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Abstract

We study one scalar holomorphic function of finitely many complex variables
which, under the assumption that one of the two coefficient matrices has all dis-
tinct eigenvalues, allows to calculate the Stokes multipliers of Okubo’s confluent
hypergeometric system. Many properties of this function, including a nonlinear
functional equation, are obtained. An open question is whether the function is
uniquely determined by this functional equation, after specifying suitable addi-
tional conditions.
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1 Introduction
The hypergeometric system and its confluent form have both been investigated by many
authors – for a discussion of existing results, and for a representation of its solutions in
terms of a single (scalar) function, compare a recent article of B. and Röscheisen [7], or
the PhD thesis of C. Röscheisen [9]. In this paper, we shall mainly concentrate on the
confluent system, denoted as

zx′ = A(z)x, A(z) = zΛ + A1, Λ = diag[λ1, . . . , λn]. (1.1)

We shall always assume that the numbers λ1, . . . , λn are all distinct, referring to this
situation as the distinct eigenvalue case. The origin is a singularity of first kind of
(1.1), and it is well known that the cases where no two eigenvalues of A1 differ by a
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nonzero integer are especially convenient for a computation of solutions by a power se-
ries “ansatz” at the origin. We refer to such a situation as a case satisfying the eigenvalue
condition at the origin.

In the theory of formal and proper invariants, presented in work by Balser, Jurkat,
and Lutz [1,2,8], the diagonal elements ofA1 have been shown to be of a special nature.
Therefore, we shall always split A1 = Λ′ + A, with

Λ′ = diag[λ′1, . . . , λ
′
n], A =


0 a12 . . . a1n

a21 0 . . . a2n
... . . . ...
an1 an2 . . . 0

 . (1.2)

Our goal is to study the so-called Stokes multipliers of (1.1) as functions of the param-
eters contained in the matrices Λ, Λ′ and, in particular, in A. In dimension n = 2 the
multipliers can be explicitly computed, using the classical Gamma function – see (1.4)
for the relevant formulas. It is commonly believed, although perhaps not rigorously
proven by means of differential Galois theory, that for n ≥ 3 the Stokes multipliers in
general cannot be expressed in terms of “known” higher transcendental functions, but
are “new” functions of the parameters in Λ, Λ′, and A. What we intend to do in this
article is to analyze, as much as possible, the nature of these functions. In particular, we
shall show in Section 2 (c) that one scalar function v(Λ,Λ′, A) suffices to compute all
the entries in the Stokes multipliers, and we shall obtain a nonlinear functional equation
for v(Λ,Λ′, A). It is worth emphasizing, although not really surprising, that this func-
tional equation has a natural interpretation with regards to the system (1.1). Roughly
speaking, this equation expresses the fact that the Stokes multipliers are invariant with
respect to very simple meromorphic transformations of (1.1). For certain concrete con-
stellations of the parameters Λ, Λ′ and A, such a transformation may fail to exist, but
here we regard the entries of Λ, Λ′, and A as variables and show that the transforma-
tion matrices are meromorphic functions in these variables. The location of the poles of
these functions is also analyzed.

Ideally, we should have liked to prove that the function v(Λ,Λ′, A) is uniquely char-
acterized by the functional equation obtained here plus some additional (initial?) con-
ditions. Unfortunately we have not been able to do this here! In the past, there has
been one article by Y. Sibuya [10] in which, for a certain second order linear ODE, a
functional equation for a Stokes multiplier has been investigated. In oral communica-
tions, Sibuya explained to the author that he, too, has been aiming at characterizing the
relevant entries in the Stokes multipliers by means of their functional properties. So in
a way, this article is a continuation, resp. extension, of his work to a much wider class
of equations.

The Stokes multipliers correspond uniquely to a preselected formal fundamental
solution for (1.1) – compare, e.g., the papers of Balser, Jurkat, and Lutz [1,2,8] for more
details. In the distinct eigenvalue case which we investigate here, there is a uniquely
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defined formal fundamental solution X̂(z) having the form

X̂(z) = F̂ (z)zΛ′
ezΛ, (1.3)

where F̂ (z) =
∞∑
0

z−jFj is a formal (matrix) power series in 1/z beginning with

F0 = I . The corresponding family of Stokes multipliers then contains exactly n (n−1)
nontrivial entries – more precisely, for every pair (j, k) with j 6= k, 1 ≤ j, k ≤ n, there
exists exactly one Stokes multiplier with a nontrivial entry in position (j, k). Therefore,
we may combine the collection of these entries as the off-diagonal terms of an n × n
matrix V = V (Λ,Λ′, A), choosing zeros for the values along the diagonal. It is the
nature of this matrix, regarded as a function of the entries in Λ, Λ′, and A, which we are
going to investigate in this article! To emphasize the fact that we consider the matrices
Λ, Λ′, and A as variables, we shall refer to V (Λ,Λ′, A) as the Stokes matrix function.
Occasionally we shall consider Λ and Λ′ as fixed, and then write V (A) for this function.

As has been said above, it is only in dimension n = 2 that we can explicitly compute
the Stokes matrix function: In this situation, let α, β be so that

α + β = λ′2 − λ′1, αβ = −a12a21.

In other words, α and β are the (not necessarily distinct) solutions of a quadratic equa-
tion, and α + λ′1, β + λ′1 are the eigenvalues of A1. Then we have, according to results
in the Springer Lecture Notes of W. B. Jurkat [8] or the article of Balser, Jurkat, and
Lutz [2]:

V =

[
0 v12

v21 0

]
, v21 =

2πia21(λ2 − λ1)λ
′
2−λ′1eiπ(λ′1−λ′2)

Γ(1 + α)Γ(1 + β)
,

v12 =
2πia12(λ2 − λ1)λ

′
1−λ′2e2πi(λ′2−λ′1)

Γ(1− α)Γ(1− β)
.

(1.4)

This case may serve as an example for the results obtained in this article, and shall be
considered in some detail in Section 7.

2 Known Results
The following results on the Stokes matrix function V (Λ,Λ′, A) may be easily derived
from earlier articles:

(a) It follows from results in articles of Balser and Röscheisen [3,4,9] that V (Λ,Λ′, A)
is an entire function of the elements of A, and the coefficients of its power series
expansion may be computed recursively. The dependence upon the other matrices
Λ and Λ′ is more involved and shall here be investigated to some degree only.
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(b) Fixing the matrices Λ and Λ′, the Stokes matrix function V (A) is a mapping from
Cn(n−1) into itself, and according to results obtained by the author [5] this map can,
at every point A ∈ Cn(n−1) where A1 = Λ′ + A satisfies the eigenvalue condi-
tion at the origin, be (locally) inverted to obtain an even more interesting reverse
Stokes matrix function A(V ). These “good” points form an open and dense subset
of Cn(n−1). At these points, the function A(V ) is holomorphic, while the remaining
ones in general are branch points.

(c) A transformation x = Px̃, with an arbitrary permutation matrix P , may be used
to transform (1.1) into a new system of the same form, but with Λ and A1 replaced
by P−1ΛP and P−1A1P . To this new system then corresponds the Stokes matrix
P−1V (Λ,Λ′, A)P . In other words, we obtain the following identity for the Stokes
matrix function:

V (P−1ΛP, P−1Λ′P, P−1AP ) = P−1V (Λ,Λ′, A)P. (2.1)

This transformation behaviour makes it obvious that we need only find one off-
diagonal entry of V (Λ,Λ′, A), e.g., v21(Λ,Λ′, A), since for every pair (j, k) with
j 6= k, 1 ≤ j, k ≤ n, we can find a permutation matrix P so that

vjk(Λ,Λ
′, A) = v21(P−1ΛP, P−1Λ′P, P−1AP ).

Therefore, analogously to the solutions of (1.1), it is one scalar Stokes function
v(Λ,Λ′, A) := v21(Λ,Λ′, A) that suffices to compute all elements of the Stokes
matrix V (Λ,Λ′, A).

(d) In dimension n = 2, the function v(Λ,Λ′, A) can be expressed in terms of Gamma
function and other elementary transcendental ones like the exponential function and
the logarithm – see (1.4) for the explicit formulas. For n ≥ 3 we have made it clear
in (c) that one higher transcendental function v(Λ,Λ′, A) suffices to compute all
Stokes multipliers – an open question is, however, whether this one can be expressed
in terms of another (simpler) function which, analogously to the situation of n = 2,
might be a solution of some difference equation.

(e) LetD be any invertible diagonal matrix. From results in the papers of Balser, Jurkat,
and Lutz [1, 2, 8] one can derive that

V (Λ,Λ′, D−1AD) = D−1V (Λ,Λ′, A)D. (2.2)

This identity might be used to restrict to situations where, e.g., the entries in the first
row of A are either zero or normalized to equal 1, but this will not be done here.
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3 Elementary Transformations

In this section we shall introduce and study some elementary meromorphic transforma-
tions that are of great importance for (1.1), and which are the origin of the functional
equation for the Stokes matrix function.

As in the author’s book [6], a square matrix T (z), whose elements are holomorphic
outside of a sufficiently large disc about the origin, shall be called a meromorphic trans-
formation matrix (near the point infinity), provided that its entries have at most poles at
infinity and its determinant is not identically zero – then, the inverse matrix again is a
meromorphic transformation matrix. Setting x = T (z)x̃, we see that x is a solution of
(1.1) if, and only if, x̃ satisfies the system zx̃ = Ã(z)x̃, with Ã(z) and A(z) linked by
the identity

zT ′(z) = A(z)T (z)− T (z)Ã(z). (3.1)

For a confluent hypergeometric system (1.1) it is not clear whether, aside from the trivial
case of T (z) = I , we may choose a meromorphic transformation matrix so that the
coefficient matrix of the transformed system is again of the form, say, Ã(z) = zΛ̃ + Ã1,
with Ã1 = Λ̃′ + Ã and the diagonal terms of Ã vanishing, but let us assume that this
is the case. Then, the general theory of invariants presented by Balser, Jurkat, and
Lutz [1,2] tells us that Λ̃, up to the ordering of the diagonal elements, coincides with Λ.
Hence, replacing T (z) by T (z)P , with a suitable permutation matrix P , we may assume
that Λ̃ = Λ. Having done so, one obtains from the same articles quoted above that
Λ̃′ = Λ′ +K, with a diagonal matrix K of integer diagonal entries. It is this possibility
to change the numbers λ′ν by integers that leads to interesting identities for the Stokes
matrix function. Aside from the diagonal values, a meromorphic transformation may
also change the eigenvalues of A1 by integers. In the sequel, we wish to find the most
elementary transformations that result in such a change. In order to do so, we consider
two hypergeometric systems with coefficient matrices A(z) = zΛ + A1 and Ã(z) =
zΛ + Ã1, using the following modified notation:

(A) Let some natural number m < n be given, and block the coefficient matrices in the
form

Λ =

[
Λ1 0
0 Λ2

]
, Λ′ =

[
Λ′1 0
0 Λ′2

]
, A =

[
A11 A12

A21 A22

]
(3.2)

(and analogously for Λ̃′ and Ã), with square diagonal blocks of dimension m resp.
n −m. In the distinct eigenvalue situation, both matrices Λj are diagonal, and in
particular their spectra are disjoint, or in other words: Λ1 and Λ2 do not have an
eigenvalue in common.

Using this notation, we intend to find a meromorphic transformation matrix of the spe-
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cial form1

T (z) =

[
z T12

0 I

] [
I 0
T21 I

]
=

[
z + T12T21 T12

T21 I

]
, (3.3)

so that (3.1) is satisfied. If this is so, then we shall say that T (z) is admissible for the
hypergeometric system (1.1) – observe that, given an admissible transformation matrix
for (1.1), the matrices Λ̃′ and Ã can be computed from (3.1).

An elementary computation shows that existence of an admissible transformation is
equivalent to the following seven (nonlinear) equations for the various blocks of T (z)
and Ã(z):

I = Λ1T12T21 + A11 + Λ′1 − (Ã11 + Λ̃′1)− T12T21Λ1,

0 = (A11 + Λ′1)T12T21 + A12T21 − T12T21(Ã11 + Λ̃′1)− T12Ã21,

0 = Λ1T12 − Ã12 − T12Λ2,

0 = (A11 + Λ′1)T12 + A12 − T12T21Ã12 − T12(Ã22 + Λ̃′2),
0 = A21 + Λ2T21 − T21Λ1,

0 = A21T12T21 + (A22 + Λ′2)T21 − T21(Ã11 + Λ̃′1)− Ã21,

0 = A21T12 + A22 + Λ′2 − T21Ã12 − (Ã22 + Λ̃′2).

Owing to the disjointness of the spectra of Λ1 and Λ2, we conclude that there exists
exactly one solution T21 of the (linear) equation

A21 = T21Λ1 − Λ2T21, (3.4)

and then the fifth one of the above identities holds. Let us for the moment assume that
we know T12. Then we may use the first, third, sixth, and seventh equation, in this order,
to compute the blocks Ã11 +Λ̃1, Ã12, Ã21, and Ã22 +Λ̃2. Inserting previously computed
blocks, and observing that the matrices Λ1 and Λ2 both are diagonal while the diagonal
entries of A11, Ã11, A22, and Ã22 vanish, we obtain the following results:

Λ̃′1 = Λ′1 − I, Ã11 = A11 − T12T21Λ1 + Λ1T12T21, (3.5)

Ã12 = Λ1T12 − T12Λ2, (3.6)

Ã21 = (Λ′2 + A22)T21 − T21(A11 + Λ′1 − I) + T21T12T21Λ1 − Λ2T21T12T21, (3.7)

Λ̃′2 = Λ′2, Ã22 = A22 − Λ2T21T12 + T21T12Λ2. (3.8)

1Observe that for convenience we shall write z instead of zI , for z ∈ C and an identity matrix of
appropriate size.
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Inserting into the fourth equation, we then obtain the following identity for the, still
undetermined, matrix T12, which shall be referred to as the main equation in this article:

T12(A22 + Λ′2)− (A11 + Λ′1)T12 = A12 − T12A21T12. (3.9)

If this equation holds, we can check that then the one remaining identity (the second
one of the original seven equations) is satisfied as well. So whether or not an admissi-
ble meromorphic transformation matrix for (1.1) exists is completely equivalent to the
question of whether (3.9) admits a solution T12. Such Riccati-type matrix equations
have been investigated in great detail. Here, we shall be content with the following
result that is an easy application of the implicit function theorem:

Theorem 3.1 (Existence of the transformation). Assume that the two diagonal blocks
of A1 have disjoint spectra. Then there exist ε, δ > 0 such that for all blocks A12 with
‖A12‖ < δ there exists a unique matrix T12 with ‖T12‖ < ε satisfying (3.9). Conse-
quently, an admissible transformation exists for all such A12, and even is unique when
T12 is chosen accordingly.

Proof. The mapping T12 7→ T12(A22 + Λ′2)− (A11 + Λ′1)T12 + T12A21T12 is (arbitrarily
often) continuously differentiable from Cm×(n−m) into itself and has the origin as a
fixed point. Arranging the elements of T12 into a column vector of length m(n − m),
we find that the derivative of this map at the origin is the same as the coefficient matrix
of the corresponding linear mapping T12 7→ T12(A22 + Λ′2)− (A11 + Λ′1)T12. Due to the
assumption of disjoint spectra, this linear map is bijective, and therefore the determinant
of the derivative of the nonlinear map cannot vanish at the origin. Hence the statement
follows from the inverse mapping theorem.

Observe that in Theorem 4.2 we shall even give necessary and sufficient conditions
for the existence of an admissible transformation. For n = 2 we necessarily havem = 1,
and this case shall be studied in more detail in Section 7, even for general values of n.

4 Structure of the Main Equation
As we have said before, a meromorphic transformation matrix may alter the diagonal
elements and the eigenvalues of A1, but by integer values only. In addition, it is clear
that the trace of A1 equals the sum of its eigenvalues. A transformation T (z) which is
admissible for (1.1) lowers the first m diagonal elements of A1 by 1, and its effect upon
the eigenvalues of A1 can be deduced from the following observations:

• The transformation (3.3) can be written as follows:

T (z) = Tu

[
z 0
0 I

]
T`, Tu =

[
I T12

0 I

]
, T` =

[
I 0
T21 I

]
. (4.1)
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Moreover, one can check that equation (3.9) holds if, and only if, we have

A1Tu = Tu

[
A11 + Λ′1 − T12A21 0

A21 A22 + Λ′2 + A21T12

]
.

Therefore, the characteristic polynomial of A1 factors as

det(A1−µ) = det(A11 + Λ′1−T12A21−µ) det(A22 + Λ′2 +A21T12−µ). (4.2)

Hence, the eigenvalues of A1 split into two sets corresponding to those of the left,
resp. right, factor. Moreover, the mapping x 7→ A1x has an invariant subspace of
dimension n−m, namely the linear hull of the last n−m column vectors of Tu. In
the special situation ofm = n−1, the (one-dimensional) blockA22 +Λ′2 +A21T12

is an eigenvalue ofA1, and the last column of Tu is the corresponding eigenvector,
uniquely normalized by the fact that its last coordinate equals 1. Finally, the
mapping xτ 7→ xτA1 has an invariant subspace of dimensionm, namely the linear
hull of the first m row vectors of T−1

u . In the special situation of m = 1, the (one-
dimensional) block A11 + Λ′1 − T12A21 is an eigenvalue of A1, and the first row
of T−1

u is a corresponding (row) eigenvector, normalized by the fact that its first
coordinate equals 1.

• Similar observations can be made for the matrix Ã1: From the identities obtained
in Section 3, we see that

T`Ã1 =

[
Ã11 + Λ′1 − I − Ã12T21 Ã12

0 Ã22 + Λ′2 + T21Ã12

]
T`,

A11 − T12A21 = Ã11 − Ã12T21, A22 + A21T12 = Ã22 + T21Ã12.

Therefore, the characteristic polynomial of Ã1 factors analogously to (4.2), and
the eigenvalues split into corresponding sets. Those in the first set are obtained
by subtracting 1’s from those eigenvalues of A1 corresponding to the left factor in
(4.2), while the others agree with the ones for the right factor. The mapping xτ 7→
xτ Ã1 has an invariant subspace of dimension n−m spanned by the last n−m rows
of T`. In the special situation of m = n − 1, the (one-dimensional) block Ã22 +
Λ′2 + T21Ã12 is an eigenvalue of Ã1, and the last row of T` is the corresponding
(row) eigenvector, uniquely normalized by the fact that its last component equals
1. Moreover, the mapping x 7→ Ã1x has an invariant subspace of dimension m,
namely the linear hull of the firstm column vectors of T−1

` . In the special situation
of m = 1, the (one-dimensional) block Ã11 + Λ′1 − I − Ã12T21 is an eigenvalue
of Ã1, and the first column of T−1

` is a corresponding eigenvector, normalized by
the fact that its first component equals 1.

Remark 4.1. As follows from the discussion above, the transformation T (z) decreases
m eigenvalues of A1 by 1, and also subtracts 1 from the first m diagonal elements of
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A1. Recall that one may apply a transformation x = Px̃, with a permutation matrix P ,
to transform the system (1.1) into another one of the same form, but with the diagonal
elements of Λ and Λ′ permuted in any prescribed way. Therefore we may also consider
meromorphic transformation matrices that, instead of the first, decrease any prescribed
set of m diagonal elements of A1. Note that we could even restrict ourselves to the
case m = 1, since the more general transformations may be built by combining a finite
number of these elementary ones, provided they all exist.

In order to formulate a necessary and sufficient condition for the existence of an
admissible transformation for (1.1), we use the following terminology:

(N) We say that an n − m-dimensional subspace U ⊂ Cn has a normalized basis
(b1, . . . , bn−m), provided that bj = (b1j, . . . , bnj)

τ , 1 ≤ j ≤ n−m, with
b11 . . . b1,n−m

...
...

bn1 . . . bn,n−m

 =


B

I

 . (4.3)

Similarly, we say that a rowspace V ⊂ C1×m of dimension m has a normalized
basis (b1, . . . , bn−m), provided that bj = (bj1, . . . , bjn)τ , 1 ≤ j ≤ m, with b11 . . . b1,n

...
...

bm1 . . . bmn

 =
[
I B

]
. (4.4)

Note that such a basis, in case it exists, is uniquely defined.

Observe that we have shown above that existence of an admissible transformation for
(1.1) implies existence of invariant subspaces for x 7→ A1x (of dimension n − m), as
well as for xτ 7→ xτA1 (of dimension m), having a normalized basis with B = T12 resp.
B = −T12. The opposite implication shall be shown now:

Theorem 4.2. Given a system (1.1), the following conditions are equivalent:

(a) An admissible transformation for (1.1) exists.

(b) The mapping x 7→ A1x has an invariant subspace U of dimension n−m having a
normalized basis.

(c) The mapping xτ 7→ xτA1 has an invariant subspace V of dimension m having a
normalized basis.

These conditions always hold when A1 is diagonalizable.
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Proof. By definition, a diagonalizable A1 has n linearly independent eigenvectors, say
{bj = (b1j, . . . , bnj)

τ , 1 ≤ j ≤ n}. The (n−m)× n-matrix

B =

 bm+1,1 . . . bm+1,n
...

...
bn1 . . . bnn


then has maximal rank, hence contains an (n − m) × (n − m) submatrix C whose
determinant does not vanish. By renumeration of the eigenvectors we may arrange this
to be the one corresponding to the first n−m eigenvectors. They then span an invariant
subspace for x 7→ A1x, and the columns of b11 . . . b1,n−m

...
...

bn1 . . . bn,n−m

C−1

are a normalized basis. So for a diagonalizable matrix A1 condition (b) holds. As we
stated above, (a) implies both (b) and (c). Next, assume (b) and let B be as in (4.3). The
fact that U is invariant is equivalent to existence of an invertible square matrix C for
which the identity

A1

[
B
I

]
=

[
B
I

]
C

holds. This implies C = A21B + Λ′2 +A22. From this, we then conclude that T21 := B
satisfies (3.9), so (a) follows. Analogously one can conclude (a) from (c). Hence the
proof is completed

Remark 4.3. Owing to Remark 4.1 and Theorem 4.2, we find that if all eigenvalues of
A1 are distinct, and in addition the difference of any two of them never is an integer,
then for arbitrarym ∈ {1, . . . , n} a transformation T (z) of the above form always exists
(but may not be unique). Moreover, the new matrix Ã1 again satisfies this eigenvalue
condition, so that a second transformation (corresponding to the same m, or even to
any other one) exists, and so on. However, the second transformation may alter other
eigenvalues by 1 than the first one. So the more important question shall be whether
a second transformation exists that changes the same eigenvalues as the first one. This
shall not be discussed at this time!

5 The Functional Equation
For what follows, it is important to study the effect of admissible transformations, in-
troduced in the previous section, on the Stokes matrix function. Roughly speaking, the
Stokes multipliers, and therefore the Stokes matrix function as well, are invariant with
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respect to meromorphic transformations, but we have to take into account that they cor-
respond to the formal fundamental solution (1.3) rather than the system (1.1). Therefore,
it is important to find out the influence of a meromorphic transformation matrix on the
form of this formal solution. This is what has to be done to prove the next theorem:

Theorem 5.1 (Invariance of the Stokes matrix). Let two confluent hypergeometric sys-
tems zx′ = A(z)X and zx̃ = Ã(z)x̃ be given, with coefficient matrices A(z) =
zΛ+Λ′+A and Ã(z) = zΛ+Λ̃′+Ã, linked by an admissible transformation x = T (z)x̃.
Then

V (Λ,Λ′, A) = V (Λ, Λ̃′, Ã).

Proof. Let X̂(z) be as in (1.3). Then X̃(z) := T−1(z)X̂(z) is a formal fundamental
solution of the transformed equation zx̃ = Ã(z)x̃, and it can be verified that X̃(z) =

Ĝ(z)zΛ̃′
ezΛ, with a formal power series Ĝ(z) (in 1/z) starting with I as its constant term.

From the papers of Balser, Jurkat, and Lutz [1,2] we then obtain that both systems have
the same Stokes multipliers, and consequently the Stokes matrix functions are the same,
too.

As we have seen above, the blocks A11 − T12A21 and A22 + A21 T12 play a special
role, since their eigenvalues remain unchanged by the admissible transformation, and
therefore we set, in view of (3.4):

T11 := A11 − T12(T21Λ1 − Λ2T21), T22 := A22 + (T21Λ1 − Λ2T21)T12.

The fact that the Stokes matrix function is invariant under an admissible transformation
can be viewed in a more symmetric way, parameterizing A and Ã in terms of the four
blocks T12, T21, T11, and T22. However, observe that the diagonal elements of A11 and
A22 vanish, and therefore we need to restrict the diagonal elements of T11, resp. of
T22, to be equal to those of the matrix T12(T21Λ1 − Λ2T21), resp. those of −(T21Λ1 −
Λ2T21)T12. Altogether, these four blocks contain n2−n independent parameters. Given
four such matrices, we can now define (with Tu, T` as in (4.1)):

A = Tu

[
T11 T12Λ′

2−Λ′
1T12

T21Λ1−Λ2T21 T22

]
T−1
u ,

Ã = T−1
`

[
T11 Λ1T12−T12Λ2

(Λ′
2+I)T21−T21Λ′

1 T22

]
T`

(5.1)

and verify that then the identities (3.4) – (3.9) hold. Parameterizing the matrices in
this fashion, the question of existence of an admissible transformation becomes void!
Fixing Λ and Λ′2, and writing V (Λ′1, A) for the Stokes matrix function, we may express
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its invariance with respect to an admissible transformation as

V

(
Λ′1, Tu

[
T11 T12Λ′

2−Λ′
1T12

T21Λ1−Λ2T21 T22

]
T−1
u

)

= V

(
Λ′1 − I, T−1

`

[
T11 Λ1T12−T12Λ2

T21Λ′
1−(Λ′

2+I)T21 T22

]
T`

)
.

(5.2)

Whether or not this identity appears more natural than the one in the above theorem may
be a matter of taste! In any case, it is an important functional equation satisfied by the
Stokes matrix function.

6 The Characteristic Sequence
The functional equation which we derived earlier becomes easier to interpret when,
instead of the Stokes matrix function, we consider the reverse function introduced in
Section 2. To do this, we introduce a sequence of systems of the form (1.1), of which
two consecutive ones are related by a transformation as in the previous section. In detail,
let a system (1.1) be given, and define a sequence of matrices A(z; k) = zΛ + A1(k),
together with a sequence of transformations T (z; k) of a form analogous to (3.3), but
with T21 and T12 depending on k, so that A1(0) equals the (given) matrix A1, while the
remaining matrices satisfy the following identities:

• The matrices A1(k) are written in the form

A1(k) =

[
Λ′1 + A11(k)− k A12(k)

A21(k) Λ′2 + A22(k)

]
, (6.1)

with the diagonal elements of Aνν(k) all vanishing.

• Replacing A1 by A1(k), Ã1 by A1(k+1), and T (z) by T (z; k), we obtain from
(3.4) – (3.9) that

A21(k) = T21(k)Λ1 − Λ2T21(k) (6.2)

A11(k+1) = A11(k)− T12(k)T21(k)Λ1 + Λ1T12(k)T21(k) (6.3)

A12(k+1) = Λ1T12(k)− T12(k)Λ2 (6.4)

A21(k+1) =
(
Λ′2 + A22(k)

)
T21(k)− T21(k)

(
A11(k) + Λ′1 − k−1

)
+T21(k)T12(k)T21(k)Λ1 − Λ2T21(k)T12(k)T21(k)

(6.5)
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A22(k+1) = A22(k)− Λ2T21(k)T12(k) + T21(k)T12(k)Λ2 (6.6)

T12(k)
(
A22(k) + Λ′2

)
−
(
A11(k) + Λ′1 − k

)
T12(k)

= A12(k)− T12(k)A21(k)T12(k)
(6.7)

with the last equation again being the main one. Observe that it follows from the results
in the previous sections that the following statements hold true:

• The diagonal elements of all the matrices Aνν(k) vanish.

• Abbreviating

T11(k) := A11(k)− T12(k)A21(k) and T22(k) := A22(k) + A21(k)T12(k),

the matrices Tνν + Λ′ν have eigenvalues that are independent of k.

• The eigenvalues ofA1(k) split into two subsets, which are equal to the eigenvalues
of the matrices Λ′1+T11(k)−k and Λ′2+T11(k), resp. In particular, the eigenvalues
in the second set do not depend on k, while those in the first all are decreased by
1 when proceeding from k to k + 1.

• The main equation (6.7) can be rewritten as

T12(k)
(
k + T22(k) + Λ′2

)
−
(
A11(k) + Λ′1

)
T12(k) = A12(k). (6.8)

In this form, the equation is linear in the entries of T12(k), provided that we know
T22(k).

Remark 6.1. Equations (6.2) – (6.7) may be viewed as a nonlinear system of difference
equations for the blocks Aνµ(k) – however, this system is given in an implicit form. To
make it explicit, one has to solve equations (6.2) and (6.7) for T21(k) and T12(k), resp.,
and then insert into the remaining identities. In generic situations, a solution of (6.7)
always exists, but may not be unique, and it is not obvious which one to select. We
shall not go into detail about this here. Instead, we shall now restrict ourselves to the
simpler situation of m = 1, bearing in mind that the general case can be built with help
of several such elementary transformations – assuming their existence. Indeed, it shall
turn out that in this case of m = 1, there is a natural way of selecting a solution of (6.7),
and we shall obtain additional information on the sequence of matrices A1(k).
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7 A Special Case
We shall now investigate the characteristic sequence for m = 1, under some additional
assumptions and using a more appropriate notation:

• In what follows, we shall restrict to the case m = 1, so that the first diagonal
blocks are one-dimensional. In fact, we shall from now on always assume that
Λ′1 = Λ1 = 0. This can w. l. o. g. be made to hold by a transformation
x = eλzzαx̃ with suitable λ, α ∈ C.

• In this situation, the off-diagonal blocks of A1(k) are (row, resp. column) vectors,
and therefore we shall from now on denote them as

A12(k) =: aτ1(k), A21(k) =: a2(k), a1(k), a2(k) ∈ Cn−1.

Similarly, the parameters of the corresponding admissible transformations shall
be written as

T12(k) =: tτ1(k), T21(k) =: t2(k), t1(k), t2(k) ∈ Cn−1.

• For simplicity of notation, we shall from now on write for the second diagonal
blocks

A(k) := A22(k), Λ′ := Λ′2, Λ := Λ2,

hence Λ′ = diag[λ′2, . . . , λ
′
n], Λ = diag[λ2, . . . , λn]. Make sure to distinguish

these matrices from the (n-dimensional) ones previously denoted by the same
symbols!

In this special case, equation (6.3) becomes trivial, since all A11(k) vanish. The remain-
ing ones of formulas (6.2) – (6.7) simplify, and for convenience of the reader we display
them here, using the new notation:

a2(k) = −Λt2(k) (7.1)

aτ1(k+1) = −tτ1(k)Λ (7.2)

a2(k+1) =
(
k + 1 + Λ′ + A(k)

)
t2(k)− Λt2(k)tτ1(k)t2(k) (7.3)

A(k+1) = A(k)− Λt2(k)tτ1(k) + t2(k)tτ1(k)Λ (7.4)

tτ1(k)
(
k + Λ′ + A(k)

)
= aτ1(k)− tτ1(k)a2(k)tτ1(k). (7.5)

Let A1(k), for some k ∈ N0, be given, and suppose that we have computed t2(k) and
t1(k) so that (7.1) and (7.5) hold. We then define a1(k+1), a2(k+1), and A(k+1) by
means of (7.2), (7.3), and (7.4), resp. From results in the previous sections, or by direct
verification, we obtain the following:



Nonlinear Difference Equations and Stokes Matrices 159

• Existence of a solution of (7.5) is equivalent to the existence of a row-eigenvector
eτ (k) of A1 (corresponding to an eigenvalue µ(k), say) whose first coordinate
equals 1, and then this eigenvector is of the form

e(k) =

[
1

−t1(k)

]
with tτ1(k) solving (7.5). Moreover eτ (k)A1(k) = µ(k)eτ (k) holds if, and only if,
the two equations

µ(k) = −k − tτ1(k)a2(k), tτ1(k)
(
Λ′ + A(k)− µ(k)

)
= aτ1(k) (7.6)

are satisfied.

• The number µ(k) := −k − aτ1(k)t2(k) is an eigenvalue of A1(k), while the other
ones are equal to the eigenvalues of

T (k) := A(k) + a2(k)tτ1(k),

the latter ones being independent of k.

• Assume that an eigenvalue µ(k) of A1(k) exists for which det(Λ′ + A(k) −
µ(k)) 6= 0. Then the last n−1 columns of A1(k) − µ(k)I are linearly inde-
pendent, while det(A1(k) − µ(k)I) = 0. This implies that the first column of
this matrix is a linear combination of the other ones. Moreover, if eτ (k) is a cor-
responding row-eigenvector, then its first coordinate cannot vanish, and hence we
may assume it to be equal to 1. So in this case, the first equation in (7.6) can be
ignored, while the remaining one has a unique solution tτ1(k). In other words, if
we select an eigenvalue µ(k) of A1(k) which is not an eigenvalue of Λ′ + A(k),
assuming such an eigenvalue exists, then we obtain

tτ1(k) = aτ1(k)
(
Λ′ + A(k)− µ(k)

)−1
. (7.7)

• For some k (e.g., for k = 0), assume that we found an eigenvalue µ(k) which is
not an eigenvalue of Λ′ + A(k), and have defined tτ1(k) by (7.7). Then µ(k) + 1
is an eigenvalue of A1(k+1), and if it is not an eigenvalue of Λ′ + A(k+1), we
may choose µ(k+1) := µ(k) + 1 to proceed. Assuming this can be done for all
k ∈ N0, the number µ := µ(k) + k = −tτ1(k)a2(k) does not depend upon k.

• With T (k) as above, we may use (5.1) to find that

A(k) =

[
1 tτ1 (k)

0 I

] [
µ−k tτ1 (k)(k+Λ′)

−Λt2(k) T (k)

][
1 −tτ1 (k)

0 I

]
,

A(k+1) =

[
1 0

−t2(k) I

] [
µ−k −tτ1 (k)Λ

(k+1+Λ′)t2(k) T (k)

] [
1 0

t2(k) I

]
.

(7.8)
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Observe that in case of n = 2 all blocks are one-dimensional, hence commute with
one another. In particular, all blocks A(k) vanish, hence (7.4) becomes trivial. The
remaining ones of formulas (7.1) – (7.5), switching from upper- to lower-case letters,
become equivalent to

a2(k) = −λt2(k), a1(k + 1) = −λt1(k),

a2(k + 1) = (k + 1 + λ′)t2(k)− λt2(k)2t1(k),

t1(k)(k + λ′) = a1(k)− t1(k)2a2(k).

(7.9)

Observing that µ = −t1(k)a2(k) does not depend upon k, we obtain the following
simple first order difference equations for the sequences a1(k), a2(k):

λa2(k + 1) = −(k + 1 + λ′ − µ)a2(k),

a1(k + 1)(k + λ′ − µ) = −λa1(k).
(7.10)

These simple equations can be solved explicitly and imply

a1(k) =
(−λ)kΓ(λ′ − µ)

Γ(k + λ′ − µ)
a1(0), a2(k) =

Γ(1 + k + λ′ − µ)

(−λ)kΓ(1 + λ′ − µ)
a2(0).

For higher dimensions of n ≥ 3, the corresponding identities are nonlinear difference
equations and can, therefore, not be solved explicitly. Note, however, that according
to results by the author [5] the matrices A1(k) (compare (6.1)) can, for all cases where
the eigenvalue condition at the origin is satisfied, be regarded as locally holomorphic
functions of the entries in the Stokes matrix V (which does not depend on k). The
blocks Aνµ(k) = Aνµ(k;V ) then give rise to a family of solutions of these nonlinear
system of difference equations, depending holomorphically upon n(n− 1) parameters!

8 Summary and Outlook
As was said before, the Stokes matrix function very likely cannot be computed in terms
of previously known (higher) transcendental functions. Therefore it is of great impor-
tance to investigate its properties, such as its holomorphic dependence upon the various
entries in the matrices Λ, Λ′, and A. On the other hand, it is highly desirable to give
a few (relatively) simple properties that characterize V (Λ,Λ′, A) uniquely. One such
characterisation has been given in the articles mentioned above by expanding the Stokes
matrix function as a power series in the entries of A, with coefficients that can be recur-
sively computed as functions of Λ and Λ′. In a way, it is quite satisfying that this can
be done. From looking into the case of n = 2, however, one gets the impression that
such results may not be very natural, since it roughly speaking corresponds to finding
the power series expansion of the reciprocal of the Gamma function. Instead, it is so
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much more natural to use its functional equation that has been found in this article. This
equation can also be viewed as a nonlinear difference equation for the reverse Stokes
matrix function. In view of this, it is quite likely that this reverse function may be char-
acterized as the only solution of this difference equation that has a certain asymptotic
behaviour as k →∞. We illustrate this by looking once more at the case of n = 2:

• Observe that in the notation used here we have

A1(k) =

[
−k a1(k)
a2(k) λ′

]
.

With µ = −t1(k)a2(k) as defined above, we obtain from (7.9), (7.10) that µ2 −
µ(k + λ′)− a1(k)a2(k) = 0. With

αk + βk = λ′ + k, αkβk = −a1(k)a2(k),

note that this implies that αk, βk are the roots of the same quadratic equation
that we found for µ. Therefore we choose αk = µ (independent of k), and then
βk = k + λ′ − µ. The Stokes matrix function (which also does not depend on k)
then, rewriting the identities (1.4) in the new notation, becomes equal to

V =

[
0 v1

v2 0

]
, v2 =

2πia2(k)λλ
′+ke−iπ(λ′+k)

Γ(1 + µ)Γ(1 + k + λ′ − µ)
,

v1 =
2πia1(k)λ−λ

′−ke2πiλ′

Γ(1− µ)Γ(1− k − λ′ + µ)
.

From these identities we can trivially observe that the entries v1, v2 can be obtained from
the asymptotic behaviour of the sequences a1(k), a2(k), which in turn are determined
by the difference equations (7.9), with given initial values a1(0), a2(0). While in this
article we have found the higher dimensional analogues of (7.9), it is not entirely clear
but very likely that even for n ≥ 3 the (nonlinear) difference equations (7.1) – (7.5), or
more precisely the asymptotic behaviour of their solutions, determine the Stokes matrix
function. This, however, is left for future research.
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