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Abstract

Given a multi-leveled meromorphic linear differential system, we deduce from
the factorization theorem explicit formulæ allowing to express all the first level’s
Stokes multipliers in terms of connection constants in the Borel plane, generaliz-
ing thus the formulæ displayed by M. Loday–Richaud and the author in the case
of single-leveled systems. As an illustration, we develop three examples. No as-
sumption of genericity is made.

AMS Subject Classifications: 34M03, 34M30, 34M35, 34M40.
Keywords: Linear differential system, Stokes phenomenon, summability, resurgence,
Stokes multipliers, connection constants.

1 Introduction
All along the article, we are given a linear differential system (in short, a differential
system or a system) of dimension n ¥ 2 with meromorphic coefficients of order r � 1
at 0 in C, r P N�, of the form

xr�1dY

dx
� ApxqY, Apxq PMnpCtxuq, Ap0q � 0 (1.1)

together with a formal fundamental solution at 0

rY pxq � rF pxqxLeQp1{xq
normalized as follows:
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• rF pxq PMnpCrrxssq is a formal power series in x satisfying rF pxq � In �Opxr1q,
where In is the identity matrix of size n and where r1 is an integer ¥ 1 fixed
below,

• L �
Jà
j�1

pλjInj � Jnjq where J is an integer ¥ 2, the eigenvalues λj verify 0 ¤
Repλjq   1 and where

Jnj �

$''''''&''''''%

0 if nj � 1

�
�����

0 1 � � � 0
...

. . . . . .
...

...
. . . 1

0 � � � � � � 0

�
����� if nj ¥ 2

is an irreducible Jordan block of size nj ,

• Qp1{xq is a diagonal matrix with polynomial entries in 1{x of the form
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Recall that any meromorphic linear differential system with an irregular singular
point at 0 can always be reduced to System (1.1) by means of a finite algebraic extension
x ÞÝÑ xν , ν P N�, of the variable x and a meromorphic gauge transformation Y ÞÝÑ
T pxqY where T pxq has explicit computable polynomial entries in x and 1{x [2].

In addition, we suppose that there exist j and ` such that qj � q`, otherwise rF pxq is
a convergent series and System (1.1) has no Stokes phenomenon.

Under the hypothesis that System (1.1) has the unique level r ¥ 1 (see Def. 2.1
below for the exact definition of levels), M. Loday–Richaud and the author displayed
in [9] (case r � 1) and [16] (case r ¥ 2) formulæ making explicit the Stokes multipliers
of rF pxq in terms of connection constants in the Borel plane. More precisely, these

constants are given by the singularities of the Borel transforms pF ruspτq of the sub-seriesrF rusptq, u � 0, . . . , r � 1 and t � xr, of terms r by r of rF pxq, also called r-reduced
series of rF pxq.

In the present paper, we suppose that System (1.1) is a multi-leveled system. Our
aim is to make explicit formulæ similar to those in [9, 16] for the first level’s Stokes
multipliers of rF pxq (Section 3.6, Theorem 3.12), i.e., the Stokes multipliers of rF pxq
associated with the smallest level r1 ¥ 1 of System (1.1).

Such formulæ, obtained by various integral methods such as Cauchy-Heine integral
and Laplace transform, were already given by many authors under sufficiently generic
hypothesis (see [1, 3, 4] for instance).
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Here, besides no assumption of genericity is made, our approach is quite different
and is based on the factorization theorem of rF pxq (see [7, 14, 15], Section 2.3 below)
and on the results of [9, 16].

More precisely, we proceed in two steps. First, we show that a “good normalization”
of the r1-summable factor of rF pxq allows to see the first level’s Stokes multipliers ofrF pxq as Stokes multipliers of convenient systems with a single level equal to r1 (Section
3.2). Thus, according to [9,16], the first level’s Stokes multipliers of rF pxq are expressed
in terms of connection constants in the Borel plane relative to these single-leveled sys-
tems.

Second, we prove that these connection constants are actually given by the singu-

larities of the Borel transforms pF ruspτq, u � 0, . . . , r1 � 1, of the r1-reduced series ofrF pxq (Sections 3.4 and 3.5). To this end, we prove a resurgence theorem for the r1-

reduced series rF rusptq of rF pxq (Theorem 3.7) and we display a precise description of

the singularities of the Borel transforms pF ruspτq (Theorem 3.9).
In Section 4, as an illustration of the first level’s connection-to-Stokes formulæ, we

develop three examples.

2 Preliminaries

2.1 Some Definitions and Notations
We recall here below some definitions about levels and singular directions �also called
anti-Stokes directions� of System (1.1).


 Given a pair pqj, q`q such that qj � q`, we denote

pqj � q`q
�

1

x



� � αj,`

xrj,`
� o

�
1

xrj,`



, αj,` � 0.

Definition 2.1 (Levels of System (1.1)). All the degrees rj,` of polynomials qj � q` � 0
are called levels of System (1.1). Notice that, according to normalizations of System
(1.1), levels are integers. One sometimes refers to this case as the unramified case.

We denote by R :� tr1   r2   . . .   rpu, p P N�, the set of all levels of System
(1.1). Notice that r1 ¥ 1 and rp ¤ r the rank of System (1.1). Actually, if rp   r,
all the polynomials qj , j � 1, . . . , J , have the same degree r and the terms of highest
degree coincide. One then reduces this case to the case rp � r by means of a change
of unknown vector of the form Y � Zeqp1{xq with a convenient polynomial qp1{xq P
x�1Crx�1s. Recall that such a change does not affect levels or Stokes–Ramis matrices
of System (1.1).

When p � 1, System (1.1) is said to be with the unique level r1. Recall that, for such
a system, the connection-to-Stokes formulæ were already displayed in [9] (case r1 � 1)



250 Pascal Remy

and [16] (case r1 ¥ 2). Henceforth, we suppose p ¥ 2, i.e., System (1.1) has at least
two levels.


 Let us now split the matrix rF pxq into J column-blocks

rF pxq � � rF 
;1pxq rF 
;2pxq � � � rF 
;Jpxq
�

fitting to the Jordan structure of L (the size of rF 
;`pxq is n� n` for all `).

Definition 2.2 (Anti-Stokes directions, Stokes values). 1. The anti-Stokes directions
of System (1.1) (or rF pxq) are the directions of maximal decay of the exponentials
epqj�q`qp1{xq with qj � q` � 0. The coefficients αj,` generating these directions
are called Stokes values of System (1.1). The kth level’s anti-Stokes directions
of System (1.1) (or rF pxq) are the anti-Stokes directions of System (1.1) given by
the exponentials epqj�q`qp1{xq with rj,` � rk. In this case, αj,` is called kth level’s
Stokes value of System (1.1).

2. Let ` P t1, . . . , Ju. The anti-Stokes directions associated with rF 
;`pxq are the
anti-Stokes directions of rF pxq given by the exponentials epqj�q`qp1{xq for all j such
that qj � q` � 0. The kth level’s anti-Stokes directions associated with rF 
;`pxq are
the anti-Stokes directions of rF pxq given by the exponentials epqj�q`qp1{xq for all j
such that qj � q` � 0 and rj,` � rk. In this case, αj,` is called kth level’s Stokes
value of System (1.1) associated with rF 
;`pxq.

Notice that a given anti-Stokes direction of System (1.1) or of rF 
;`pxq may be with
several levels. Notice also that the denomination “anti-Stokes directions” is not univer-
sal. Indeed, such directions are called sometimes “Stokes directions”.

2.2 Stokes–Ramis Automorphisms
Given a non anti-Stokes direction θ P R{2πZ of System (1.1) and a choice of an argu-
ment of θ, say its principal determination θ� Ps � 2π, 0s1, we consider the sum of rY in
the direction θ given by

Yθpxq � sr1,r2,...,rp;θp rF qpxqY0,θ�pxq

where sr1,r2,...,rp;θp rF q is the uniquely determined pr1, r2, . . . , rpq-sum of rF at θ and
where Y0,θ�pxq is the actual analytic function Y0,θ�pxq :� xLeQp1{xq defined by the choice
argpxq close to θ� (denoted below argpxq � θ�). Recall that sr1,r2,...,rp;θp rF q is an analytic
function defined on a sector bisected by θ with opening larger than π{rp [12].

1Any choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice
0 ¤ argpz � 1{xq   2π of the principal determination at infinity, we suggest to choose �2π   argpxq ¤
0 as principal determination about 0 as well as about any ω at finite distance.
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When θ P R{2πZ is an anti-Stokes direction of System (1.1), we consider the two
lateral sums sr1,r2,...,rp;θ�p rF q and sr1,r2,...,rp;θ�p rF q respectively obtained as analytic con-
tinuations of sr1,r2,...,rp;θ�εp rF q and sr1,r2,...,rp;θ�εp rF q to a sector with vertex 0, bisected
by θ and opening π{rp. Notice that such analytic continuations exist without ambi-
guity when ε ¡ 0 is small enough. We denote by Yθ� and Yθ� the two sums of rY
respectively defined for argpxq � θ� by Yθ�pxq :� sr1,r2,...,rp;θ�p rF qpxqY0,θ�pxq and
Yθ�pxq :� sr1,r2,...,rp;θ�p rF qpxqY0,θ�pxq.

The two lateral sums sr1,r2,...,rp;θ�p rF q and sr1,r2,...,rp;θ�p rF q of rF are not analytic con-
tinuations from each other in general. This fact is the Stokes phenomenon of System
(1.1). It is characterized by the collection, for all anti-Stokes directions θ P R{2πZ of
System (1.1), of the automorphisms

Stθ� : Yθ� ÞÝÑ Yθ�

that one calls Stokes-Ramis automorphisms relative to rY .
The Stokes-Ramis matrices of System (1.1) are defined as matrix representations in

GLnpCq of the Stθ�’s.

Definition 2.3 (Stokes–Ramis matrices). One calls the matrix of Stθ� in the basis Yθ� 2

the Stokes–Ramis matrix associated with rY in the direction θ. We denote it by In�Cθ� .
Notice that the matrix In � Cθ� is uniquely determined by the relation

Yθ�pxq � Yθ�pxqpIn � Cθ�q for argpxq � θ�.

Split the matrix Cθ� � rCj;`
θ� s into blocks fitting to the Jordan structure of L (Cj;`

θ� is a
nj � n`-matrix). The block Cj;`

θ� is zero as soon as epqj�q`qp1{xq is not flat in the direction
θ. When epqj�q`qp1{xq is flat in the direction θ and rj,`p� degpqj � q`qq � rk, the entries
of the block Cj;`

θ� are called kth level’s Stokes multipliers of rF 
;`pxq in the direction θ.
Recall that the aim of this article is to display formulæ making explicit the first

level’s Stokes multipliers in terms of connection constants in the Borel plane. Our
approach is based on the factorization theorem of rF pxq which we recall in Section 2.3
below.

2.3 Factorization Theorem and Stokes–Ramis Matrices
The factorization theorem (Theorem 2.4 below) states that rF pxq can be written essen-
tially uniquely as a product of rk-summable formal series rFkpxq for the different levels

2In the literature, a Stokes matrix has a more general meaning where one allows to compare any two
asymptotic solutions whose domains of definition overlap. According to the custom initiated by J.-P.
Ramis [15] in the spirit of Stokes’ work, we exclude this case here. We consider only matrices providing
the transition between the sums on each side of a same anti-Stokes direction.
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rk of System (1.1). It was first proved by J.-P. Ramis in [14, 15] by using a techni-
cal way based on Gevrey estimates. A quite different proof based on Stokes cocycles
and mainly algebraic was given later by M. Loday–Richaud in [7]. Both proofs are
nonconstructive. However, as we shall see in Section 3, the factorization theorem pro-
vides sufficient information about the first level to allow to make explicit the first level’s
connection-to-Stokes formulæ in full generality.

Theorem 2.4 (Factorization theorem, [7,14,15]). LetR � tr1   r2   . . .   rpu denote
the set of levels of System (1.1) 3. Then rF pxq can be factored in

rF pxq � rFppxq � � � rF2pxq rF1pxq,

where, for all k � 1, . . . , p, rFkpxq P MnpCrrxssq is a rk-summable formal series with
singular directions the kth level’s anti-Stokes directions of System (1.1). This factoriza-
tion is essentially unique: Let

rF pxq � rGppxq � � � rG2pxq rG1pxq

be another decomposition of rF pxq. Then, there exist p� 1 invertible matrices

P1pxq, . . . , Pp�1pxq P GLnpCtxurx�1sq

with meromorphic entries at 0 such that rG1 � P1
rF1, rGk � Pk rFkP�1

k�1 for k � 2, . . . , p�
1 and rGp � rFpP�1

p�1. In particular, we can always choose rFk so that rFkpxq � In �
Opxr1q for all k � 1, . . . , p 4.

Denote rGpxq :� rFppxq � � � rF2pxq. Denote also by

A1pxq :� rG�1Apxq rG� xr�1 rG�1d
rG
dx

the matrix of the system obtained from System (1.1) by the formal gauge transformation
Y � rGpxqY1. Then [7], A1pxq is analytic at 0 and the matrix rY1pxq :� rF1pxqxLeQp1{xq
is a formal fundamental solution of the system

xr�1dY

dx
� A1pxqY. (2.1)

Notice that System (2.1) has, like System (1.1), the levels r1   r2   . . .   rp. Notice
also that rY1pxq has same normalizations as rY pxq.

3Recall that we suppose p ¥ 2 in this paper.
4Actually, such conditions, like the initial condition rF pxq � In � Opxr1q, allow us to have “good”

normalizations for the r1-reduced series and thus to simplify calculations below (see Sections 3.3 to 3.6).
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The structure of A1pxq will be made precise in Theorem 3.3 below. In particular, we
shall show that the matrix A1pxq (and, consequently, the matrix rF1pxq) can always be
chosen with a convenient “block-diagonal form”.

Consider now θ P R{2πZ a first level’s anti-Stokes direction of System (1.1). Recall
that θ may also be a kth level’s anti-Stokes direction for some k P t2, . . . , pu.

By construction, θ is also a first level’s anti-Stokes direction of System (2.1). Denote
then by In � C1,θ� the Stokes–Ramis matrix associated with rY1 in the direction θ and
split as before C1,θ� � rCj;`

1,θ�s into blocks Cj;`
1,θ� of size nj � n` fitting to the Jordan

structure of L. Recall that Cj;`
1,θ� � 0 as soon as epqj�q`qp1{xq is not flat in the direction θ.

Proposition 2.5 below determines the Stokes multipliers of rF1pxq in the direction θ.

Proposition 2.5 (See [7,13,15]). Let j, ` P t1, . . . , Ju be such that epqj�q`qp1{xq is flat in
the direction θ. Let rj,` denote the degree of pqj � q`qp1{xq (see Section 2.1). Then,

Cj;`
1,θ� �

"
Cj;`
θ� if rj,` � r1

0nj�n` if rj,` P tr2, . . . , rpu.

In other words, Proposition 2.5 states that

1. the nontrivial Stokes multipliers of the `th column-block rF 
;`
1 pxq are those of the

first level,

2. the first level’s Stokes multipliers of rF 
;`
1 pxq and rF 
;`pxq coincide.

3 Main Results

Any of the J column-blocks rF 
;`pxq (` � 1, . . . , J) of rF pxq associated with the Jordan
structure of L (matrix of exponents of formal monodromy) can be positioned at the
first place by means of a permutation P on the columns of rY pxq. Observe that the
same permutation P acting on the rows of rY pxq allows to keep initial normalizations ofrY pxq. More precisely, the new formal fundamental solution P rY pxqP reads P rY pxqP �
P rF pxqPxP�1LP eP

�1Qp1{xqP with P rF pxqP � In �Opxr1q.
Thereby, we can restrict our study to the first column-block rF 
;1pxq denoted belowrfpxq (the size of rfpxq is n� n1). Note that rfpxq � In,n1 �Opxr1q, where In,n1 denotes

the first n1 columns of the identity matrix In.

Remark 3.1. It is worth to notice here that, by means of a convenient permutation on
the columns and the rows with indices ¥ n1 � 1 of rY pxq, we can always order the
polynomials qj , j � 2, . . . , J , as we want, while maintaining the initial normalizations
of rY pxq and the first place of rfpxq.
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3.1 Setting the Problem

In addition to normalizations of rY pxq, we suppose that

λ1 � 0 and q1 � 0, (3.1)

conditions that can be always fulfilled by means of the change of unknown vector Y �
xλ1eq1p1{xqZ.

According to (3.1), the anti-Stokes directions of System (1.1) associated with rfpxq
are the directions of maximal decay of the exponentials eqjp1{xq with qj � 0 (cf. Def.
2.2, 2.). Denote then by

R1 :� tr11   . . .   r1p1u, p1 ¥ 1,

the set of degrees in 1{x of polynomials qj � 0. Obviously, R1 � R (the degrees r1j’s
are levels of System (1.1)), r1p1 � rp the highest level of System (1.1) and r1 ¤ r11 ¤ rp.
Notice that, when r11 ¡ r1, there exists no first level’s anti-Stokes direction (hence, no
first level’s Stokes multipliers) for rfpxq. Henceforward, we suppose p1 ¥ 2 and r11 � r1.

The aim of Section 3 is to display formulæ making explicit the first level’s Stokes

multipliers of rfpxq in terms of the connection constants of the Borel transforms pf ruspτq
of the r1-reduced series rf rusptq of rfpxq (Theorem 3.12), generalizing thus formulæ
given in [9, 16] for single-leveled systems.

Recall that the r1-reduced series of rfpxq P Mn,n1pCrrxssq are the formal seriesrf rusptq PMn,n1pCrrtssq, u � 0, . . . , r1 � 1, defined by the relation

rfpxq � rf r0spxr1q � xrf r1spxr1q � . . .� xr1�1rf rr1�1spxr1q. (3.2)

Notice that the normalization rfpxq � In,n1 �Opxr1q implies rf r0sptq � In,n1 �Optq andrf rusptq � Optq for u � 1, . . . , r1 � 1.
Our approach is based on the relation between rF pxq and rF1pxq (Factorization Theo-

rem 2.4 and Proposition 2.5) and on Block-Diagonalisation Theorem 3.3 below allowing
to “reduce” System (2.1) into a convenient single-leveled system.

3.2 A Block-Diagonalisation Theorem
According to Remark 2.1, we suppose from now on that the polynomials qj for j �
2, . . . , J are ordered so that the matrix Q read in the form

Q � Q1 `Q2 ` . . .`Qp1 (3.3)

where

• Q1 is formed by all the polynomials qj � 0 and all the polynomials qj of degree
r1, i.e., by all the polynomials qj of degrees ¤ r1,
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• for k � 2, . . . , p1, Qk is formed by all the polynomials qj of degree r1k and its lead-

ing term Qk :� xr
1
kQk |x�0 has a block-decomposition of the form

skà
`�1

Qk,`Imk,`

with Qk,` P C� and Qk,` � Qk,`1 if ` � `1.

We denote byNk, k � 1, . . . , p1, the size of the square matrixQk and we split the matrix
L of exponents of formal monodromy like Q:

L � L1 ` L2 ` . . .` Lp1 with Lk PMNkpCq.
Observe that each sub-matrix Lk has a Jordan structure induced by the one of L.

Block-Diagonalisation Theorem 3.3 below states that, up to analytic gauge transfor-
mation, System (2.1) can be split into p1 sub-systems fitting to the block-decomposition
(3.3), i.e., the matrix A1pxq can be reduced into a block-diagonal form like Q.

Recall that a (formal, meromorphic) gauge transformation Z � T pxqW transforms
any system of the form

xr�1dW

dx
� ApxqW

into the system

xr�1dZ

dx
� TApxqZ, where TApxq � TApxqT�1 � xr�1dT

dx
T�1.

Let us start with a technical lemma based on the results of [10].

Lemma 3.2. Let d P t2, . . . , p1u. Denote

• N d � N1 � . . .�Nd�1 and N¤d � N d �Nd,

• L d � L1 ` . . .` Ld�1 and L¤d � L d ` Ld,

• Q d � Q1 ` . . .`Qd�1 and Q¤d � Q d `Qd.

Consider a system

xr
1
d�1dW

dx
� ApxqW, Apxq PMN¤d

pCtxuq (3.4)

together with a formal fundamental solution at 0 of the form

�W pxq � rHpxqxL¤deQ¤dp1{xq
where rHpxq PMN¤d

pCrrxssq verifies rHpxq � IN¤d
�Opxr1q. Suppose that rHpxq is r1-

summable. Then, there exists an invertible matrix Tdpxq P GLN¤d
pCtxuq with analytic

entries at 0 such that

1. Tdpxq � IN¤d
�Opxr1q,
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2. the gauge transformation Z � TdpxqW transforms System (3.4) into a system

xr
1
d�1dZ

dx
�
�
A dpxq 0

0 Adpxq
�
Z (3.5)

with A dpxq PMN d
pCtxuq and Adpxq PMNdpCtxuq,

3. the formal fundamental solution rZpxq � Tdpxq�W pxq of System (3.5) has a block-
diagonal decomposition

rZpxq � rH dpxqxL deQ dp1{xq ` rHdpxqxLdeQdp1{xq

where

(a) the formal series rH dpxq PMN d
pCrrxssq and rHdpxq PMNdpCrrxssq verifyrH dpxq � rHdpxq � I� �Opxr1q,

(b) the matrix rZ dpxq � rH dpxqxL deQ dp1{xq is a formal fundamental solution
of the system

xr
1
d�1�1dZ d

dx
� A dpxqZ d, (3.6)

(c) the matrix rZdpxq � rHdpxqxLdeQdp1{xq is a formal fundamental solution of
the system

xr
1
d�1dZd

dx
� AdpxqZd.

Moreover, both formal series rH dpxq and rHdpxq are r1-summable.

Proof. Since rHp0q � IN¤d
, the matrix Apxq of System (3.4) reads

Apxq � xr
1
d�1dQ¤d

dx
� xr

1
dBpxq

with Bpxq analytic at 0. Hence, according to the block-decomposition (3.3) of the matrix
Q, the heading term Ap0q � 0N d

` p�r1dQdq of Apxq has the block-decomposition

Ap0q � 0N d
`
�

sdà
`�1

�r1dQd,`Imd,`

�

with Qk,` � 0 and Qk,` � Qk,`1 if ` � `1. Thus, by applying [10, Thm. 1.5], there
exists an invertible matrix Td,1pxq P GLN¤d

pCrrxss1{r1drx�1sq with meromorphic 1{r1d-
Gevrey entries at 0 5 such that the matrix Td,1Apxq has a block-decomposition likeAp0q.

5Recall that a series
¸
amx

m P Crrxss is said to be 1{k-Gevrey and denoted
¸
amx

m P Crrxss1{k
when the series

¸ am
pm!q1{k

xm is convergent.
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Observe that the entries of Td,1Apxq are in general meromorphic 1{r1d-Gevrey and not
convergent. Denote then byAp`qpxq, ` � 0, . . . , sd, the blocks of Td,1Apxq. By construc-
tion, the sub-systems

xr
1
d�1dW

dx
� Ap`qpxqW, ` � 0, . . . , sd

have levels  r1d. Therefore, [10, Thm. 1.4] applies: for all ` � 0, . . . , sd, there exists an
invertible matrix T p`q

d,2pxqwith meromorphic 1{r1d-Gevrey entries at 0 such that the matrix
T
p`q
d,2Ap`qpxq has meromorphic entries at 0. Finally, by normalizing if neccessary the

formal fundamental solutions of these last systems by means of convenient polynomial
gauge transformations in x and 1{x, we deduce from calculations above that there exists
a matrix Tdpxq P GLN¤d

pCrrxss1{r1drx�1sq satisfying Points 2. and 3. of Lemma 3.2.
Notice that Point 1. results from equalities

Tdpxq rHpxq � rH dpxq ` rHdpxq � IN¤d
�Opxr1q (3.7)

and from the assumption rHpxq � IN¤d
�Opxr1q. Notice also that, by construction, the

formal series rH dpxq and rHdpxq are both summable of levels   r1d. In particular, the
first equality of (3.7) and the hypothesis “ rHpxq is r1-summable” show that Tdpxq is both
1{r1d-Gevrey and summable of levels   r1d (indeed, r1   r1d for all d � 2, . . . , p1). Thus,
due to [12, Prop. 7, p. 349], Tdpxq is analytic at 0. Therefore, Tdpxq rHpxq keeps being
r1-summable and, consequently, rH dpxq and rHdpxq are also both r1-summable. This
ends the proof of Lemma 3.2.

Note that the hypothesis “ rHpxq is r1-summable” plays a fundamental role in the
proof of Lemma 3.2. Note also that Lemma 3.2 can be again applied to sub-system
(3.6) when d ¥ 3. . . and so on as long as d � 2.

In the case of System (2.1), an iterative application of Lemma 3.2 starting with
d � p1 allows us to state the following result:

Theorem 3.3 (Block-diagonalisation theorem). There exists an invertible matrix T pxq P
GLnpCtxuq with analytic entries at 0 such that

1. T pxq � In �Opxr1q,
2. the gauge transformation Z1 � T pxqY1 transforms System (2.1) into a system

xr�1dZ

dx
� TA1pxqZ, (3.8)

where the matrix TA1pxq P MnpCtxuq has a block-diagonal decomposition like
Q:

TA1pxq �
p1à
k�1

A1,kpxq with A1,kpxq PMNkpCtxuq,
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3. the formal fundamental solution rZ1pxq � T pxqrY1pxq of System (3.8) has a block-
diagonal decomposition

rZ1pxq �
p1à
k�1

rF1,kpxqxLkeQkp1{xq

where, for all k � 1, . . . , p1,

(a) rF1,kpxq PMNkpCrrxssq verifies rF1,kpxq � INk �Opxr1q,
(b) the matrix rZ1,kpxq � rF1,kpxqxLkeQkp1{xq is a formal fundamental solution of

the system

xr
1
k�1dZ1,k

dx
� A1,kpxqZ1,k (3.9)

(recall that r1k is the degree of Qk, r11 � r1 and r1p1 � rp � r).

In particular, the matrix T pxq rF1pxq has the block-decomposition

T pxq rF1pxq �
p1à
k�1

rF1,kpxq

and all the formal series rF1,kpxq are r1-summable.

Notice that, by construction, System (3.9) has (multi)-levels¤ r1k when k � 2, . . . , p1

and has the unique level r1 when k � 1 (indeed, r1 is the smallest level of System (1.1),
hence, of Systems (3.9) for all k).

Let us now make two remarks about the interest of Block-Diagonalisation Theorem
3.3:

1. Since T pxq is analytic at 0, the “unicity” of Factorization Theorem 2.4 implies

that we can respectively choose for rF1pxq and A1pxq the two matrices
p1à
k�1

rF1,kpxq
and TA1pxq.

2. With these choices, Proposition 2.5 implies that the first level’s Stokes multipliers
of rfpxq are actually the Stokes multipliers of the system with the unique level r1

xr1�1dZ1,1

dx
� A1,1pxqZ1,1 (3.10)

associated with the first n1 columns rf 1pxq of rF1,1pxq.

Denote as before by rf 1rusptq, u � 0, . . . , r1 � 1, the r1-reduced series of rf 1pxq and bypf 1ruspτq their Borel transforms. According to Point 2. above and normalizations of the
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formal fundamental solution rZ1,1pxq � rF1,1pxqxL1eQ1p1{xq of System (3.10) (cf. Thm.
3.3, 3.), [9, Thm. 4.3] and [16, Thm. 4.4] tell us that the first level’s Stokes multipliers

of rfpxq are expressed in terms of the connection constants of the pf 1ruspτq’s.
Hence, to state the first level’s connection-to-Stokes formulæ, we are left to prove

that the connection constants of the pf 1ruspτq’s are also connection constants of thepf ruspτq’s. To this end, we shall compare the structure of the singularities of the Borel

transforms pf ruspτq and pf 1ruspτq for all u � 0, . . . , r1 � 1.

Lemma 3.4 below allows us to connect pf rus
and pf 1rus

.

3.3 A Fundamental Identity

According to Factorization Theorem 2.4, the first n1 columns rfpxq of rF pxq are related
to the first n1 columns rf 1pxq of rF1,1pxq by the relation

rfpxq � rFppxq � � � rF2pxq rf1pxq, rf1pxq :�
� rf 1pxq

0pN2�...�Np1 q�n1

�
where

• rFkpxq is rk-summable and rFkpxq � In �Opxr1q for all k � 2, . . . , p,

• 0pN2�...�Np1 q�n1 denotes the null-matrix of size pN2 � . . .�Np1q � n1.

Denote by

• rfptq :�

����
rf r0sptq

...rf rr1�1sptq

���� P Mr1n,n1pCrrtssq the matrix of size r1n � n1 formed by

the r1-reduced series of rfpxq,
• rf rus

1 ptq :�
� rf 1rusptq

0pN2�...�Np1 q�n1

�
for all u � 0, . . . , r1 � 1 and

rf 1ptq :�

����
rf r0s

1 ptq
...rf rr1�1s

1 ptq

���� PMr1n,n1pCrrtssq.

Denote also by rF rus

k ptq, u � 0, . . . , r1 � 1, the r1-reduced series of rFkpxq.
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Then, the r1-reduced series rf rusptq of rfpxq are related to the r1-reduced seriesrf 1rusptq of rf 1pxq by the relationrfptq � rF pptq � � � rF 2ptqrf 1ptq (3.11)

where

rF kptq :�

���������

rF r0s

k ptq trF rr1�1s

k ptq � � � � � � trF r1s

k ptqrF r1s

k ptq rF r0s

k ptq . . . ...
... . . . . . . . . . ...
... . . . rF r0s

k ptq trF rr1�1s

k ptqrF rr1�1s

k ptq � � � � � � rF r1s

k ptq rF r0s

k ptq

���������
for all k.

Notice that rF kptq � Ir1n � Optq and rF kptq is
rk
r1

-summable with
rk
r1

¡ 1 for all k �
2, . . . , p. In particular, the Borel transform pF kpτq of rF kptq reads for all k in the formpF k � δIr1n � pGk with pGk an entire function on all C with exponential growth of
order ¤ rk{prk � r1q at infinity [1, p. 81]. Denoting r1,k :� rk{prk � r1q, we have
r1,p   . . .   r1,2. Hence, since the Borel transformed identity of (3.11) readspf � pF p � . . . � pF 2 � pf 1,

the following lemma:

Lemma 3.4. The Borel transforms pf ruspτq of rf rusptq and the Borel transforms pf 1ruspτq
of rf 1rusptq are related, for all u � 0, . . . , r1 � 1, by the relations

pf rus �
� pf 1rus

0pN2�...�Np1 q�n1

�
�Eu �

� pf 1rus

0pN2�...�Np1 q�n1

�
where Eu is an entire function on all C with exponential growth of order ¤ r1,2 at
infinity. Recall that r1,2 � r2{pr2 � r1q.

We are now able to compare the structure of the singularities of the Borel transformspf rus
and pf 1rus

for all u � 0, . . . , r1 � 1.
Let us first start by a resurgence theorem to locate their possible singular points.
We denote below

Q1

�
1

x



�

J1à
j�1

qj

�
1

x



Inj

where qjp1{xq is a polynomial in 1{x of the form

qj

�
1

x



� �aj,r1

xr1
� aj,r1�1

xr1�1
� . . .� aj,1

x
P 1

x
C
�

1

x

�
.
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Recall that nj denotes the size of the j th Jordan block of the matrix L of exponents of
formal monodromy of System (1.1) (cf. page 248). In particular, the sub-matrix L1 of
L corresponding to Q1 has the Jordan structure

L1 �
J1à
j�1

pλjInj � Jnjq.

Recall also that, by definition of Q1 (cf. Section 3.2), the polynomials qj for j �
1, . . . , J1 are zero or of degree r1. In particular,

qj � 0 ô aj,r1 � 0.

We denote also by

• S1pQq :� tqj ; j � 1, . . . , J1u the set of polynomials qj of degree ¤ r1 of Q, i.e.,
the set of all the polynomials of Q1,

• Ω1 :� taj,r1 ; j � 1, . . . , J1u the set of first level’s Stokes values of System (1.1)
associated with rfpxq (cf. Def. 2.2, 2.)

Notice that, following Section 3.1, a1,r1 � 0 (since q1 � 0) and there exists j P
t1, . . . , J1u such that aj,r1 � 0. Notice also that Ω1 is also the set of Stokes values
of System (3.10) associated with rf 1pxq.
3.4 Resurgence Theorem
Recall that a resurgent function is an analytic function at 0 P C which can be analyti-
cally continued to an adequate Riemann surfaceRΩ associated with a so-called singular
support Ω � C. For a more precise definition, we refer to [17] and [9, Def. 2.1 and
2.2]. Recall that the difference between RΩ and the universal cover of CzΩ lies in the
fact thatRΩ has no branch point at 0 in the first sheet.

In the linear case, the singular support Ω is a finite set containing 0. In a more
general framework, convolutions of singularities may occur what requires to consider
for Ω a lattice, possibly dense in C (cf. [5, 11, 17] for instance).

To state Resurgence Theorem 3.7 below, we need to extend the classical definition
of sectorial regions of C used in summation theory into the one of sectorial regions of
RΩ. These regions are called ν-sectorial regions (cf. [9, Def. 2.3]) and are defined for
all ν ¡ 0 small enough by the data of

• an open disc Dν centered at 0 P C,

• an open sector Σν with bounded opening at infinity,

• a tubular neighborhood Nν of a piecewise-C1 path γ connecting Dν to Σν after a
finite number of turns around points of Ω,
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such that the distance of Dν to Ω� � Ωzt0u and the distance of Nν Y Σν to Ω have to
be greater than ν.

Figure 3.1 - A ν-sectorial region

Definition 3.5 (Resurgent function with exponential growth of order¤ ρ). Given ρ ¡ 0,
a resurgent function defined on RΩ is said to be with exponential growth of order ¤ ρ
and with singular support Ω when it grows at most exponentially at infinity with an
order ¤ ρ on any ν-sectorial region ∆ν ofRΩ. We denote by yRes¤ρΩ the set of resurgent
functions with exponential growth of order ¤ ρ and with singular support Ω.

When ρ � 1, any function of yRes¤1

Ω is said to be summable-resurgent with sin-

gular support Ω. Following notations of [9], we denote yRessumΩ for yRes¤1

Ω the set of
summable-resurgent functions with singular support Ω.

Definition 3.6 (Resurgent series with exponential growth of order ¤ ρ). Given ρ ¡ 0, a
formal series is said to be a resurgent series with exponential growth of order ¤ ρ and
with singular support Ω when its formal Borel transform belongs to yRes¤ρΩ . The set of
resurgent series with exponential growth of order ¤ ρ and with singular support Ω is
denoted �Res¤ρΩ . As above, we denote �RessumΩ for �Res¤1

Ω the set of summable-resurgent
series with singular support Ω.

We are now able to state the result in view in this section.

Theorem 3.7 (Resurgence Theorem). With notations as above:

1. For all u � 0, . . . , r1 � 1,

rf 1rusptq P �RessumΩ1
.
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2. For all u � 0, . . . , r1 � 1,

rf rusptq P �Res¤r1,2Ω1
, where r1,2 � r2

r2 � r1

.

Proof. Point 1. is proved by applying [9, Thm. 2.7] (case r1 � 1) and [16, Thm. 1.2]
(case r1 ¥ 2) to the single-leveled system (3.10). Point 2. is straightforward from Point
1. and Lemma 3.4.

In particular, Theorem 3.7 tells us that, for all u � 0, . . . , r1�1, the Borel transformspf 1ruspτq and pf ruspτq are all analytic on the same Riemann surface RΩ1 , their possible
singular points being the first level’s Stokes values of Ω1, including 0 out of the first
sheet. Section 3.5 below is devoted to the analysis of these singularities.

3.5 Singularities in the Borel Plane
For the convenience of the reader, we first recall some vocabulary used in resurgence
theory (see [5, 11, 17] for instance).

Denote by O the space of holomorphic germs at 0 on C and rO the space of holo-
morphic germs at 0 on the Riemann surface rC of the logarithm. One calls any element
of the quotient space C :� rO{O 6 a singularity at 0.

A singularity is usually denoted with a nabla. A representative of the singularity
∇
ϕ

in rO is called a major of
∇
ϕ and is often denoted by qϕ.

Given ω � 0 in C, the space of the singularities at ω is the space C translated from
0 to ω. Then, a function qϕω is a major of a singularity at ω if qϕωpω � τq is a major of a
singularity at 0.

3.5.1 Front of a Singularity

For any ω P Ω1, we call first level’s front of ω (or simply front of ω when we refer to
the single-leveled system (3.10)) the set

Fr1pωq :� tqj P S1pQq ; aj,r1 � ωu

of polynomials qjp1{xq’s of degree r1, the leading term of which is �ω{xr1 .
Since r1 is the smallest level of Systems (1.1) and (3.10), Fr1pωq is a singleton:

Fr1pωq �
"
� ω

xr1
� 9q1,ω

�
1

x


*
6The elements of C are also called micro-functions by B. Malgrange [11] by analogy with hyper- and

micro-functions defined by Sato, Kawai and Kashiwara in higher dimensions.
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where 9q1,ω � 0 or 9q1,ωp1{xq is a polynomial in 1{x of degree ¤ r1 � 1 and with no
constant term.

When 9q1,ω � 0, ω is said to be with monomial front; the corresponding singularities

of pf ruspτq and pf 1ruspτq, u � 0, . . . , r1 � 1, at ω are then called singularities with mono-
mial front. As in the case of single-leveled systems, the study of these singularities is
sufficient to state the first level’s connection-to-Stokes formulæ in full generality (see
Section 3.6.2 below).

3.5.2 Structure of Singularities with Monomial Front

For all u � 0, . . . , r1 � 1, the behavior of the functions pf ruspτq and pf 1ruspτq at any point
ω P Ω1 depends on the sheet of the Riemann surfaceRΩ1 where we are, i.e., it depends
on the “homotopic class” of the path γ of analytic continuation followed from 0 (first

sheet) to a neighborhood of ω. We denote by
∇
frusω,γ (resp.

∇
f 1rus
ω,γ ) the singularity defined

by the analytic continuation of pf ruspτq (resp. pf 1ruspτq) along the path γ.
Besides, given a matrix M split into blocks fitting to the Jordan structure of L (ma-

trix of exponents of formal monodromy of System (1.1), cf. p. 248) or L1 (matrix of
exponents of formal monodromy of System (3.10), cf. p. 261), we denote by M j;
 the
j th row-block ofM . So,M j;
 is a nj�p-matrix for all j � 1, . . . , J (resp. j � 1, . . . , J1)
when M is a n � p-matrix (resp. N1 � p-matrix). Recall that nj is the size of the j th

Jordan block of L and L1.

Since System (3.10) has the unique level r1, the structure of the singularities
∇
f 1rus
ω,γ at

any point ω P Ω1zt0u with monomial front was displayed in [9, Thm. 3.7] (case r1 � 1)
and [16, Thm. 3.5] (case r1 ¥ 2). More precisely, we have the following.

Proposition 3.8 (Singularities with monomial front of pf 1rus
). Fix u P t0, . . . , r1 � 1u

and ω P Ω1zt0u a singular point of pf 1ruspτq with monomial front. For any path γ on

CzΩ1 from 0 to a neighborhood of ω, the singularity
∇
f 1rus
ω,γ admits a major qf 1rus

ω,γ of the
form qf 1rusj;


ω,γ pω � τq � τ
λj�u

r1
�1
τ
Jnj
r1 K 1rusj;


ω,γ τ
�
Jn1
r1 � rem1rusj;


ω,γ pτq
for all j � 1, . . . , J1 with a remainder

rem1rusj;

ω,γ pτq �

¸
λ`;a`,r1�ω

r1�1̧

v�0

τ
λ`�v

r1 R
1rusj;

λ`,v;ω,γpln τq

where

• K 1rusj;

ω,γ denotes a constant nj � n1-matrix such that K 1rusj;


ω,γ � 0 as soon as
aj,r1 � ω,
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• R
1rusj;

λ`,v;ω,γpXq denotes a polynomial matrix with coefficients in yRessumΩ1�ω

whose the
columns are of log-degree

N r`s �
$&%
�pn` � 1q pn` � 1q � 1 � � � pn` � 1q � pn1 � 1q� if λ` � 0�
n` n` � 1 � � � n` � pn1 � 1q� if λ` � 0.

The constants K 1rusj;

ω,γ and the remainders rem1rusj;


ω,γ depend on the path of analytic
continuation γ and on the chosen determination of the argument around ω. Recall (cf.

[9, Def. 3.10] and [16, Def. 4.3]) that the connection constants of pf 1ruspτq at ω are
the entries of the nontrivial matrices K

1rusj;

ω�,� :� K

1rusj;

ω,γ� obtained with the following

choices:

• γ� is a path going along the straight line r0, ωs from 0 to a point τ close to ω and
avoiding all singular points of Ω1Xs0, ωs to the right (see Figure 3.2 below),

• we choose the principal determination of the variable τ around ω, say argpτq P
s � 2π, 0s as in Section 2.2 (cf. Note 1).

Figure 3.2

By using Lemma 3.4 and [9, Lem. 3.2], we deduce from Proposition 3.8 above the
following theorem:

Theorem 3.9 (Singularities with monomial front of pf rus
). Fix u P t0, . . . , r1 � 1u and

ω P Ω1zt0u a singular point of pf ruspτq with monomial front. For any path γ on CzΩ1

from 0 to a neighborhood of ω, the singularity
∇
frusω,γ admits a major qf rus

ω,γ of the form

qf rusj;


ω,γ pω � τq � τ
λj�u

r1
�1
τ
Jnj
r1 Krusj;


ω,γ τ
�
Jn1
r1 � remrusj;


ω,γ pτq

for all j � 1, . . . , J with a remainder

remrusj;

ω,γ pτq �

¸
λ`;a`,r1�ω

r1�1̧

v�0

τ
λ`�v

r1 R
rusj;

λ`,v;ω,γpln τq

where
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• Krusj;

ω,γ denotes a constant nj � n1-matrix such that

Krusj;

ω,γ �

$&%
0nj�n1 if j R t1, . . . , J1u or aj,r1 � ω

K 1rusj;

ω,γ otherwise,

• R
rusj;

λ`,v;ω,γpXq denotes a polynomial matrix with coefficients in yRes¤r1,2Ω1�ω

whose the
columns are of log-degree N r`s (cf. notation just above).

Observe that the nontrivial constant matrices K 1rusj;

ω,γ and Krusj;


ω,γ obtained in Propo-

sition 3.8 and Theorem 3.9 coincide. In particular, the connection constants of pf 1ruspτq
at ω can be directly calculate by considering the singularity

∇
f
rus
ω�,� :�

∇
f
rus
ω,γ� .

Definition 3.10 (Connection constants of pf ruspτq at ω). Given u P t0, . . . , r1 � 1u, we

call connection constants of pf ruspτq at ω the entries of the nontrivial constant matrices
K

rusj;

ω�,� :�K

1rusj;

ω�,� for j � 1, . . . , J1 and aj,r1 � ω.

Notice that, in practice, the matrix K
rusj;

ω�,� for j � 1, . . . , J1 and aj,r1 � ω can be

determined as the coefficient of the monomial τ pλj�uq{r1�1 in the major qf rusj;


ω�,� pω � τq.
We are now able to state the first level’s connection-to-Stokes formulæ.

3.6 First Level’s Connection-to-Stokes Formulæ
Recall (cf. Def. 2.2, 2.) that the first level’s anti-Stokes directions of System (1.1)
associated with rfpxq are the directions of maximal decay of the exponentials eqjp1{xq

with qj P S1pQq and qj � 0 (we refer to page 261 for the notations). Therefore, each
nonzero first level’s Stokes value aj,r1 P Ω�

1 :� Ω1zt0u generates a collection of r1 first
level’s anti-Stokes directions θ0, θ1, . . . , θr1�1 P R{2πZ respectively given by the rth

1

roots of aj,r1 . Of course, when r1 � 1, such a collection just reduces to the direction
θ0 P R{2πZ given by aj,r1 . Note besides that, when r1 ¥ 2, the directions θk’s are
regularly distributed around the origin x � 0.

Such a collection pθkq being chosen, we assume, to fix ideas, that their principal
determinations θ�k Ps � 2π, 0s verify

�2π   θ�r1�1   . . .   θ�1   θ�0 ¤ 0

Notice that a first level’s Stokes value ω P Ω�
1 generates the collection pθkqk�0,...,r1�1

if and only if ω P Ω1,r1θ0 the set of nonzero first level’s Stokes values of System (1.1)
associated with rfpxq and with argument r1θ0.

For all k � 0, . . . , r1 � 1, we denote by In � Cθ�k the Stokes–Ramis matrix of rY in
the direction θk. Let cθ�k be the first n1 columns of Cθ�k . As previously, we split cθ�k into
row-blocks cj;
θ�k fitting to the Jordan structure of L.
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The first level’s Stokes multipliers of rfpxq in the direction θk are the entries of cj;
θ�k for
j � 1, . . . , J1 and aj,r1 P Ω1,r1θ0 . We shall make explicit here below formulæ to express

these entries in terms of the connection constants of the pf rus
’s, u � 0, . . . , r1 � 1. To

this end, we need the following more precise definition:

Definition 3.11. When j � 1, . . . , J1 and aj,r1 � ω P Ω1,r1θ0 , the entries of the matrix
cj;
θ�k

are called first level’s Stokes multipliers of rfpxq associated with ω in the direction
θk.

3.6.1 Case of Singularities with Monomial Front

We denote by

• ρ1 :� e�2iπ{r1 ,

• Λj :� λjInj � Jnj the j th Jordan block of the matrix L of exponents of formal
monodromy of System (1.1).

Let ω P Ω1,r1θ0 be a nonzero first level’s Stokes value of System (1.1) associated withrfpxq generating the collection pθkqk�0,...,r1�1. We assume besides, in this section, that
the front of ω is monomial.

As we said at the end of Section 3.2, [9, Thm. 4.3] and [16, Thm. 4.4] tell us
that the first level’s Stokes multipliers of rfpxq associated with ω in the directions θk,
k � 0, . . . , r1 � 1, are expressed in terms of the connection constants at ω of the Borel

transforms pf 1ruspτq’s, u � 0, . . . , r1 � 1. On the other hand, we showed in Section 3.5
above that these connection constants are also the connection constants at ω of the Borel
transforms pf ruspτq’s. Consequently, the connection-to-Stokes formulæ relative to rf 1pxq
displayed in [9,16] coincide with the first level’s connection-to-Stokes formulæ relative
to rfpxq. Hence, the following theorem holds.

Theorem 3.12 (First level’s connection-to-Stokes formulæ). Let j � 1, . . . , J1 be such
that aj,r1 � ω. Then, the data of pcj;
θ�k qk�0,...,r1�1 and of pKrusj;


ω�,� qu�0,...,r1�1 are equiva-
lent and are related, for all k � 0, . . . , r1 � 1, by the relations

cj;
θ�k
�

r1�1̧

u�0

ρ
kpuInj�Λjq

1 I
rusj;

ω� ρ

kJn1
1 (3.12)

where

I
rusj;

ω� :�

»
γ0

τ
λj�u

r1
�1
τ
Jnj
r1 K

rusj;

ω�,� τ

�
Jn1
r1 e�τdτ (3.13)

and where γ0 is a Hankel type path around the nonnegative real axis R� with argument
from �2π to 0.
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An expanded form providing each entry of First Level’s Connection-to-Stokes For-
mulæ(3.12) is given in [16, Cor. 4.6]. This can be useful for effective numerical cal-
culations. We recall this expanded form below in the particular case where the matrix

L of exponents of formal monodromy is diagonal: L �
nà
j�1

λj (we keep denoting by

j � 1, . . . , J1 the indices of polynomials qj P S1pQq). In this case, the matrices cj;
θ�k and

K
rusj;

ω�,� are reduced to just one entry which we respectively denote cjθ�k and K

rusj
ω�,�.

Since the Jordan blocks Jnj are zero for all j, Identity (3.13) becomes

»
γ0

τ
λj�u

r1
�1
K

rusj
ω�,�e

�τdτ � 2iπ
e
�iπ

λj�u

r1

Γ
�

1� λj�u

r1

	Krusj
ω�,�.

Therefore, for all j � 1, . . . , J1 such that aj,r1 � ω, the first level’s Stokes multipliers
cjθ�k

are related to the connection constants Krusj
ω�,� by the formulæ

cjθ�k
� 2iπ

r1�1̧

u�0

ρ
kpu�λjq
1

e
�iπ

λj�u

r1

Γ
�

1� λj�u

r1

	Krusj
ω�,� for all k � 0, . . . , r1 � 1. (3.14)

3.6.2 General Case

Let us now consider a nonzero first level’s Stokes value ω P Ω1,rθ0 of System (1.1)
associated with rfpxq generating the collection pθkqk�0,...,r1�1. Recall that the first level’s
front of ω reads

Fr1pωq �
"
q1,ω

�
1

x



:� � ω

xr1
� 9q1,ω

�
1

x


*
where 9q1,ω � 0 or 9q1,ωp1{xq is a polynomial in 1{x of degree ¤ r1 � 1 and with no
constant term (cf. Section 3.5.1).

When ω is with monomial front (i.e., 9q1,ω � 0), Theorem 3.12 above allows us to
express the first level’s Stokes multipliers of rfpxq associated with ω in terms of con-
nection constants in the Borel plane. In particular, in the special case where r1 � 1,
Theorem 3.12 allows us to calculate all the first level’s Stokes multipliers since all the
singularities of pf are with monomial front.

In the case when r1 ¥ 2 and ω is not with monomial front (i.e., 9q1,ω � 0), a result
of the same type exists, but requires to reduce ω into a first level’s Stokes value with
monomial front by means of a convenient change of the variable x in System (1.1) (see
Lemma 3.13 below). Recall that such a method was already used in [16] to state the
connection-to-Stokes formulæ in the case of systems with a single level ¥ 2.

Lemma 3.13 (M. Loday–Richaud, [6]).
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1. There exists, in the x-plane (also called Laplace plane), a change of the variable
x of the form

x � y

1� α1y � . . .� αr�1yr�1
, α1, . . . , αr�1 P C (3.15)

such that the polar part p1,ωp1{yq of q1,ωp1{xpyqq reads

p1,ω

�
1

y



� � ω

yr
.

2. The Stokes–Ramis matrices of System (1.1) are preserved by the change of vari-
able (3.15).

Observe that, although Lemma 3.13 be proved in [6] in the case of systems of di-
mension 2 (hence, with a single level), it can be extended to any system of dimension
n ¥ 3. Indeed, the change of variable (3.15) being tangent to identity, it “preserves”
levels, Stokes values and summation operators.

Lemma 3.13 allows us to construct a new system, denoted below pSq, verifying the
following properties:

• pSq has levels r1   r2   . . .   rp and satisfies normalizations as System (1.1)
(cf. page 247),

• pSq has the same first level’s Stokes values as System (1.1),

• ω is a first level’s Stokes value of pSq with monomial front,

• pSq has the same Stokes–Ramis matrices as System (1.1).

Hence, applying Theorem 3.12 to System pSq, we can again express the first level’s
Stokes multipliers of rfpxq associated with ω in terms of connection constants in the
Borel plane. Note however that these constants are calculated from System pSq and not
from System (1.1).

3.6.3 Effective Calculation of the First Level’s Stokes Multipliers

According to Theorem 3.12, the effective calculation of the first level’s Stokes multipli-
ers of rfpxq is reduced, after possibly applying Lemma 3.13, to the effective calculation

of the connection constants of the Borel transforms pf ruspτq’s of the r1-reduced seriesrf rusptq’s of rfpxq.
For the convenience of the reader, we briefly recall here below how to characterize

the series rf rusptq’s and their Borel transforms pf ruspτq’s.

 Case r1 � 1:

The series rf rusptq’s are reduced to just one series rf r0sptq � rfpxq; we keep denoting
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the variable x for t. According to normalizations of the formal fundamental solutionrY pxq of System (1.1) (cf. p. 247), the formal series rF pxq is uniquely determined by the
homological system

xr�1dF

dx
� ApxqF � FA0pxq, A0pxq :� xr�1dQ

dx
� xrL

of System (1.1) jointly with the initial condition rF p0q � In [2]. Hence, by considering
its first n1 columns, we deduce that rfpxq is uniquely determined by the system

x2 df

dx
� x1�rApxqf � xfJn1

(3.16)

jointly with the initial condition rfp0q � In,n1 (first n1 columns of the identity matrix of
size n). Recall that q1 � 0 and λ1 � 0 (cf. Assumption (3.1)).


 Case r1 ¥ 2:
In this case, a system characterizing the formal series rf rusptq’s, u � 0, . . . , r1 � 1, is
provided by the classical method of rank reduction [8] by considering the homological
system of the r1-reduced system associated with System (1.1). More precisely, writing
System (1.1) in the form

xr1�1dY

dx
� ApxqY, Apxq :� xr1�rApxq PMnpCtxurx�1sq

one can prove, similarly as in the case r1 � 1, that the formal series

rfptq �
����
rf r0sptq

...rf rr1�1sptq

���� PMr1n,n1pCrrtssq

is uniquely determined by the system

r1t
2df

dt
� Aptqf � tfJn1

(3.17)

jointly with the initial condition rfp0q � Ir1n,n1 (first n1 columns of the identity matrix
of size r1n); the matrix Aptq PMr1npCtturt�1sq is defined by

Aptq �

��������
Ar0sptq tArr1�1sptq � � � � � � tAr1sptq
Ar1sptq Ar0sptq . . . ...

... . . . . . . . . . ...

... . . . Ar0sptq tArr1�1sptq
Arr1�1sptq � � � � � � Ar1sptq Ar0sptq

���������
r1�1à
u�0

utIn
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where Arusptq, u � 0, . . . , r1 � 1, denote the r1-reduced series of Apxq.

 Then, by applying the formal Borel transformation to Systems (3.16) and (3.17),

we obtain convolution equations satisfied by the Borel transforms pf ruspτq’s, u � 0, . . . ,

r1 � 1. In the special case where r1 � 1, we simply denote pfpξq for pf r0spτq.
Recall that the formal Borel transformation is an isomorphism from the C-differential

algebra
�
Crrtss,�, �, t2 d

dt



to the C-differential algebra pδC ` Crrτ ss,�, �, τ �q that

changes ordinary product � into convolution product � and changes derivation t2
d

dt

into multiplication by τ . It also changes multiplication by
1

t
into derivation

d

dτ
al-

lowing thus to extend the isomorphism from the meromorphic series Crrtssrt�1s to
Crδpkq, k P Ns ` Crrτ ss.

4 Examples

To end this article, we develop three examples. Although the given systems may seem
a little bit involved, they are simple enough to allow the exact calculation of the con-
nection constants and so of the first level’s Stokes multipliers. This “simplicity” is due
to the fact that the matrices of these systems are triangular. Of course, for more general
systems, such exact calculations no longer hold in general.

4.1 An Example with a Three-Leveled System

We consider the system

x4dY

dx
�

�������
0 0 0 0 0

2x4 x2 � x3

3
0 0 0

�3x3 2x3 2x2 0 0
x2 0 0 2x� x2 0

x4 � x5 0 0 0 1

�������Y (4.1)

and its formal fundamental solution rY pxq � rF pxqxLeQp1{xq where

• Q
�

1

x



� diag

�
0,�1

x
,�2

x
,� 1

x2
� 1

x
,� 1

3x3



,

• L � diag

�
0,

1

3
, 0, 0, 0



,
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• rF pxq �
�������

1 0 0 0 0rf2pxq 1 0 0 0rf3pxq � 1 0 0rf4pxq 0 0 1 0rf5pxq 0 0 0 1

������� verifies rF pxq � I5 �Opxq. More precisely,

rf2pxq � Opx2q, rf3pxq � 3x

2
�Opx2q, rf4pxq � �x

2
�Opx2q, rf5pxq � Opx4q.

We denote as before by rfpxq the first column of rF pxq.
System (4.1) has levels p1, 2, 3q and the set Ω1 of first level’s Stokes values associated
with rfpxq is Ω1 � t0, 1, 2u. In particular, System (4.1) admits the direction θ � 0
(direction of maximal decay of the exponentials e�1{x and e�2{x) as unique first level’s
anti-Stokes directions associated with rfpxq. Note that this direction is also a second and
a third level’s anti-Stokes direction associated with rfpxq.

Obviously, the Stokes–Ramis matrix I5 � C0 is of the form

C0 �

������
0 0 0 0 0
c2

0 0 0 0 0
c3

0 � 0 0 0
c4

0 0 0 0 0
c5

0 0 0 0 0

������ .

The Stokes multipliers c2
0 and c3

0 are respectively the first level’s Stokes multipliers ofrfpxq associated with the first level’s Stokes values ξ � 1 and ξ � 2. The Stokes multi-
pliers c4

0 and c5
0 are respectively a second level’s and a third level’s Stokes multiplier.

Our aim is the calculation of c2
0 and c3

0. Observe that, due to Theorem 3.12, c2
0 (resp.

c3
0) is expressed in terms of the connection constants of pfpξq at ξ � 1 (resp. ξ � 2).

Indeed, the two first level’s Stokes values 1 and 2 are both with monomial front.
According to (3.16), rfpxq is uniquely determined by the system

x2 df

dx
�

����������

0 0 0 0 0

2x2 1� x

3
0 0 0

�3x 2x 2 0 0

1 0 0
2

x
� 1 0

x2 � x3 0 0 0
1

x2

����������
f
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jointly with the initial condition rfp0q � I5,1 (first column of the identity matrix of size
5). Therefore, the rfj’s are the unique formal series solutions of the equations$''''''''''''''''&''''''''''''''''%

x2d
rf2

dx
�
�

1� x

3

	 rf2 � 2x2

x2d
rf4

dx
� 2

x
rf4 � rf4 � 1

x2d
rf3

dx
� 2 rf3 � �3x� 2x rf2

x2d
rf5

dx
� 1

x2
rf5 � x2 � x3

satisfying the condition rfjpxq � Opxq. As a result, their Borel transforms pfj’s verify
the equations $'''''''''''''''&'''''''''''''''%

pξ � 1qd
pf2

dξ
� 2

3
pf2 � 2 , pf2p0q � 0

pξ � 2q pf3 � �3� 2 � pf2

�2
d pf4

dξ
� pξ � 1q pf4 � 0 , pf4p0q � �1

2

�d
2 pf5

dξ
� ξ pf5 � ξ � ξ2

2
, pf5p0q � d pf5

dξ
p0q � 0.

Hence, for all |ξ|   1,$''''''''''''''&''''''''''''''%

pf2pξq � �3p1� ξq�2{3 � 3

pf3pξq � �21� 6ξ � 18p1� ξq1{3
ξ � 2

pf4pξq � �1

2
exp

�
ξ2

4
� ξ

2




pf5pξq � 1� ξ

2
� 0F1

�
�, 2

3
;
ξ3

9



� ξ

20
F1

�
�, 4

3
;
ξ3

9



where 0F1p�, b; ξq denotes the confluent hypergeometric function with parameters p�, bq.
In particular, pf4 and pf5 are entire on all C and, for j � 2, 3, the analytic continuations
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pf�j,ω�’s of the pfj’s to the right of points ω P t1, 2u verify

pf�2,1p1� ξq � 3� 3i
?

3

2
ξ�2{3 � 3

pf�2,2p2� ξq P Ctξu

pf�3,1p1� ξq P Ctξu � ξ1{3Ctξu

pf�3,2p2� ξq � �9� 6ξ � p9� 9i
?

3qp1� ξq1{3
ξ

.

Consequently, the connection matrices K1,� and K2,� of pfpξq at the points ξ � 1
and ξ � 2 are given by

K1,� �

������
0

k2
1,� �

3� 3i
?

3

2
0
0

������ K2,� �

����
0
0

k3
2,� � 9i

?
3

0

���� .

Since the matrix L of exponents of formal monodromy is diagonal, it results from (3.14)
that the Stokes multipliers c2

0 and c3
0 are related to the connection constants k2

1,� and k3
2,�

above by the relations

c2
0 � 2iπ

e�iπ{3

Γp2{3qk
2
1,� c3

0 � 2iπk3
2,�

(recall that ρ1 � e�2iπ and k � 0 since r1 � 1). Hence,

c2
0 �

6iπ

Γp2{3q c3
0 � �18π

?
3 .

4.2 An Example with Rank Reduction
We consider now the system

x4dY

dx
�
�� 0 0 0
x4 � 2x5 2x 0
�x3 0 3� x2

��Y (4.2)

and its formal fundamental solution rY pxq � rF pxqeQp1{xq where
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• Q
�

1

x



� diag

�
0,� 1

x2
,� 1

x3
� 1

x



,

• rF pxq �
�� 1 0 0rf2pxq 1 0rf3pxq 0 1

�� verifies rF pxq � I3 �Opx3q. More precisely,

rf2pxq � �x
3

2
� x4 � 3x5

4
�Opx6q and rf3pxq � x3

3
� x5

9
�Opx6q. (4.3)

System (4.2) has levels p2, 3q and Ω1 � t0, 1u. In particular, the first level’s anti-Stokes
directions of System (4.2) associated with the first column rfpxq of rF pxq are given by
the unique collection pθ0 � 0, θ1 � �πq generated by τ � 1. Note that θ0 � 0 is also a
second level’s anti-Stokes direction associated with rfpxq. Obviously, the Stokes–Ramis
matrices I3 � C0 and I3 � C�π are of the form

C0 �
�� 0 0 0
c2

0 0 0
� 0 0

�� and C�π �
�� 0 0 0
c2
�π 0 0
0 0 0

�� .
Indeed, rfpxq is the unique column of rF pxq which is divergent.

As in the previous example, the first level’s Stokes value τ � 1 is with monomial
front. Hence, Theorem 3.12 implies that the two first level’s Stokes multipliers c2

0 and

c2
�π are expressed in terms of the connection constants of pf r0spτq and pf r1spτq at τ � 1.

According to Relation (3.2), the 2-reduced series of rfpxq are of the form

rf r0sptq �
�� 1rf 2ptqrf 3ptq

�� and rf r1sptq �
�� 0rf 5ptqrf 6ptq

��
where the rf jptq’s are power series in t satisfying rf jptq � Optq. More precisely, it
results from (4.3) that

rf 2ptq � t2 �Opt3q rf 5ptq � � t
2
� 3t2

4
�Opt3q

rf 3ptq � Opt3q rf 6ptq �
t

3
� t2

9
�Opt3q.
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Following (3.17), the matrix rfptq :�
�rf r0sptqrf r1sptq

�
P M6,1pCrrtssq is uniquely determined

by the system

2t2
df

dt
�

���������

0 0 0 0 0 0
�2t2 2 0 t2 0 0
�t 0 0 0 0 3� t
0 0 0 �t 0 0
t 0 0 �2t2 2� t 0

0 0
3

t
� 1 �t 0 �t

���������
f

jointly with the initial condition rfp0q � I6,1. Then, the rf j’s are the unique formal series
solutions of the equations

2t2
drf 2

dt
� 2rf 2 � �2t2 2t2

drf 5

dt
� p2� tq rf 5 � t

2t2
drf 3

dt
� �t� p3� tqrf 6 2t2

drf 6

dt
� trf 6 �

�
3

t
� 1


 rf 3

satisfying the conditions rf jptq � Optq. Hence,

• the Borel transforms pf 2 and pf 5 verify the equations$''&''%
pτ � 1qpf 2 � �τ

pτ � 1qd
pf 5

dτ
� 3

2
pf 5 � 0 , pf 5p0q � �1

2
,

• denoting ϕ :�
�pf 3pf 6

�
, the Borel transforms pf 3 and pf 6 verify the system

$'''''&'''''%

�
3 0

�2τ 3

�
d2ϕ

dτ
�
�

1 �2τ
�4 1

�
dϕ

dτ
�
�

0 �3
0 0

�
ϕ � 0

ϕp0q �
�

0
1

3

�
,
dϕ

dτ
p0q �

�
0

�1

9

�
.

As a result, pf 3 and pf 6 are entire on all C and pf 2 and pf 5 are defined by

pf 2pτq �
τ

1� τ
and pf 5pτq � �1

2
p1� τq�3{2
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for all |τ |   1. In particular, the analytic continuations pf�

j,1’s of the pf j’s to the right of
1 verify pf�

2,1p1� τq � �τ � 1

τ
pf�

5,1p1� τq � � i
2
τ�3{2

pf�

3,1p1� τq P Ctτu pf�

6,1p1� τq P Ctτu
.

Consequently, the connection matrices Krus
1,� of pf ruspτq at the point τ � 1 are given by

K
r0s
1,� �

�� 0

k
r0s2
1,� � �1

0

�� K
r1s
1,� �

��� 0

k
r1s2
1,� � � i

2
0

��� .

From Theorem 3.12 and more precisely Formula (3.14) (recall that L � 0), we de-
duce that the two first level’s Stokes multipliers c2

0 and c2
�π are related to the connection

constants kr0s21,� and kr1s21,� above by the relations

c2
0 � 2iπk

r0s2
1,� � 2iπ

eiπ{2

Γp3{2qk
r1s2
1,� c2

�π � 2iπk
r0s2
1,� � 2iπe�iπ

eiπ{2

Γp3{2qk
r1s2
1,�

(recall that ρ1 � e�iπ since r1 � 2). Hence,

c2
0 � �2ipπ �?

πq c2
�π � �2ipπ �?

πq .

4.3 An Example with a Singularity with Non-Monomial Front

Let us now consider the system

x5dY

dx
�
�� 0 0 0
�x7 x2 � x3 0
x4 0 1

��Y (4.4)

together with its formal fundamental solution rY pxq � rF pxqeQp1{xq, where

• Q
�

1

x



� diag

�
0,� 1

2x2
� 1

x
,� 1

4x4



,

• rF pxq �
�� 1 0 0rf2pxq 1 0rf3pxq 0 1

�� verifies rF pxq � I3 �Opx4q.
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System (4.4) has the levels p2, 4q and Ω1 � t0, 1{2u. In particular, the first level’s anti-
Stokes directions of System (4.4) associated with the first column of rF pxq are given by
the unique collection pθ0 � 0, θ1 � �πq generated by τ � 1{2. Note that these two
directions are also second level’s anti-Stokes directions.

Since just the first column of rF pxq is divergent, the Stokes–Ramis matrices I3 �C0

and I3 � C�π are of the form

C0 �
�� 0 0 0
c2

0 0 0
� 0 0

�� and C�π �
�� 0 0 0
c2
�π 0 0
� 0 0

��
where c2

0 and c2
�π are the first level’s Stokes multipliers associated with the first level’s

Stokes value τ � 1{2. Our aim is the calculation of c2
0 and c2

�π. However, since τ � 1{2
is not with monomial front, we can not directly apply Theorem 3.12 as in the previous
examples.

Let us first reduce the Stokes value τ � 1{2 into a first level’s Stokes value with
monomial front by considering the change of variable

x � y

1� y
.

System (4.4) becomes

y5dY
dy

�

������
0 0 0

� y7

p1� yq4 y2 0

y4

1� y
0 p1� yq3

������Y

and its formal fundamental solution rYpyq :� rY pxpyqq reads rYpyq � rGpyqeP p1{yq where

• P
�

1

y



� diag

�
0,� 1

2y2
,� 1

4y4
� 1

y3
� 3

2y2
� 1

y



,

• rGpyq � rF pxpyqq
��1 0 0

0 e1{2 0

0 0 e�1{4

�� �
�� 1 0 0rf2pxpyqq e1{2 0rf3pxpyqq 0 e�1{4

�� PM3pCrryssq.

To normalize rGpyq to I3 �Opy4q, we consider the constant gauge transformation

Z �
��1 0 0

0 e�1{2 0

0 0 e1{4

��Y .
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Hence, the system

y5dZ

dy
�

������
0 0 0

� y7e�1{2

p1� yq4 y2 0

y4e1{4

1� y
0 p1� yq3

������Z (4.5)

and its formal fundamental solution rZpyq � rHpyqeP p1{yq where

rHpyq �
�� 1 0 0rh2pyq 1 0rh3pyq 0 1

��

is a power series in y such that rHpyq � I3 �Opy4q. More precisely,

rh2pyq � e�1{2y5 �Opy6q and rh3pyq � �e1{4y4 � 4e1{4y5 �Opy6q. (4.6)

System (4.5) has, like System (4.4), the levels p3, 4q and the set of first level’s Stokes
values associated with the first column rhpxq of rHpxq is again Ω1 � t0, 1{2u. Due to
Lemma 3.13, the Stokes–Ramis matrices I3 �C0 and I3 �C�π of System (4.4) are also
Stokes–Ramis matrices of System (4.5). Moreover, since the first level’s Stokes value
τ � 1{2 of System (4.5) is now with monomial front, Theorem 3.12 applies allowing
thus to make explicit the two first level’s Stokes multipliers c2

0 and c2
�π in terms of the

connection constants of phr0spτq and phr1spτq at τ � 1{2.

According to Relations (3.2) and (4.6), the 2-reduced series of rhpxq are of the form

rhr0sptq �
�� 1rh2ptqrh3ptq

�� and rhr1sptq �
�� 0rh5ptqrh6ptq

��

where the rhjptq’s are power series in t verifying

rh2ptq � Opt3q rh5ptq � e�1{2t2 �Opt3q

rh3ptq � �e1{4t2 �Opt3q rh6ptq � �4e1{4t2 �Opt3q.
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Following (3.17), the matrix rhptq :�
�rhr0sptqrhr1sptq

�
P M6,1pCrrtssq is uniquely determined

by the system

2t2
dh

dt
�

�����������

0 0 0 0 0 0

T
r0s
1 ptq 1 0 tT

r1s
1 ptq 0 0

T
r0s
2 ptq 0

1

t
� 3 tT

r1s
2 ptq 0 �3� t

0 0 0 �t 0 0

T
r1s
1 ptq 0 0 T

r0s
1 ptq 1� t 0

T
r1s
2 ptq 0 �3

t
� 1 T

r0s
2 ptq 0

1

t
� 3� t

�����������
h

jointly with the initial condition rhp0q � I6,1 (first column of the identity matrix of size
6) where$''''''''''''&''''''''''''%

T
r0s
1 ptq � �4e�1{2p1� tqt3

p1� tq4 � �2e�1{2

3

¸
m¥3

pm� 1qpm� 2qp2m� 3qtm

T
r1s
1 ptq � �e

�1{2p1� 6t� t2qt2
p1� tq4 � �e

�1{2

3

¸
m¥2

pm� 1qp2m� 1qp2m� 3qtm

T
r0s
2 ptq � T

r1s
2 ptq � e1{4t

1� t
� e1{4

¸
m¥1

tm.

Therefore, the rhj’s are the unique formal series solutions of the equations

$''''''''''''''''&''''''''''''''''%

2t2
drh2

dt
� rh2 � T

r0s
1 ptq

2t2
drh3

dt
�
�

1

t
� 3


 rh3 � T
r0s
2 ptq � p3� tqrh6

2t2
drh5

dt
� p1� tq rh5 � T

r1s
1 ptq

2t2
drh6

dt
�
�

1

t
� 3� t


 rh6 � T
r1s
2 ptq �

�
3

t
� 3


 rh3

satisfying the conditions rhjptq � Opt2q. Hence,
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• the Borel transforms ph2 and ph5 verify the equations$''&''%
p2τ � 1qph2 � pT r0s

1 pτq

p2τ � 1qd
ph5

dτ
� 3ph5 � dpT r1s

1

dτ
pτq , ph5p0q � 0

where the Borel transforms pT rus
1 pτq of T rus

1 ptq are defined by$'''''&'''''%
pT r0s

1 pτq � �2e�1{2

3

¸
m¥2

p2m� 1q
pm� 2q! τ

m � �2τ 2p2τ � 3q
3

eτ�1{2

pT r1s
1 pτq � �e

�1{2

3

¸
m¥1

4m2 � 1

pm� 1q!τ
m � �τp4τ

2 � 12τ � 3q
3

eτ�1{2,

• denoting ϕ :�
�ph3ph6

�
, the Borel transforms ph3 and ph6 verify the system

$'''''&'''''%

�
1 0
3 1

�
d2ϕ

dτ
�
�

3� 2τ �3
0 3� 2τ

�
dϕ

dτ
�
��2 1

0 �3

�
ϕ � � d

dτ

�pT r0s
2pT r1s
2

�

ϕp0q � 0,
dϕ

dτ
p0q �

� �e1{4

�4e1{4

�
where the Borel transforms pT rus

2 pτq of T rus
2 ptq are defined by

pT r0s
2 pτq � pT r1s

2 pτq � e1{4
¸
m¥0

τm

m!
� eτ�1{4.

As a result, ph3 and ph6 are entire on all C and, for j � 2, 5, the analytic continuationsph�

j,1{2’s of the phj’s to the right of τ � 1{2 verify

ph�

2,1{2

�
1

2
� τ



� �p1� 2τq2p2� τq

6τ
eτ

ph�

5,1{2

�
1

2
� τ



� �iατ�3{2 � Epτq

with Epτq an entire function on C and

α � 1

8

c
2

e
�
?

2

6 1
F1

�
1

2
,
3

2
;�1

2
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where 1F1

�
1

2
,
3

2
; τ



denotes the confluent hypergeometric function with parameters

1

2

and
3

2
.

Consequently, the connection matrices K
rus
1{2,� of pf ruspτq at the point τ � 1{2 are

given by

K
r0s
1{2,� �

��� 0

k
r0s2
1{2,� � �1

3
0

��� K
r1s
1{2,� �

�� 0

k
r1s2
1{2,� � iα

0

�� .

From Theorem 3.12 and more precisely Formula (3.14) (recall that L � 0), we deduce
that the two first level’s Stokes multipliers c2

0 and c2
�π are related to the connection

constants kr0s21,� and kr1s21,� above by the relations

c2
0 � 2iπk

r0s2
1{2,� � 2iπ

eiπ{2

Γp3{2qk
r1s2
1{2,� c2

�π � 2iπk
r0s2
1{2,� � 2iπe�iπ

eiπ{2

Γp3{2qk
r1s2
1{2,�

(recall that ρ1 � e�iπ since r1 � 2). Hence,

c2
0 � �2i

3
pπ � 6α

?
πq c2

�π � �2i

3
pπ � 6α

?
πq .
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[10] B. Malgrange. Modules microdifférentiels et classes de Gevrey. Adv. Math.,
7B:513–530, 1981.

[11] B. Malgrange. Introduction aux travaux de J. Écalle. Enseign. Math., 31:261–282,
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