 0 —t 0 o |r
t 0 0 =22 2—t 0
0 0 §+1 —t 0 —t

jointly with the initial condition ;‘(0) = Ig 1. Then, the f ;s are the unique formal series
solutions of the equations

d d ~
2122 f2 —2f, = —21? 2t f5—(2—t)f5=t

df ~ 3 ~
2t2$=—t+(3+t)f6 2t f6+tf6—(¥+1)f3

satisfying the conditions }j (t) = O(t). Hence,
e the Borel transforms }’2 and 3‘5 verify the equations
(T—=1fy=—

CRL CRN T R RO

I 3] , the Borel transforms }3 and }'6 verify the system
6

([ 3 0] dp 1 —27]de [0 -3
[—2T 31?%—4 1]d7+ 0o o|¥="

e denoting ¢ :=

0 d 0
@
@ (0) = [_ 220 - [_1].
3 9
As aresult, ;‘3 and ]A“ﬁ are entire on all C and }’2 and }5 are defined by
~ ~ 1
Fr) = = and Fi(r) = —5(1—7)7"

2



First Level’s Connection-to-Stokes Formulee 277

for all |7| < 1. In particular, the analytic continuations };l’s of the JA“j’s to the right of
1 verify

P =" a2 L
’ T ’ 2

~+ ~+

Fii(l+7)eCir) Foi(l+7)eCir)

Consequently, the connection matrices K E“] of ]A"'[u] (7) at the point 7 = 1 are given by

From Theorem 3.12 and more precisely Formula (3.14) (recall that L = 0), we de-
duce that the two first level’s Stokes multipliers ¢ and ¢ are related to the connection

constants kﬂf and kzﬁz above by the relations

i /2 67L7r/2

12 .o [0]2 . —im
kgl = 227?]{51 + 2ime rG3/2)

0]2 €

. . 1]2
ca = 2z7rk£7+ + QZWP(3/2) { ]

,+

(recall that p; = e " since r; = 2). Hence,

cg = —2i(m — /) = —2i(r ++/7)

4.3 An Example with a Singularity with Non-Monomial Front

Let us now consider the system

0 0 0

dy

5d—= —z" 22 +2% 0|Y (4.4)
g ot 0 1
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System (4.4) has the levels (2,4) and §2; = {0, 1/2}. In particular, the first level’s anti-
Stokes directions of System (4.4) associated with the first column of ﬁ(x) are given by
the unique collection (fy = 0,6, = —n) generated by 7 = 1/2. Note that these two
directions are also second level’s anti-Stokes directions.

Since just the first column of F (x) is divergent, the Stokes—Ramis matrices I3 + Cy
and I3 + C_, are of the form

0 00 0 00
Co=|cc 0 0| and C_,= |2, 0 0
= 0 0 = 0 0

where ¢ and ¢® _ are the first level’s Stokes multipliers associated with the first level’s
Stokes value 7 = 1/2. Our aim is the calculation of ¢ and ¢* _. However, since 7 = 1/2
is not with monomial front, we can not directly apply Theorem 3.12 as in the previous
examples.

Let us first reduce the Stokes value 7 = 1/2 into a first level’s Stokes value with
monomial front by considering the change of variable

LU
1—y
System (4.4) becomes
0 0 0
y7 2 O
dy -
5 Y
— = 1 — )4 y
Yy dy ( " ) .
0 (1-—
- (1-y)

Y (z(y)) reads Y(y) = G(y)e" /) where

and its formal fundamental solution Y (y) :

1 1 1 1 3 1
P(=)=diag (0 —— —— + — - 2 4+ ),
* (y) lag(’ 2y?’ 4y4+y3 2y2+y>

R N I 0 0 1 0 0
« Gly) = Fla@) |0 e 0 | =|hlaly) e 0 | eM(Clyl).
00 e Lf@w) o et

To normalize (N;'(y) to I3 + O(y*), we consider the constant gauge transformation

1 0 0
Z=10 2 o |V
0 0 e/t
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Hence, the system

0 0 0
7,—1/2
dz . ye y2 0
y5d— = A=-»* Z
Y y461/4 ,
0 (1-
- (1—y)

and its formal fundamental solution Z(y) = H (y)e” /%) where

Nl 0 0
Hy) = [Taly) 1 0

is a power series in y such that H (y) = Iy + O(y*). More precisely,

~

ha(y) = e 25 + O(y®) and  hs(y) = —eV*y* — 4y’ + O(°).
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4.5)

(4.6)

System (4.5) has, like System (4.4), the levels (3,4) and the set of first level’s Stokes
values associated with the first column h(z) of H(z) is again Q; = {0,1/2}. Due to
Lemma 3.13, the Stokes—Ramis matrices I3 + C and I3 + C'_ . of System (4.4) are also
Stokes—Ramis matrices of System (4.5). Moreover, since the first level’s Stokes value
7 = 1/2 of System (4.5) is now with monomial front, Theorem 3.12 applies allowing
thus to make explicit the two first level’s Stokes multipliers ¢; and ¢® _ in terms of the

~[0 ~[1
connection constants of . ](7') and B! ](7') atT = 1/2.

According to Relations (3.2) and (4.6), the 2-reduced series of 71(:75) are of the form

1 0
B0 = | hot) | and BU () = | Rst)
hs(t) he(t)

where the ’Nlj (t)’s are power series in ¢ verifying

~ ~

hy(t) = O(t%) hs(t) = e V%% + O(t%)

hs(t) = —e*1? + O(t%) ho(t) = —4e/4 + O(t%).
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Following (3.17), the matrix h(t) := [’j[l] Et;] € Mg 1(C][[¢]]) is uniquely determined
h (t
by the system
0 0 0 0 0 0
™w 1 o My o 0
1
L, | T 0 S+ My 0 =3¢
a0 0 o —t 0 0 h
™w o o T 1-t¢ 0
3 1
™) o - -1 ™™@ o S 31

jointly with the initial condition ’NI,(O) = I (first column of the identity matrix of size
6) where

( 4e712(1 + t)83 2e~1/2 m
Tl[o](t)z— (1(—25)4) = Z(m—l)(m—Q)(Qm—?))t
m=3
e 12(1 + 6t + t2)12 e 1/? m
) Tl[l](t):_ ((1—15)4 ) =3 Z(m—l)(Qm—l)(Qm—S)t
mz=2

T — 70 = S0 _ N,
2 2 1—¢

\ mz=1
Therefore, the h;’s are the unique formal series solutions of the equations

dhs

2P —2 — hy = T(t)
2t2dd—f;3 - (% 3) hy =T - 3+ )k
<
thdd—’Nf — (1=t hs =TM®)
2 2%— G 3—t> he = T (t) — (§+3> h;

satisfying the conditions iNLj (t) = O(t*). Hence,
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e the Borel transforms i’\Lg and IA7,5 verify the equations

(27 — 1)y = TI(7)

dh ~ 47 -
(27 — 1)d—T5 1 3hs = d; (r) , hs(0)=0

where the Borel transforms 71" (7) of T}")(¢) are defined by

( P17 = 207 G (2m— D o 2727 43)
=, (m —2)! 3
X
~ 12 4 am? — 1 472 + 127 + 3
Tl[l](T):_e Z m_ 'Tm:_T( T+ 127 + )67_1/2’
\ 3 m>1(m 1)! 3

~

e denoting ¢ := ’}1,:3] , the Borel transforms fALg and fL@' verify the system

6
L 0] de  [3-2r =3 Qdp [2 1] __ d|B"
3 1) dr 0 3-27|dr |0 —3|¥7 Tdr [T

o0 =0 %20~ [ ]

dr 4/t

\

where the Borel transforms 71" (7) of T1")(¢) are defined by

)y = T(r) = 61/42 % = ™A,

mz=0"

As a result, i\lg and ?Lﬁ are entire on all C and, for j = 2,5, the analytic continuations
h;fl/Q’s of the h;’s to the right of 7 = 1/2 verify

A+ <1 >:_(1+2T)2(2+7)T

h -+
2,1/2 \ 5 T 67 e

. 1
h,;TI/2 (5 + T) = —iar ™% + E(7)

with E(7) an entire function on C and

1 /2 2 1 1
Ve 6 1 22 2
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13 1
where 1 [} <§, X 7'> denotes the confluent hypergeometric function with parameters 3
3
d-.
and o ’
Consequently, the connection matrices K 57]2 . of f°(7) at the point 7 = 1/2 are
given by

0 0
o _ | o2 1 | e
K1/2,+ = k’{/]2,+ -3 K1/2,+ = k1/2,+ =
0 0

From Theorem 3.12 and more precisely Formula (3.14) (recall that L. = 0), we deduce
that the two first level’s Stokes multipliers ¢ and ¢ are related to the connection
constants k{of and kﬁf above by the relations

im/2 i /2
. . [0]2 . [1]2 ., [0]2 . iz € [1]2
ch = 2imky o+ 227TF(3/2) kit = 2imky . + 2ime rG2) Kifo+
(recall that p; = e ™ since r; = 2). Hence,
21 21
ch = —é(ﬂ+6a\/7?) = —é(ﬂ—Gaﬁ)
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