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Abstract

In this paper, we establish the existence of at least three solutions to a Navier
boundary problem involving the biharmonic equation. The technical approach is
mainly base on a three critical points theorem of B. Ricceri.
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1 Introduction and Main Results
Consider the Navier boundary value problem involving the biharmonic equation{

(|u′′|u′′)′′ = λf(x, u) + µg(x, u), in ]0, 1[,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(P)

where λ, µ ∈ [0,+∞), f, g : [0, 1]× R→ R are Carathéodory functions.
Here in the sequel, X will be denoted the Sobolev space W 2,2([0, 1]) ∩W 1,2

0 ([0, 1])
and will be endowed with the norm

‖u‖ =

(∫ 1

0

|u′′|3 dx
)1/3

.

As usual, a weak solution of problem (P) is any u ∈ X such that∫ 1

0

|u′′|u′′ξ′′dx = λ

∫ 1

0

f(x, u)ξdx+ µ

∫ 1

0

g(x, u)ξdx (1.1)
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for every ξ ∈ X .
The fourth-order equation of nonlinearity furnishes a model to study traveling waves

in suspension bridges, so it’s important to Physics. Many authors consider this type
equation, we refer to [1–3] and there reference therein.

To the best of our knowledge, there are few results about multiple solutions to bi-
harmonic equation. In this paper, we prove the existence of at least three solutions of
problem (P). The technical approach is based on the three critical points theorem of

Ricceri [5]. Let F (x, s) =

∫ s

0

f(x, ξ)dξ. Our main result is the following theorems.

Theorem 1.1. Assume that there exist three positive constants c, d and γ with γ < 3,
c

3
√

6 < 16d and a function a(x) ∈ L1([0, 1]), such that

(j1) f(x, s) ≥ 0 for every (x, s) ∈ [0, 1/4] ∪ [3/4, 1]× [0, d];

(j2)
1

6c3
max

(x,s)∈[0,1]×[−c,c]
F (x, s) <

1

4096d3

∫ 3/4

1/4

F (x, d)dx;

(j3) F (x, s) ≤ a(x)(1 + |s|γ) for all s ∈ R.

Then there exist an open interval Λ ⊆ [0,+∞) and a positive real number ρ with the
following property: for each λ ∈ Λ and for each Carathéodory function g : [0, 1]×R→
R, satisfying

(j4) sup
{|s|≤ζ}

|g(·, s)| ∈ L1([0, 1]), for all ζ > 0,

there exists δ > 0 such that, for each µ ∈ [0, δ], problem (P) has at least three solutions
whose norms in X are less than ρ.

We now want to point out a consequence of Theorem 1.1.

Theorem 1.2. Let f : R → R be a continuous function. Put F (s) =

∫ s

0

f(η)dη for

each s ∈ R and assume that there exist three positive constants c, d and γ with γ < 3,
c

3
√

6 < 16d and a positive constant a, such that

(k1) f(s) ≥ 0 for every s ∈ [0, d];

(k2)
1

6c3
max
s∈[−c,c]

F (s) <
1

4096d3
F (d);

(k3) F (s) ≤ a(1 + |s|γ) for all s ∈ R.

Then there exist an open interval Λ ⊆ [0,+∞) and a positive real number ρ with the
following property: for each λ ∈ Λ and for each Carathéodory function g : [0, 1]×R→
R, satisfying
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(k4) sup
{|s|≤ζ}

|g(·, s)| ∈ L1([0, 1]), for all ζ > 0,

there exists δ > 0 such that, for each µ ∈ [0, δ], problem{
(|u′′|u′′)′′ = λf(u) + µg(x, u), in ]0, 1[,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(P ′)

has at least three solutions whose norms in X are less than ρ.

Remark 1.3. In Theorem 1.2, if f(s) ≥ 0 for every s ∈ [−c, d]. Then, instead of

condition (k1) and (k2), we put
F (c)

6c3
<

F (d)

4096d3
and the result holds.

2 Proof of the Main Result
For the reader’s convenience, we recall the revised form of Ricceri’s three critical points
theorem.

Theorem 2.1 (See [5, Theorem 1]). LetX be a reflexive real Banach space. Φ: X 7→ R
is a continuously Gâteaux differentiable and sequentially weakly lower semicontinu-
ous functional whose Gâteaux derivative admits a continuous inverse on X∗ and Φ is
bounded on each bounded subset of X; Ψ: X 7→ R is a continuously Gâteaux differ-
entiable functional whose Gâteaux derivative is compact; I ⊆ R an interval. Assume
that

lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞

for all λ ∈ I , and that there exists h ∈ R such that

sup
λ∈I

inf
x∈X

(Φ(x) + λ(Ψ(x) + h)) < inf
x∈X

sup
λ∈I

(Φ(x) + λ(Ψ(x) + h)). (2.1)

Then, there exists an open interval Λ ⊆ I and a positive real number ρ with the fol-
lowing property: for every λ ∈ Λ and every C1 functional J : X 7→ R with compact
derivative, there exists δ > 0 such that, for each µ ∈ [0, δ] the equation

Φ′(x) + λΨ′(x) + µJ ′(x) = 0

has a least three solutions in X whose norms are less than ρ.

Now we can give the proof of our main result.

Proof of Theorem 1.1. For each u ∈ X , let

Φ(u) =
‖u‖3

3
, Ψ(u) = −

∫ 1

0

F (x, u)dx, −J(u) =

∫ 1

0

∫ u(x)

0

g(x, ξ)dξdx.
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Under the condition of Theorem 1.1, Φ is a continuously Gâteaux differentiable and
sequentially weakly lower semicontinuous functional. Moreover, Φ admits a continuous
inverse onX∗. Ψ and J are continuously Gâteaux differential functional whose Gâteaux
derivative is compact. Obviously, Φ is bounded on each bounded subset of X .

Thanks to (j3), for each λ > 0, one has that

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞, (2.2)

and so the first assumption of Theorem 2.1 holds.
Let

u∗(x) =


d− 16d(1/4− |x− 1/2|)2, x ∈

[
0,

1

4

]
∪
[

3

4
, 1

]
,

d, x ∈
]

1

4
,
3

4

[
,

It is easy to verify that u∗ ∈ W 2,3([0, 1]) ∩W 1,3
0 ([0, 1]), and in particular, one has

‖u∗‖3 =
(32d)3

2
. (2.3)

Now, let r = (2c)3 and by the assumption of c 3
√

6 < 16d we have that

‖u∗‖3

3
> r > 0.

Moreover, it follows from (j1) that∫ 3
4

1
4

F (x, u∗(x))dx ≥ 0.

One has

max
(x,s)∈[0,1]×[−c,c]

F (x, s) <
6c3

4096d3

∫ 3/4

1/4

F (x, d)dx ≤ 3r

∫ 1

0
F (x, u∗(x))dx

‖u∗‖
. (2.4)

Namely

max
(x,s)∈[0,1]×[−c,c]

F (x, s) < 3r

∫ 1

0
F (x, u∗(x))dx

‖u∗‖
.

For each r > 0, if u ∈ X satisfying ‖u‖ ≤ 3
√

3r, due to the inequality max
x∈[0,1]

|u(x)| ≤

1

2
3
√

3‖u‖, one has max
x∈[0,1]

|u(x)| ≤
3
√
r

2
= c.
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So, we have that

sup
{Φ(u)≤r}

−Ψ(u) = sup
{u|‖u‖p≤pr}

∫ 1

0

F (x, u)dx

≤ max
(x,s)∈[0,1]×[−c,c]

F (x, s)

<

∫ 1

0
F (u∗(x))dx

‖u∗‖p
.

Therefore, using [4, Proposition 3.1], with u0 = 0 and u1 = u∗, we obtain

sup
λ≥0

inf
x∈X

(Φ(x) + λ(h+ Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(h+ Ψ(x))), (2.5)

and so the assumption (2.1) of Theorem 2.1 holds.
Now, set I = [0,+∞), by (2.2), (2.5), all the assumptions of Theorem 2.1 are

satisfied. Hence, our conclusion follows from Theorem 2.1.
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