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Abstract

In this paper, we establish the existence of at least three solutions to a Navier
boundary problem involving the biharmonic equation. The technical approach is
mainly base on a three critical points theorem of B. Ricceri.
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1 Introduction and Main Results

Consider the Navier boundary value problem involving the biharmonic equation
(Ju"[u")" = Af (2, u) + pg(w,u), )0, 1],
u(0) = u(1) = u"(0) = u"(1) =0,

where A, i € [0,+00), f,¢g: [0,1] x R — R are Carathéodory functions.
Here in the sequel, X will be denoted the Sobolev space W2([0, 1]) N W,*([0, 1])
and will be endowed with the norm

1 1/3
Jull = ( / |u"|3da:) .
0

As usual, a weak solution of problem (P) is any u € X such that

(P)

1 1 1
/ [u"|u"€" dx = )\/ [z, u)édx + ,u/ g(z,u)édx (1.1)
0 0 0
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for every £ € X.

The fourth-order equation of nonlinearity furnishes a model to study traveling waves
in suspension bridges, so it’s important to Physics. Many authors consider this type
equation, we refer to [1-3] and there reference therein.

To the best of our knowledge, there are few results about multiple solutions to bi-
harmonic equation. In this paper, we prove the existence of at least three solutions of
problem (P). The technical i}pproach is based on the three critical points theorem of

Ricceri [5]. Let F'(x,s) = / f(z, €)d€. Our main result is the following theorems.
0

Theorem 1.1. Assume that there exist three positive constants ¢, d and v with v < 3,
V6 < 16d and a function a(x) € L'([0,1]), such that

(71) f(x,s) > 0 forevery (x,s) € [0,1/4] U [3/4,1] x [0,d];

2) —= F < F(x,d)dz;
(32) 63 (x,s)er[gl,zli])i[—c,c] (33', S) 40963 [/4 (x7 ) ¢

(73) F(z,s) < a(z)(1+ |s|”) forall s € R.

Then there exist an open interval A C [0, +00) and a positive real number p with the
following property: for each \ € A and for each Carathéodory function g: [0,1] xR —
R, satisfying

(ja) sup |g(,s)| € L'([0,1]), forall ¢ >0,
{lsl<¢3
there exists 0 > 0 such that, for each p € [0, 0], problem (P) has at least three solutions
whose norms in X are less than p.

We now want to point out a consequence of Theorem 1.1.

s

Theorem 1.2. Let f : R — R be a continuous function. Put F(s) = / f(n)dn for

0
each s € R and assume that there exist three positive constants c, d and v with v < 3,
cv/6 < 16d and a positive constant a, such that

(k1) f(s) >0 foreverys € [0,d];

1
k) — F(s) < ——F(d);
(ko) 5 max F(s) < oot (@)

(ks) F(s) <a(l+|s|?)forall s €R.

Then there exist an open interval A C [0, +00) and a positive real number p with the
following property: for each A\ € A\ and for each Carathéodory function g: [0,1] x R —
R, satisfying
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(ks) sup |g(-,s)| € L*([0,1]), forall ¢ > 0,
{Is<¢}

there exists 6 > 0 such that, for each i € [0, 9], problem

(|u/1|u/1)// — )\f(U) + ug(x,u), in]07 1[7 ,
{U(O) =u(1) =u"(0) = u"(1) = 0, (P)

has at least three solutions whose norms in X are less than p.

Remark 1.3. In Theorem 1.2, if f(s) > 0 for every s € [—c,d]|. Then, instead of

F F(d
condition (k;) and (k2), we put 6(0? < 409(623 and the result holds.

2 Proof of the Main Result

For the reader’s convenience, we recall the revised form of Ricceri’s three critical points
theorem.

Theorem 2.1 (See [5, Theorem 1]). Let X be a reflexive real Banach space. ®: X — R
is a continuously Gdteaux differentiable and sequentially weakly lower semicontinu-
ous functional whose Gdteaux derivative admits a continuous inverse on X* and ® is
bounded on each bounded subset of X; V: X — R is a continuously Gateaux differ-
entiable functional whose Gdateaux derivative is compact; I C R an interval. Assume
that

lim (®(x) + AV¥(x)) = +o0

|| =00

forall \ € I, and that there exists h € R such that

sup inf (®(z) + AM(¥(z) + h)) < inf sup(P(z) + A(¥(z) + h)). 2.1

Ael TEX z€X )\eT

Then, there exists an open interval A C [ and a positive real number p with the fol-
lowing property: for every A € A and every C' functional J: X — R with compact
derivative, there exists 0 > 0 such that, for each 1 € [0, 0] the equation

Q' (z) + ANV (z) + pJ' () =0
has a least three solutions in X whose norms are less than p.

Now we can give the proof of our main result.

Proof of Theorem 1.1. For each u € X, let

o) =1 ) = — /0 1 F(z,u)dz,  —J(u) = /0 1 /0 " g(x, €)dedz.
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Under the condition of Theorem 1.1, ® is a continuously Gateaux differentiable and
sequentially weakly lower semicontinuous functional. Moreover, ® admits a continuous
inverse on X *. ¥ and .J are continuously Gateaux differential functional whose Gateaux
derivative is compact. Obviously, ® is bounded on each bounded subset of X.

Thanks to (73), for each A > 0, one has that

lim (®(u) + AV (u)) = 400, (2.2)

[[uf| =00

and so the first assumption of Theorem 2.1 holds.
Let

o) - d—16d(1/4 — |z —1/2])?, =z € o,ﬂ U P,l],

13
d -2
) xe 474|:7

It is easy to verify that u* € W??([0, 1]) N W, *([0, 1]), and in particular, one has

(32d)3

* |3
e = 2

(2.3)

Now, let » = (2¢)® and by the assumption of ¢v/6 < 16d we have that
lu]®
>r>0.
3 r

Moreover, it follows from (j;) that

One has

6c3 /3/4 [ F(, u(x))de
max F(x,s) < F(x,d)dr < 3r22 ! . 2.4
(z,8)€[0,1] X [—c,c] ( ) 409643 1/4 ( ) H'LL* H )

Namely
1

max F(x,s) < 3Tf0 F(x,u*(z))dz

(@,9)€[0,1]x[~c,c] [

For each r > 0, if u € X satisfying ||u|| < v/3r, due to the inequality m[%a(} lu(z)] <
xe|0,

1 3
L ¥/3)lul], one has max [u(z)] < L~ = c.
2 z€[0,1] 2
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So, we have that

1
sup —V¥(u)=  sup /F(x,u)dx
0

{@(u)<r} {ulllull?<pr}

< max F(x,s)

(z,8)€[0,1]x[—c,c]

Ji Flu*(x))dx

[[u|P

Therefore, using [4, Proposition 3.1], with uy = 0 and u; = u*, we obtain

sup inf (®(z) + AM(h + ¥(z))) < inf sup(®(z) + A(h + ¥(z))), (2.5)

A>0 rzeX rzeX A>0

and so the assumption (2.1) of Theorem 2.1 holds.
Now, set I = [0,400), by (2.2), (2.5), all the assumptions of Theorem 2.1 are
satisfied. Hence, our conclusion follows from Theorem 2.1. O]
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