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Abstract
In this paper, we study oscillatory behaviour of all solutions of first-order delay

differential equations with a forced term of the form:
[
x(t)− r(t)x

(
ρ(t)

)]′
+p(t)x

(
τ(t)

)
−q(t)x

(
σ(t)

)
= f(t), t ∈ [t0,∞)\{θn}n∈N,

x(θ+n ) = In
(
x(θn)

)
, n ∈ N,

where {θn}n∈N is the set of fixed impulse points, ρ, τ, σ are delay functions and
r, p, q are nonnegative continuous coefficients, while f is an integrable forcing
term. Some examples are given to illustrate the applicability of the new results.

AMS Subject Classifications: 39A10, 34C10.
Keywords: Oscillation, first-order delay differential equations, impulse effects, positive
and negative coefficients.

1 Introduction
In this paper, we consider the oscillation of all solutions of the following type neutral
delay differential equations involving positive and negative coefficients under impulse
effects:

[
x(t)− r(t)x

(
ρ(t)

)]′
+p(t)x

(
τ(t)

)
−q(t)x

(
σ(t)

)
= f(t), t ∈ [t0,∞)\{θn}n∈N,

x(θ+n ) = In
(
x(θn)

)
, n ∈ N,

(1.1)

where t0 ∈ R and {θn}n∈N ⊂ [t0,∞) is an increasing divergent sequence of impulse
points, with the following primary assumptions:
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(H1) ρ, τ, σ ∈ C([t0,∞),R) are increasing unbounded functions, which satisfy ρ(t) ≤
t and τ(t) ≤ σ(t) ≤ t for all t ∈ [t0,∞). α ∈ C1([t0,∞),R) is defined by

α(t) := σ−1
(
τ(t)

)
for t ≥ t0 (1.2)

and satisfies α(t) < t for all t ∈ [t0,∞). Moreover, ρ, σ satisfy {ρ−1(θn)}n∈N,
{σ−1(θn)}n∈N ⊂ {θn}n∈N. Here, ρ−1 and σ−1 denote the inverses of the functions
ρ and σ, respectively.

(H2) p, q ∈ C([t0,∞),R+) satisfy

h(t) :=
p
(
α−1(t)

)
α′
(
α−1(t)

) − q(t) ≥ 0 for t ≥ t0, (1.3)

where α ∈ C1([t0,∞),R) is defined in (1.2), and h 6≡ 0 on (θn, θn+1) for all
n ∈ N.

In the case of constant delays, i.e., τ(t) = t − τ0 and σ(t) = t − σ0, where τ0 ≥
σ0 ≥ 0, we have α(t) = t− τ0 + σ0 and h(t) = p(t− σ0 + τ0)− q(t) for t ≥ t0, while
for pantograph equations, i.e., τ(t) = t/τ0 and σ(t) = t/σ0, where τ0 ≥ σ0 ≥ 1, we
have α(t) = σ0t/τ0 and h(t) = p(τ0t/σ0)− q(t) for t ≥ t0.

(H3) In ∈ C(R,R) for all n ∈ N, and there exists a sequence of positive reals {λn}n∈N
such that λn ≤ In(x)/x ≤ 1 for all x ∈ R\{0} and n ∈ N.

The set of piecewise left continuous functions PLCθ([t0,∞),R+) with respect to
the impulse sequence {θn}n∈N consists of the functions ν ∈ PLCθ([t0,∞),R+) such
that the following three properties hold:

(P1) ν is left-continuous on (t0, θ1] and (θn, θn+1] for all n ∈ N,

(P2) ν(θ+n ) := lim
t→θ+n

ν(t) exists for all n ∈ N,

(P3) ν(θn) = ν(θ−n ) := lim
t→θ−n

ν(t) for all n ∈ N.

Below, we list some more additional hypothesis required for the study of oscillation
of solutions.

(H4) r ∈ PLCθ([t0,∞),R+
0 ) satisfies λκ(n)r(θ+n ) ≥ r(θn), where κ : N → N satisfies

κ(n) < n and θκ(n) = ρ(θn), for all n ∈ N.

(H5) f ∈ L1([t0,∞)) ∩ PLCθ([t0,∞),R).
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To mention the significance of this work, we would like to continue the paper by
giving a short brief on the works, which examine particular equations that can be derived
from (1.1).

Let In ≡ I, where I is the identity function, and ρ(t) = t − ρ0, τ(t) = t − τ0,
σ(t) = t− σ0, where ρ0, τ0, σ0 ≥ 0, then (1.1) reduces to the following equation:[

x(t)− r(t)x(t− ρ0)
]′

+ p(t)x(t− τ0)− q(t)x(t− σ0) = f(t), t ≥ t0, (1.4)

of which oscillatory nature of all solutions have been studied extensively in the literature
(see [5–14, 16, 17] and the papers cited therein). Unlike to these mentioned papers, we
shall introduce a new type of companion transformation, which involves the positive
coefficient as the integrand.

Again, in (1.1), let In ≡ I, f ≡ 0 and ρ(t) = t/ρ0, τ(t) = t/τ0, σ(t) = t/σ0 with
ρ0, τ0, σ0 ≥ 1, then we obtain the following equation:[

x(t)− r(t)x(t/ρ0)
]′

+ p(t)x(t/τ0)− q(t)x(t/σ0) = 0, t ≥ t0. (1.5)

So called Euler-type equation (1.5) is studied in [4]. Clearly, our results not only gener-
alize (to arbitrary delays) but also improve most of the recent results in the literature.

To the best of our knowledge, [1] is the first paper, which attempted to study (1.1)
with arbitrary delays, In ≡ I and r, f ≡ 0 of the form:

x′(t) + p(t)x
(
τ(t)

)
− q(t)x

(
σ(t)

)
= 0, t ≥ t0. (1.6)

The method employed in that paper is indeed very interesting and different than the
papers mentioned previously as it uses tools from functional analysis, but unfortunately,
there are some inconsistencies in the proof of [1, Theorem 1]. To salvage the results
in [1], they restricted their attention to those equations of which every nonoscillatory
solution is eventually monotonic (see [2]). Consequently, our sufficient conditions on
the oscillation of (1.1) seem to be the first ones related to all solutions of the neutral
delay differential equations involving opposite signed coefficients, arbitrary delays and
impulse effects.

Let f ≡ 0, ρ(t) = t − ρ0, τ(t) = t − τ0, σ(t) = t − σ0, then (1.1) reduces to the
following form:

[
x(t)− r(t)x(t− ρ0)

]′
+p(t)x(t− τ0)
−q(t)x(t− σ0) = 0, t ∈ [t0,∞)\{θn}n∈N,

x(θ+n ) = In
(
x(θn)

)
, n ∈ N.

(1.7)

In [14], (1.7) is studied as well. The authors made a little mistake in the proof of
[14, Theorem 2.1] by assuming that the companion functions, which are defined by
different parameters, are the same, and the statement of [14, Theorem 2.1] is corrected
in [15]. While extending the results in [14] to forced type equations, we also salvage [14,



208 B. Karpuz and Ö. Öcalan

Theorem 2.1] by giving a correct proof for it in the best possible condition, and extend
the results given in [17].

As a last note, with all humbleness, we would like to say that our results correct some
erroneous results on forced differential equations with positive and negative coefficients,
i.e., the proofs of main theorems of [8, 10] yield problems when studying eventually
negative solutions, and the forced term is supposed to be eventually positive without
being mentioned in the main result of [16].

Let t−1 := min{ρ(t0), τ(t0), σ(t0)}, with (1.1), we associate an initial condition of
the form

x(t) = Ψ(t), t ∈ [t−1, t0], (1.8)

where Ψ ∈ C([t−1, t0],R).

Definition 1.1. A real-valued function x is called a solution corresponding to t0 of the
initial value problem (1.1) and (1.8) if the following two conditions hold:

(C1) x(t) = Ψ(t) for all t ∈ [t−1, t0] and x ∈ PLCθ([t0,∞),R),

(C2) x(t)− r(t)x(ρ(t)) is continuously differentiable for all t ∈ [t0,∞)\{θn}n∈N. Fur-
ther, x satisfies the differential equation in (1.1) on [t0,∞)\{θn}n∈N, while satis-
fies the impulse condition for all n ∈ N.

Definition 1.2. A solution x of (1.1) is called oscillatory if there exists an increasing
divergent sequence {ξn}n∈N such that x(ξn)x(ξ+n ) ≤ 0 for all n ∈ N; otherwise, the
solution is called nonoscillatory.

Definition 1.3. (1.1) is called oscillatory if it possesses oscillatory solutions for every
initial function Ψ given by (1.8).

Note that all solutions of (1.1) are oscillatory provided that there exists an increasing
divergent subsequence {nk}k∈N ⊂ N satisfying Ink

(x)/x ≤ 0 for all x ∈ R\{0} and all
k ∈ N. Therefore, examining (1.1) under (H3) makes sense.

2 Main Results
In this section, we always suppose that (H1)–(H5) hold. We introduce

β(t) :=

{
τ(t), r ≡ 0

min{ρ(t), τ(t)}, r 6≡ 0
and γ(t) :=


σ(t), r ≡ 0, q 6≡ 0

ρ(t), r 6≡ 0, q ≡ 0

max{ρ(t), σ(t)}, r 6≡ 0, q 6≡ 0

for t ∈ [t0,∞). Throughout the paper, h defined by (1.3) is assumed to satisfy h 6≡ 0.
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Lemma 2.1. Assume that

r(t) +

∫ t

α(t)

q(η) dη ≤ 1 for all sufficiently large t. (2.1)

Let x be a solution of (1.1), and set the companion function zx of x by

zx(t) := x(t)− r(t)x
(
ρ(t)

)
−
∫ t

α(t)

p
(
α−1(η)

)
α′
(
α−1(η)

)x(σ(η)
)

dη +

∫ ∞
t

f(η) dη (2.2)

for t ∈ [β−1(t0),∞). Then, the followings hold:

(i) if x is an eventually positive solution of (1.1), then zx is of positive sign eventually,

(ii) if x is an eventually negative solution of (1.1), then zx is of negative sign eventu-
ally.

Before starting the proof, we would like to mention that, zx left-continuous on
[β−1(t0),∞)\{θn}n∈N. Since x ◦ ρ and x ◦ σ have discontinuities at {ρ−1(θn)}n∈N
and {σ−1(θn)}n∈N, respectively, and {ρ−1(θn)}n∈N, {σ−1(θn)}n∈N ⊂ {θn}n∈N holds by
(H1), zx is only discontinuous at the points {θn}n∈N.

Proof. (i) There exists n1 ∈ N(n0) such that x(t), x(ρ(t)), x(τ(t)), x(σ(t)) > 0 and
(2.1) hold for all t ∈ [θn1 ,∞). From (1.1) and (2.2), we get

z′x(t) =
[
x(t)− r(t)x

(
ρ(t)

)]′ − p
(
α−1(t)

)
α′
(
α−1(t)

)x(σ(t)
)
− p(t)x

(
τ(t)

)
− f(t)

≤ −h(t)x
(
σ(t)

)
≤ 0 (2.3)

for all t ∈ (θn, θn+1] and all n ∈ N(n1). Now, we prove that zx is nonincreasing
on [θn1 ,∞). Note that x(θ+n ) = In

(
x(θn)

)
≤ x(θn) for all n ∈ N(n1) by (H3).

Considering (H3) and (H4), we have

r(θ+n )x(θ+κ(n)) = r(θ+n )Iκ(n)
(
x(θκ(n))

)
≥ λκ(n)r(θ

+
n )x(θκ(n))

≥ r(θn)x(θκ(n)), (2.4)

for all n ∈ N(n1). In view of (2.2) and (2.4), we obtain

zx(θ
+
n ) =x(θ+n )− r(θ+n )x(θ+κ(n))−

∫ θn

α(θn)

p
(
α−1(η)

)
α′
(
α−1(η)

)x(σ(η)
)

dη +

∫ ∞
θn

f(η) dη

≤x(θn)− r(θn)x(θκ(n))−
∫ θn

α(θn)

p
(
α−1(η)

)
α′
(
α−1(η)

)x(σ(η)
)

dη +

∫ ∞
θn

f(η) dη

=zx(θn), (2.5)
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for all n ∈ N(n1), which implies together with (2.3) that zx is nonincreasing on
[θn1 ,∞). By (H2), zx is of constant sign on [θn2 ,∞) for some n2 ∈ N(n1). To
prove that zx is positive on [θn2 ,∞), suppose on the contrary that zx(θn2) ≤ 0. In
view of (H2) and (H5), there exists n3 ∈ N(n2) satisfying

zx(θn3) < 0 and
∣∣∣∣ ∫ ∞

t

f(η) dη

∣∣∣∣ < −1

2
zx(θn3) for all t ∈ [θn3 ,∞).

Therefore, considering nonincreasing nature of zx and integrating the inequality
(2.3) over [θn3 , t), where t ≥ α−1(θn3), we obtain

zx(t) = zx(θn3)−
∫ t

θn3

h(η)x
(
σ(η)

)
dη −

∑
θn3<θk<t

[
zx(θk)− zx(θ+k )

]
≤ zx(θn3)−

∫ t

θn3

h(η)x
(
σ(η)

)
dη,

or equivalently

x(t) ≤zx(θn3) + r(t)x
(
ρ(t)

)
−
∫ t

θn3

h(η)x
(
σ(t)

)
dη

+

∫ t

α(t)

p
(
α−1(η)

)
α′
(
α−1(η)

)x(σ(η)
)

dη −
∫ ∞
t

f(η) dη

=zx(θn3) + r(t)x
(
ρ(t)

)
−
∫ α(t)

θn3

h(η)x
(
σ(η)

)
dη

+

∫ t

α(t)

q(η)x
(
σ(η)

)
dη −

∫ ∞
t

f(η) dη

≤1

2
zx(θn3) + r(t)x

(
ρ(t)

)
+

∫ t

α(t)

q(η)x
(
σ(η)

)
dη (2.6)

for all t ∈ [θn4 ,∞), where θn4 ≥ α−1(θn3). Now, set L := lim sup
t→∞

x(t) and

y(t) := sup{x(η) : η ∈ [β(t), γ(t))} for t ∈ [θn4 ,∞). Clearly, lim sup
t→∞

y(t) = L

holds. Hence, from (2.1) and (2.6), we have

x(t) ≤ 1

2
zx(θn3) +

(
r(t) +

∫ t

α(t)

q(η) dη

)
y(t)

≤ 1

2
zx(θn3) + y(t) (2.7)

for all t ∈ [θn4 ,∞). We claim that L is finite. That is, x is bounded. If not, there
exists T ∈ [θn4 ,∞) such that x(T+) = y(T+) holds. This indicates from (2.7)
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that

x(T+) ≤ 1

2
zx(θn3) + y(T+)

=
1

2
zx(θn3) + x(T+),

which is a contradiction to zx(θn3) < 0. Therefore, L is a finite constant. Taking
upper limit on both sides of (2.7) as t → ∞, we see that L ≤ zx(θn3)/2 + L,
which is also a contradiction. This contradiction proves that zx is an eventually
positive function.

(ii) Following the proof of (i), one can easily prove (ii). Thus, we omit.

Now, for a nondecreasing arbitrary function ϕ ∈ C([t0,∞),R+), we define the
function Φ : [t0,∞)2 → R+ by

Φ(t, s) := max

{∫ β−1(ξ)

ξ

dη

ϕ(η)
: ξ ∈ [s, t]

}
for s, t ∈ [t0,∞). (2.8)

Note that the function Φ(·, s), which plays the major role in the proof of the following
results, is increasing with respect to its first component on [s,∞) for each fixed s ∈
[t0,∞).

Lemma 2.2. Suppose that

r(t) +

∫ t

α(t)

p
(
α−1(η)

)
α′
(
α−1(η)

) dη ≥ 1 for all sufficiently large t (2.9)

and that
lim
n→∞

fn
(
β−n(t)

)
= 0 and lim

n→∞
fn
(
γ−n(t)

)
= 0 (2.10)

for each fixed sufficiently large t, where the recursion fn : [t0,∞)→ R+ is defined by

fn(t) :=



0, n = 0

r(t)fn−1
(
ρ(t)

)
+

∫ t

α(t)

p
(
α−1(η)

)
α′
(
α−1(η)

)fn−1(σ(η)
)

dη

+

∫ ∞
t

f(η) dη, n ∈ N

(2.11)

for t ∈ [β−n(t0),∞). Further, suppose that there exists a nondecreasing function ϕ ∈
C([t0,∞),R+) such that the second-order impulsive differential inequality

x′′(t) +
λh(t)

ϕ(t)Φ(t, s)
x(t) ≤ 0, t ∈ [t0,∞)\{θn}n∈N,

x′(θ+n ) ≤ x′(θn), n ∈ N,
x(θ+n ) = x(θn), n ∈ N,

(2.12)
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where s ∈ [t0,∞), λ ∈ (0, 1) and Φ(·, s) is defined by (2.8), has no eventually positive
solutions. Then, the followings are true:

(i) if x is an eventually positive solution of (1.1), then zx introduced in (2.2) is of
negative sign eventually.

(ii) if x is an eventually negative solution of (1.1), then zx is of positive sign eventu-
ally.

Proof. (i) Similar to the proof of Lemma 2.1, it follows that there exists n1 ∈ N(n0)
such that θn1 ≥ s, x(t), x(ρ(t)), x(β(t)), x(σ(t)) > 0, zx(t) is nonincreasing,
(2.3), (2.9) and (2.12) hold for all t ∈ [θn1 ,∞). Therefore, zx is of constant
sign eventually. To prove zx is of negative sign eventually, suppose on contrary
that there exists n2 ∈ N(n1) such that θn2 ≥ β−1(θn1) and zx(t) > 0 for all
t ∈ [θn2 ,∞). Set µ := inf{x(η) : η ∈ [β(θn2), γ(θn2)]} > 0. From (2.2) and
(2.9), we have

x(t) ≥ zx(t) +

(
r(t) +

∫ t

α(t)

p
(
α−1(η)

)
α′
(
α−1(η)

) dη

)
µ−

∫ ∞
t

f(η) dη

> µ− f1(t)

for all t ∈ [γ−1(β(θn2)), θn2 ]. By iterating the above procedure and considering
(2.11), we see that

x(t) > µ− fn(t) for all t ∈ [γ−n(β(θn2)), γ
−(n−1)(θn2)] and all n ∈ N. (2.13)

Hence, (2.10) and (2.13) ensures existence of n3 ∈ N(n2) satisfying x(t) > µ/2
holds for all t ∈ [θn3 ,∞). Set L := lim

t→∞
zx(t). Now, we consider the following

possible ranges of L:

Case 1. L = 0. In this case, there exists, T ∈ [θn3 ,∞) such that

x(t) >
1

Φ(t, s)

∫ β−1(t)

T

zx(η)

ϕ(η)
dη for all t ∈ [T, β−1(T )]. (2.14)

Case 2. L > 0. In this case, we see that zx(t) > L for all t ∈ [θn3 ,∞), since zx
is nonincreasing. From (2.2) and (2.9), we have

x(t) > L+
µ

2
−
∫ ∞
t

f(η) dη for all t ∈ [β−1(θn3),∞).

Repeating the above procedure, we have

x(t) > nL+
µ

2
−fn(t) for all t ∈ [β−n(θn3),∞) and all n ∈ N. (2.15)

(2.10) and (2.15) shows that lim
t→∞

x(t) = ∞. Thus, there exists T ∈
[θn3 ,∞) such that (2.14) holds for all t ∈ [T, β−1(T )].
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Set

y(t) :=

∫ t

T

zx(η)

ϕ(η)
dη > 0 for t ∈ [T,∞). (2.16)

By the discussion made in Cases 1 and 2, we have

x(t) >
1

Φ(t, s)
y
(
β−1(t)

)
for all t ∈ [T, β−1(T )]. (2.17)

By (2.2), (2.9) and (2.17), we have

x(t) > zx(t) +

(
r(t) +

∫ t

α(t)

p
(
α−1(η)

)
α′
(
α−1(η)

) dη

)
1

Φ(t, s)
y(t)−

∫ ∞
t

f(η) dη

>
1

Φ(t, s)

∫ β−1(t)

t

zx(η)

ϕ(η)
dη +

1

Φ(t, s)
y(t)−

∫ ∞
t

f(η) dη

=
1

Φ(t, s)
y
(
β−1(t)

)
− f1(t) (2.18)

for all t ∈ [γ−1(T ), γ−1(β−1(T ))]. Applying induction to (2.18), we see that

x(t) >
1

Φ(t, s)
y
(
β−1(t)

)
− fn(t) (2.19)

for all t ∈ [γ−n(T ), γ−n(β−1(T ))] and all n ∈ N. Considering (2.10) and (2.19),
there exists n4 ∈ N(n3) such that

x
(
σ(t)

)
>

λ

Φ(t, s)
y(t) for all t ∈ [θn4 ,∞). (2.20)

Now, set

w(t) :=

∫ t

T

zx(η) dη for all t ∈ [θn4 ,∞). (2.21)

In view of (2.16), (2.20), (2.21) and the nondecreasing nature of ϕ, we have

x
(
σ(t)

)
>

λ

Φ(t, s)
y(t) ≥ λ

ϕ(t)Φ(t, s)
w(t) for all t ∈ [θn4 ,∞). (2.22)

Note that w′(t) = zx(t) and w′′(t) = z′x(t) hold for all t ∈ [θn4 ,∞)\{θn}n∈N.
Hence, we have w(θ+n ) = w(θn) and w′(θ+n ) = zx(θ

+
n ) ≤ zx(θn) = w′(θn) for all

n ∈ N(n5), where θn5 ≥ θn4 . Thus, (2.3), (2.21) and (2.22) show that

w′′(t) +
λh(t)

ϕ(t)Φ(t, s)
w(t) ≤ 0 for all t ∈ [θn5 ,∞)\{θn}n∈N. (2.23)

This contradicts to our assumption that (2.12) has no eventually positive solutions,
and proves that zx is of negative sign eventually.
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(ii) In this case, proof is very similar to the proof of (i), and thus is omitted.

Now, we give the following lemma which is extracted from [14, Lemma 2.4] (see
also [3]).

Lemma 2.3. Consider the second-order impulsive differential inequality
x′′(t) + a(t)x(t) ≤ 0, t ∈ [t0,∞)\{θn}n∈N,
x′(θ+n ) ≤ γnx

′(θn), n ∈ N,
x(θ+n ) ≥ x(θn), n ∈ N,

(2.24)

where a ∈ PLCθ([t0,∞),R+) and {γn}n∈N is a positive sequence of reals. If

∞∑
n=1

( n∏
k=1

1

γk

)∫ θn+1

θn

a(η) dη =∞,

then (2.24) has no eventually positive solutions.

Now, we state our main results, which can be regarded as generalized corrections
of [14, Theorem 2.1, Theorem 2.2] respectively.

Theorem 2.4. Assume that (2.1), (2.9), (2.10) hold. If (2.12) has no eventually positive
solutions, for some nondecreasing ϕ ∈ C([t0,∞),R+), some s ∈ [t0,∞) and some
λ ∈ (0, 1), then every solution of (1.1) is oscillatory.

Proof. Suppose on contrary that x is a nonoscillatory solution of (1.1). Let x be an
eventually positive(negative) solution. Lemma 2.1 contradicts Lemma 2.2 about the
sign of zx. Therefore, (1.1) can not have nonoscillatory solutions. That is, (1.1) is
oscillatory, and the proof is done.

Remark 2.5. In Theorem 2.4, we may let λ = 1, when f ≡ 0.

Corollary 2.6. Assume that (2.1), (2.9), (2.10) hold. If h/(ϕΦ(·, s)) 6∈ L1([t0,∞)) for
some nondecreasing ϕ ∈ C([t0,∞),R+) and some s ∈ [t0,∞), where Φ(·, s) is defined
by (2.8), then every solution of (1.1) is oscillatory.

Proof. It is obvious that h/(ϕΦ(·, s)) 6∈ L1([t0,∞)) implies that

1

2

∞∑
n=1

∫ θn+1

θn

h(η)

ϕ(η)Φ(η, s)
dη =

1

2

∫ ∞
θ1

h(η)

ϕ(η)Φ(η, s)
dη =∞.

Applying Theorem 2.4 and Lemma 2.3 with λ = 1/2 and γn = 1 for all n ∈ N, we see
that (1.1) is oscillatory.



Oscillation of Differential Equations 215

3 Applications and Conclusions
In this section, we shall provide some examples for impulsive delay differential equa-
tions with a nontrivial forcing term. Because of the nontrivial forcing term, none of the
results in the literature are applicable for the equations in below.

Example 3.1. Consider the following differential equation

[
x(t)− 1

2
(dte − t)x(t− 1)

]′
+

(
3

2
+

1

t− 1

)
x(t− 2)

−
(

1

2
− 1

t

)
x(t− 1) =

1

t4
, t ∈ [3,∞)\{n+ 2}n∈N,

x((n+ 2)+) =
n+ 1

n+ 3
x(n+ 2), n ∈ N,

(3.1)

where d·e denotes the smallest integer function, θn = n+2 and λn = (n+1)/(n+3) for
n ∈ N. For (3.1), we have α(t) = t−1, β(t) = t−2, γ(t) = t−1 and h(t) = 1+2/t for
t ≥ 3. Letting ϕ ≡ 1, we see that Φ(·, 3) ≡ 2 holds. Clearly, (H1)–(H5) are satisfied and
that h 6∈ L1([3,∞)). In fact, n ∈ N, we have κ(n) = n−1, (dn+2e−(n+2))+/2 = 1/2
and (dn+ 2e − (n+ 2))/2 = 0, which indicates that

n

n+ 2

1

2
≥ 0 for all n ∈ N.

For all sufficiently large t, we deduce that

1

2
(dte − t) +

∫ t

t−1

(
1

2
− 1

η

)
dη ≤ 1,

1

2
(dte − t) +

∫ t

t−1

(
3

2
+

1

η − 2

)
dη ≥ 1,

and, we get
1

2

∫ ∞
3

(
1 +

2

η

)
dη =∞.

Also it can be shown that (2.10) is satisfied for (3.1), because the forced term 1/t4

decreases to zero sufficiently fast at infinity and r, p are bounded. All the conditions of
Corollary 2.6 are satisfied, thus every solution of (3.1) is oscillatory.

Example 3.2. Consider the following differential equation

[
x(t)−

(
e− edln(t)e

e2dln(t)e(e− 1)
(t− edln(t)e) +

1

edln(t)e

)
x(t/e)

]′
+x(t/e2)− 1

et
x(t/e) =

1

et
, t ∈ [1,∞)\{en}n∈N,

x((en)+) =
1

en−1
x(en), n ∈ N,

(3.2)
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where θn = en and λn = 1/en−1 for n ∈ N. It is easy to see that α(t) = t/e, β(t) =
t/e2, γ(t) = t/e and h(t) = (1 − 1/t)/e for t ≥ 1. Letting ϕ ≡ 1, we have that
Φ(t, 1) = t/e for t ≥ 1. (H1)–(H5) hold and that h/g(·, 1) 6∈ L1([1,∞)). Note that
1/e ≥ r(t) ≥ 1/edln(t)e holds for all t ≥ 1. Also, it is obvious that κ(n) = n − 1,
r((en)+) = 1/e and r(en) = 1/en for all n ∈ N, which shows that (H4) holds, i.e.
1/en−1 ≥ 1/en for all n ∈ N. Clearly, for all sufficiently large t, we have

1

e
+

∫ t

t/e

1

eη
dη ≤ 1,

1

edln(t)e
+

∫ t

t/e

1

e
dη ≥ 1,

and, we get ∫ ∞
1

e

η

(
1− 1

η

)
dη =∞.

As an easy exercise, the readers may verify that (2.10) also holds. All the conditions of
Corollary 2.6 are held, hence every solution of (3.2) oscillates.

We would like to mention at this point that Theorem 2.4 for homogeneous equa-
tions (f = 0) corrects the main result of [14] (see [15]). Our results for nonimpulsive
equations (1.4) with constant delays generalize and improve the main results of the pa-
pers [10,16]. Next, we focus our attention to equations of the form (1.4) and (1.5), when
there is no forcing term and no impulse effect. In this case, we can obtain the following
results. We first consider equations with constant delays.

Corollary 3.3. Assume that ρ0 ≥ 0, τ0 ≥ σ0 ≥ 0, p(t − σ0 + τ0) − q(t) ≥ 0 (6≡ 0) for
t ≥ t0 and

r(t) +

∫ t

t−τ0+σ0
q(η) dη ≤ 1, r(t) +

∫ t

t−τ0+σ0
p(η − σ0 + τ0) dη ≥ 1 for all t ≥ t0

and
x′′(t) +

1

max{ρ0, τ0}
(
p(t− σ0 + τ0)− q(t)

)
x(t) = 0 for all t ≥ t0

is oscillatory. Then, (1.4) with f = 0 is also oscillatory.

Corollary 3.3 follows by letting ϕ(t) ≡ 1 for t ≥ t0. This result improves and
corrects the main results of [7,9], respectively. Next, we consider pantograph equations.

Corollary 3.4. Assume that ρ0 ≥ 1, τ0 ≥ σ0 ≥ 1, p(τ0t/σ0)− q(t) ≥ 0 (6≡ 0) for t ≥ t0
and

r(t) +

∫ t

σ0t/τ0

q(η) dη ≤ 1, r(t) +

∫ t

σ0t/τ0

p(τ0η/σ0) dη ≥ 1 for all t ≥ t0

and

x′′(t) +
1

ln
(

max{ρ0, τ0}
) 1

t

(
τ0
σ0
p(τ0t/σ0)− q(t)

)
x(t) = 0 for all t ≥ t0

is oscillatory. Then, (1.5) is also oscillatory.
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We finalize the paper by mentioning that Corollary 3.4 improves the main results
of [4]. To obtain this result, we let ϕ(t) = t for t ≥ t0.
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