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Abstract

We study the following system of two rational difference equations

xn =
βkxn−k + γkyn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
δkxn−k + εkyn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N,

with nonnegative parameters and nonnegative initial conditions. We assume that

Bj = Cj = Dj = Ej = 0 for j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k and establish a

bifurcation result for this system where the behavior depends on a 2 × 2 matrix
with entries βk, γk, δk, and εk.

AMS Subject Classifications: 39A10, 39A11.
Keywords: Difference equation, periodic convergence, systems, bifurcation.

1 Introduction
Recently, several papers discussing rational systems in the plane have appeared in the
literature. We refer particularly to [4, 5, 7]. In [4], the authors mention a conjecture
regarding periodic trichotomy behavior for some rational systems in the plane. Given
this interest in developing bifurcation results in the setting of systems of two rational
difference equations, we ask the following question. “What is the natural generalization
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of the periodic trichotomy behavior when we move to the setting of systems of two
rational difference equations?”

It turns out that for a certain family of periodic trichotomy results the natural gener-
alization is a periodic tetrachotomy. We use the word “tetrachotomy” to indicate a four
way split of qualitative behaviors. This four way split arises naturally due to the added
dimension. In two dimensions, the nonhyperbolic case is split into two subcases. How
the cases are split will be made clear later in the article.

2 A Family of Periodic Trichotomies

To understand the essence of how rational difference equations behave, it is vital to un-
derstand the interaction between delays in the numerator and delays in the denominator.
Qualitatively, one can say that when the greatest common divisor of the delays in the
numerator does not divide any of the delays in the denominator, then the numerator and
denominator have little interaction. To be more specific if this occurs, then there is a
nontrivial subspace of initial conditions where the solution behaves linearly. In [22,23],
the author shows that the rational difference equation inherits trichotomy behavior from
the associated linear difference equation in this case.

To give a demonstration of this idea consider the most basic case, namely the rational
difference equation where there is a single delay present in the numerator and every
multiple of that delay is not present in the denominator. In other words, consider the
rational difference equation

xn =
βkxn−k

1 +
∑`

j=1Bjxn−j
, n ∈ N,

where Bj = 0 for j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k. In this case, simply choose initial

conditions so that if n 6≡ 0 mod k then xn = 0. When initial conditions are chosen
this way then induction guarantees that if n 6≡ 0 mod k then xn = 0 for all n ∈ N. So
under this choice of initial conditions if n ≡ 0 mod k then

xn = βkxn−k.

From this it is already clear that when βk > 1 there exist unbounded solutions under an
appropriate choice of initial conditions. When βk < 1 then the map is a contraction and
clearly every solution converges to zero. When βk = 1 the subsequences xmk+a must be
monotone. Since bounded monotone sequences converge every solution converges to a
periodic solution of not necessarily prime period k. Also, choosing initial conditions so
that xn = 1 if n ≡ 0 mod k and xn = 0 if n 6≡ 0 mod k gives a periodic solution of
prime period k.
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Our goal in this paper will be to create an analogue of this basic trichotomy case
for systems of two rational difference equations. The added dimension makes the pro-
cess significantly more difficult in the boundary case mainly because we no longer have
the monotonicity, which we used in the one dimensional case. To get around this dif-
ficulty we must assume that the matrix, which describes the behavior on the invariant
subspace where our equation acts linearly, is Hermitian. Under this assumption mono-
tonicity is replaced by monotonicity in norm, at which point [22, Theorems 1 and 2]
are applied. Using this approach the proof goes through in many cases. The remaining
Hermitian cases are handled by another type of monotonicity argument. Thus we obtain
a tetrachotomy result in the Hermitian cases. Extending such a result to the full range
of parameters is more difficult since there are several nonsymmetric cases where the
monotonicity breaks down. In one of these cases we cannot use the standard inner prod-
uct norm, as we do in the Hermitian cases, but we give another function which depends
on our parameters. The solution is monotone with respect to this function and this al-
lows the result to be shown. The last case uses monotonicity coupled with an argument
involving the limit superior and limit inferior of subsequences of our solution.

3 A Representation Using Vector Spaces
Consider the system of two rational difference equations

xn =
βkxn−k + γkyn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
δkxn−k + εkyn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N,

with nonnegative parameters and nonnegative initial conditions. Assume that Bj =

Cj = Dj = Ej = 0 for j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k. We find that it is useful to rewrite

our system using matrix notation. We let

vn =

(
xn
yn

)
, A =

(
βk γk
δk εk

)
,

and

Bn =


1

1 +
∑`

j=1 aj · vn−j
0

0
1

1 +
∑`

j=1 qj · vn−j

 ,

where

aj =

(
Bj

Cj

)
and qj =

(
Dj

Ej

)
.
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Our system then becomes

vn = BnAvn−k, n ∈ N.

In the next few sections we prove results for systems written in this form.

4 The Contraction Case
In the first theorem of this section we prove that when the spectral radius of A is less
than one then every solution converges to the zero equilibrium. This is the contraction
case of our tetrachotomy.

Theorem 4.1. Consider the recursive system on [0,∞)m

vn = BnAvn−k, n ∈ N,

where A = (aij) is a real m × m matrix with nonnegative entries aij ≥ 0 and with
spectral radius less than 1. Assume that initial conditions are in [0,∞)m. Further
assume that Bn is a real m×m diagonal matrix which may depend on n and on prior
terms of our solution {vn}, with all entries bn,ii ∈ [0, 1] for all n ∈ N. Then every
solution converges to the 0 vector.

Proof. Consider the system

un = Aun−k, n ∈ N.

Suppose vn = un for n < 1. In other words suppose that the two systems have the same
initial conditions. Then the ith entry of the vector vn is less than or equal to the ith entry
of the vector un for all n ∈ N and for all i ∈ {1, . . . ,m}, in other words vn,i ≤ un,i.
We prove this by strong induction on n. The initial conditions provide the base case.
Suppose the result holds for n < N .

vN,i = bN,ii

m∑
j=1

aijvN−k,j ≤
m∑
j=1

aijvN−k,j ≤
m∑
j=1

aijuN−k,j = uN,i,

since bN,ii ∈ [0, 1] and aij ≥ 0 for all i, j ∈ {1, . . . ,m}. Thus we have shown vn,i ≤ un,i
for all n ∈ N.

It is clear that ukn+b = Anub. Now if the spectral radius of A is less than one it is
a well known result that lim

n→∞
An = 0. Of course by 0 here we mean the zero matrix.

Thus, in this case, lim
n→∞

un =

 0
...
0

. Since vn ∈ [0,∞)m for all n ∈ N, we have

lim
n→∞

vn =

 0
...
0

.
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The next theorem is not used to establish the tetrachotomy result however it is an-
other general boundedness and convergence result for systems of two rational difference
equations. In some sense this result also relies on having small numerators, and so be-
longs in this section.

Theorem 4.2. Consider the kth order system of two rational difference equations

xn =
α +

∑k
i=1 βixn−i +

∑k
i=1 γiyn−i

1 +
∑k

j=1Bjxn−j +
∑k

j=1Cjyn−j
, n ∈ N,

yn =
p+

∑k
i=1 δixn−i +

∑k
i=1 εiyn−i

1 +
∑k

j=1Djxn−j +
∑k

j=1Ejyn−j
, n ∈ N.

In particular, we assume nonnegative parameters and nonnegative initial conditions. We

also assume that
k∑
j=1

Dj =
k∑
j=1

Cj . Note that if both sums are zero then this is clearly

true, if both sums are positive and this is not the case, then we may make a change of
variables so that it is true. However this change of variables will alter the other param-

eters. We further assume that
k∑
i=1

(βi + γi) < 1,
k∑
i=1

(δi + εi) < 1,
k∑
i=1

(βi + δi) < 1,

and
k∑
i=1

(γi + εi) < 1. Then every solution converges to a finite limit.

Proof. First we prove that every solution of the system is bounded. Notice that

xn =
α +

∑k
i=1 βixn−i +

∑k
i=1 γiyn−i

1 +
∑k

j=1Bjxn−j +
∑k

j=1Cjyn−j
≤ α +

k∑
i=1

βixn−i +
k∑
i=1

γiyn−i

≤ α +

(
k∑
i=1

βi

)
max
i=1,...,k

xn−i +

(
k∑
i=1

γi

)
max
i=1,...,k

yn−i

≤ α +

(
k∑
i=1

(βi + γi)

)
max

(
max
i=1,...,k

xn−i, max
i=1,...,k

yn−i

)
.

Also we have

yn =
p+

∑k
i=1 δixn−i +

∑k
i=1 εiyn−i

1 +
∑k

j=1Djxn−j +
∑k

j=1Ejyn−j
≤ p+

k∑
i=1

δixn−i +
k∑
i=1

εiyn−i

≤ p+

(
k∑
i=1

δi

)
max
i=1,...,k

xn−i +

(
k∑
i=1

εi

)
max
i=1,...,k

yn−i
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≤ p+

(
k∑
i=1

(δi + εi)

)
max

(
max
i=1,...,k

xn−i, max
i=1,...,k

yn−i

)
.

Thus we get
max (xn, yn) ≤ max (α, p)+

max

((
k∑
i=1

(βi + γi)

)
,

(
k∑
i=1

(δi + εi)

))
max
i=1,...,k

(max (xn−i, yn−i)).

Renaming zn = max (xn, yn), b = max (α, p), and

C = max

((
k∑
i=1

(βi + γi)

)
,

(
k∑
i=1

(δi + εi)

))
,

we get the difference inequality

zn ≤ b+ C max
i=1,...,k

zn−i, for all n ∈ N.

Thus from [21, Theorem 2] max
i=1,...,k

zn−i ≤ max
(
ubnkc, . . . , un

)
. Where {un}∞n=1 is a

solution of the difference equation

un = b+ Cun−1.

Since
k∑
i=1

(βi + γi) < 1 and
k∑
i=1

(δi + εi) < 1 every solution is bounded above also

clearly every solution is bounded below by zero.
Let S1 = lim sup

n→∞
xn, I1 = lim inf

n→∞
xn, S2 = lim sup

n→∞
yn, and I2 = lim inf

n→∞
yn. Then

we have the following

S1 ≤
α +

(∑k
i=1 βi

)
S1 +

(∑k
i=1 γi

)
S2

1 +
(∑k

j=1Bj

)
I1 +

(∑k
j=1Cj

)
I2
,

S2 ≤
p+

(∑k
i=1 δi

)
S1 +

(∑k
i=1 εi

)
S2

1 +
(∑k

j=1Dj

)
I1 +

(∑k
j=1Ej

)
I2
,

I1 ≥
α +

(∑k
i=1 βi

)
I1 +

(∑k
i=1 γi

)
I2

1 +
(∑k

j=1Bj

)
S1 +

(∑k
j=1Cj

)
S2

,

I2 ≥
p+

(∑k
i=1 δi

)
I1 +

(∑k
i=1 εi

)
I2

1 +
(∑k

j=1Dj

)
S1 +

(∑k
j=1Ej

)
S2

.
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Thus we get(
k∑
j=1

Bj

)
I1S1 − α ≤

((
k∑
i=1

βi

)
− 1

)
S1 +

(
k∑
i=1

γi

)
S2 −

(
k∑
j=1

Cj

)
I2S1,

(
k∑
j=1

Ej

)
I2S2 − p ≤

((
k∑
i=1

εi

)
− 1

)
S2 +

(
k∑
i=1

δi

)
S1 −

(
k∑
j=1

Dj

)
I1S2,

(
k∑
j=1

Bj

)
I1S1 − α ≥

((
k∑
i=1

βi

)
− 1

)
I1 +

(
k∑
i=1

γi

)
I2 −

(
k∑
j=1

Cj

)
I1S2,

(
k∑
j=1

Ej

)
I2S2 − p ≥

((
k∑
i=1

εi

)
− 1

)
I2 +

(
k∑
i=1

δi

)
I1 −

(
k∑
j=1

Dj

)
I2S1.

This gives us(
k∑
j=1

Cj

)
(I2S1 − I1S2) ≤

((
k∑
i=1

βi

)
− 1

)
(S1 − I1) +

(
k∑
i=1

γi

)
(S2 − I2) ,

(
k∑
j=1

Dj

)
(I1S2 − I2S1) ≤

((
k∑
i=1

εi

)
− 1

)
(S2 − I2) +

(
k∑
i=1

δi

)
(S1 − I1) .

We add the inequalities and since
k∑
j=1

Cj =
k∑
j=1

Dj we get

0 ≤

((
k∑
i=1

(βi + δi)

)
− 1

)
(S1 − I1) +

((
k∑
i=1

(γi + εi)

)
− 1

)
(S2 − I2) .

Since
k∑
i=1

(βi + δi) < 1, and
k∑
i=1

(γi + εi) < 1, S1 = I1, and S2 = I2. Thus every

solution converges to a finite limit.

5 The Unbounded Case
In this section we handle the unbounded case. The unbounded case proceeds for systems
in a similar way to the unbounded case for equations. We choose initial conditions so
that the system acts linearly. This implies that whenever the associated linear system is
unbounded our system is unbounded.
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Theorem 5.1. Consider the recursive system on [0,∞)m

vn = BnAvn−k, n ∈ N,

where A = (aij) is a real m × m matrix with nonnegative entries aij ≥ 0 and with
initial conditions in [0,∞)m. Further assume that Bn is a real m×m diagonal matrix

with entries bn,ii =
1

1 +
∑`

j=1 qij · vn−j
for all n ∈ N. Where the vectors qij ∈ [0,∞)m

and qij = 0 for all j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k. If either of the following hold:

1. The spectral radius of A is greater than 1.

2. The spectral radius of A is equal to 1 and A has an eigenvalue λ with |λ| = 1
whose algebraic multiplicity exceeds its geometric multiplicity.

Then for some choice of initial conditions the solution {vn}∞n=1 is such that {||vn||}∞n=1

is an unbounded sequence.

Proof. Before we begin to prove the first case, notice that if we choose initial conditions
so that vn = 0 for n < 1 and n 6= 1− k, then it is clear by a simple induction argument
that vn = 0 for n 6≡ 1 mod k. Thus, for solutions with these initial conditions, we
have vn = Avn−k. We intend to take advantage of this linearity, so we will assume that
vn = 0 for n < 1 and n 6= 1 − k, and our goal in both cases will be to choose v1−k
appropriately in order to create an unbounded solution.

Choose v1−k ∈ [0,∞)m so that for all the generalized eigenvectors of A, w1, . . . wm,
〈v1−k, wi〉 6= 0 for all i ∈ {1, . . . ,m}. This is certainly possible since [0,∞)m is an m-
dimensional subspace of Rm. Now, in case (1), with this choice of initial conditions, we
notice that ||vkL+1|| = ||AL+1v1−k|| =

√
〈AL+1v1−k, AL+1v1−k〉, thus {||vkL+1||}∞L=1 is

unbounded, so {||vn||}∞n=1 is unbounded. Now, in case (1), with this choice of initial
conditions, we notice that ||vkL+1|| = ||AL+1v1−k|| =

√
〈AL+1v1−k, AL+1v1−k〉, thus

{||vkL+1||}∞L=1 is unbounded, so {||vn||}∞n=1 is unbounded.

6 The Hermitian Case
In this section we use the Perron–Frobenius theorem, along with our work in the last 2
sections, to demonstrate a general periodic trichotomy result. For more details regarding
the Perron–Frobenius theorem see [12] chapter 8 sections 2 and 3. Recall that if we have
a symmetric matrix with real coefficients then such a matrix must be Hermitian. Any
such matrix A is diagonalizable and has decomposition UDU∗ where D is a diagonal
matrix consisting of the eigenvalues of A, U is a unitary matrix, and U∗ represents the
conjugate transpose of U . Furthermore we know that D has only real entries. The
following fact will be useful.
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Lemma 6.1. Suppose we have a real symmetric m×m matrix A whose spectral radius
is 1 then 〈Av,Av〉 ≤ 〈v, v〉 for all v ∈ Rm. Moreover 〈Av,Av〉 = 〈v, v〉 if and only if v
is in the span of the eigenvectors of A with corresponding eigenvalues whose absolute
value is 1.

Theorem 6.2. Consider the recursive system on [0,∞)m

vn = BnAvn−k, n ∈ N,

whereA = (aij) is a real symmetricm×mmatrix with positive entries aij > 0 and with
initial conditions in [0,∞)m. Further assume that Bn is a real m×m diagonal matrix

with entries bn,ii =
1

1 +
∑`

j=1 qij · vn−j
for all n ∈ N. Where the vectors qij ∈ [0,∞)m

and qij = 0 for all j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k. Then this system displays the following

trichotomy behavior:

i If the spectral radius of A is less than 1 then every solution converges to the zero
equilibrium.

ii If the spectral radius of A is equal to 1 then every solution converges to a solution
of not necessarily prime period k. Furthermore in this case there exist solutions of
prime period k.

iii If the spectral radius of A is greater than 1 then for some choice of initial conditions
the solution {vn}∞n=1 has the property that {||vn||}∞n=1 is an unbounded sequence.
Moreover, if we consider the sequences consisting of the entries of vn, {vn,i}∞n=1,
then {vn,i}∞n=1 is an unbounded sequence for every i ∈ {1, . . . ,m}.

Proof. First notice that (i) follows immediately from Theorem 4.1. Now consider case
(iii). From Theorem 5.1 we get immediately that there is some choice of initial con-
ditions so that the solution {vn}∞n=1 has the property that {||vn||}∞n=1 is an unbounded
sequence. Recall from the proof of Theorem 5.1 that every unbounded solution we con-
structed had the property that vn = 0 for n < 1 and n 6= 1 − k. For our purposes
we will choose an unbounded solution which has this property, thus vn = Avn−k for
our solution. Since {||vn||}∞n=1 is an unbounded sequence it follows as a consequence
{vn,i1}∞n=1 is an unbounded sequence for some i1 ∈ {1, . . . ,m}. So there is a subse-
quence {vnL,i1} which diverges to ∞. Since A = (aij) is a real m × m matrix with
positive entries aij > 0 and vnL+k = AvnL

, the subsequence {vnL+k,i} diverges to ∞
for all i ∈ {1, . . . ,m}. So {vn,i}∞n=1 is an unbounded sequence for all i ∈ {1, . . . ,m}.
This concludes the proof of case (iii).

To prove case (ii) we use the Perron–Frobenius theorem. The Perron–Frobenius
theorem tells us that if A = (aij) is a real m ×m matrix with positive entries aij > 0,
then there is a positive real number r called the Perron–Frobenius eigenvalue such that
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r is an eigenvalue of A and so that any other possibly complex eigenvalue λ has |λ| < r.
Moreover r is a simple root of the characteristic polynomial and there is an eigenvector
wr associated with r having strictly positive components. Now combining this with the
fact that the spectral radius is 1 we get that r = 1 and every other eigenvalue λ has
|λ| < 1. Also, we know that r is a simple root of the characteristic polynomial so r has
algebraic multiplicity equal to 1. So it must be true for our eigenvalue r = 1 that its
algebraic multiplicity is equal to its geometric multiplicity. Lemma 6.1 applies in this
case and we will use it in the following argument.

Since 0 ≤ bn,ii =
1

1 +
∑`

j=1 qij · vn−j
≤ 1 for all i ∈ {1, . . . ,m} we have ||vn|| ≤

||Avn−k||. Lemma 6.1 gives us ||Av|| ≤ ||v|| for all v ∈ Rm. Thus ||vn|| ≤ ||Avn−k|| ≤
||vn−k||. Since each of the subsequences {||vnk+a||}∞n=1 are monotone decreasing and
bounded below by zero, they all converge. So lim

n→∞
||vn||− ||vn−k|| = 0. By the squeeze

theorem we get lim
n→∞

||vn|| − ||Avn−k|| = 0.

So the subsequences {||vnk+a||}∞n=1 and {||Avnk+a||}∞n=1 are convergent and since
lim
n→∞

||vn|| − ||Avn−k|| = 0 we get

lim
n→∞

||vnk+a|| = La = lim
n→∞

||Avnk+a||.

Now consider the sequence {vnk+a}∞n=1 and let {vnjk+a}∞j=1 be a convergent subse-
quence with lim

j→∞
vnjk+a = wa. By what we have just shown it must be true that

||wa|| = ||Awa||, but then by Lemma 6.1 we have that wa is in the span of the eigen-
vectors of A with corresponding eigenvalues whose absolute value is 1. Recall from
the Perron–Frobenius theorem that there is only one such eigenvector and it is w1, the
eigenvector associated to the eigenvalue 1. So wa = cw1, where c is an arbitrary con-
stant, and ||wa|| = La, also wa ∈ [0,∞)m as a consequence of our choice of initial

conditions. Thus, wa = w1

(
La
||w1||

)
. What this means is that the sequence {vnk+a}∞n=1

must converge to wa = w1

(
La
||w1||

)
. Suppose it does not, then for some ε > 0 there is

a subsequence {vndk+a}∞d=1 so that∣∣∣∣∣∣∣∣vndk+a − w1

(
La
||w1||

)∣∣∣∣∣∣∣∣ > ε

for all d ∈ N. However we know that {vndk+a}∞d=1 is bounded and so it has a convergent
subsequence. This means that {vnk+a}∞n=1 has a convergent subsequence which does not

converge to w1

(
La
||w1||

)
. We have already shown that every convergent subsequence

of {vnk+a}∞n=1 converges to w1

(
La
||w1||

)
. Thus we have a contradiction. This proves

that the sequence {vnk+a}∞n=1 must converge to w1

(
La
||w1||

)
.
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Thus every solution must converge to a periodic solution of not necessarily prime
period k. To construct a solution which is periodic with prime period k we use our
eigenvector w1 associated with the eigenvalue 1 having strictly positive components.
We choose initial conditions so that for n > 1 if n 6≡ 0 mod k then vn = 0 and if
n ≡ 0 mod k then vn = w1. This is a periodic solution of prime period k. This
concludes our proof.

Remark 6.3. Consider the recursive system on [0,∞)m

vn = BnAvn−k, n ∈ N,

where A = (aij) is a real symmetric m × m matrix with nonnegative entries aij ≥ 0
and with spectral radius 1. Assume initial conditions are in [0,∞)m. Further assume

that Bn is a real m×m diagonal matrix with entries bn,ii =
1

1 +
∑`

j=1 qij · vn−j
for all

n ∈ N. Where the vectors qij ∈ [0,∞)m and qij = 0 for all j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k.

Further suppose that A has a single eigenvector w1 with eigenvalue 1 and every other
eigenvector wi has eigenvalue λi with |λi| < 1. Then every solution converges to a
solution of not necessarily prime period k. Furthermore in this case there exist solutions
of prime period k.

Proof. Identical to the last part of the proof above.

7 A Periodic Tetrachotomy Result
Now we combine all of our work to give some preliminary examples of periodic tetra-
chotomy behavior for systems of two rational difference equations.

Theorem 7.1. Consider the system of two rational difference equations

xn =
βkxn−k + γkyn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
δkxn−k + εkyn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N,

with nonnegative parameters and nonnegative initial conditions. Assume Bj = Cj =

Dj = Ej = 0 for j = k, 2k, 3k, . . . ,

⌊
`

k

⌋
k. Define a matrix

A =

(
βk γk
δk εk

)
.

This system exhibits the following tetrachotomy behavior.



120 Frank J. Palladino

I Suppose the spectral radius of A is less than 1, then every solution converges to the
zero equilibrium.

II Suppose the spectral radius of A is equal to 1, every eigenvalue λ with |λ| = 1 has
algebraic multiplicity equal to its geometric multiplicity, and −1 is not an eigen-
value of A, then every solution converges to a periodic solution of not necessarily
prime period k. Furthermore in this case there exist periodic solutions with prime
period k.

III Suppose the spectral radius of A is equal to 1, every eigenvalue λ with |λ| = 1 has
algebraic multiplicity equal to its geometric multiplicity, and −1 is an eigenvalue
of A, then every solution converges to a periodic solution of not necessarily prime
period 2k. Furthermore in this case there exist periodic solutions with prime period
2k.

IV Suppose the spectral radius of A is greater than 1 or the spectral radius of A is
equal to 1 and A has an eigenvalue λ with |λ| = 1 whose algebraic multiplic-
ity exceeds its geometric multiplicity. Then there exist solutions where xn + yn is
unbounded.

Proof. To begin we rewrite our system using matrix notation, as was done in Section 4.
We let

vn =

(
xn
yn

)
, A =

(
βk γk
δk εk

)
,

and

Bn =


1

1 +
∑`

j=1 aj · vn−j
0

0
1

1 +
∑`

j=1 qj · vn−j

 ,

where

aj =

(
Bj

Cj

)
and qj =

(
Dj

Ej

)
.

Our system then becomes

vn = BnAvn−k, n ∈ N.

Now case (I) follows directly from Theorem 4.1. Also case (IV) follows directly from
Theorem 5.1. Recall that the solutions for the eigenvalues of a 2 × 2 matrix A can be
written as

λ =
1

2

(
tr(A)±

√
tr2(A)− 4det(A)

)
.

This computation is fairly straightforward; it appears as an exercise on page 39 in [17].
With our definition of A this becomes

λ =
1

2

(
βk + εk ±

√
(βk − εk)2 + 4γkδk

)
.
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Now suppose δk, γk > 0 and consider the change of variables x̂n =

(√
γk
δk

)
xn. Under

this change of variables we get δ̂k =
√
δkγk = γ̂k. Notice that our new matrix Â is

symmetric and has the same eigenvalues as A. Thus, in the case where A is a positive
matrix, Theorem 6.2 applies and gives the result. Also, in the case where δk, γk >
0, Remark 6.3 applies and resolves case (II). Now we will prove case (III). Suppose
βk + εk > 0 and −1 is an eigenvalue. Then we must have

1

2

(
βk + εk +

√
(βk − εk)2 + 4γkδk

)
> 1.

However since we have assumed that the spectral radius is 1 in this case that is impossi-
ble. Thus βk+εk ≤ 0 and we know from assumption that βk+εk ≥ 0. Thus βk+εk = 0
and in case (III) both −1 and 1 are eigenvalues. So in case (III) we have

A =

 0 γk
1

γk
0

 .

So in case (III) we have the following system of rational difference equations

xn =
γkyn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
xn−k

γk(1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j)
, n ∈ N.

Thus, we have the following recursive inequalities

xn ≤ xn−2k,

yn ≤ yn−2k.

So the subsequences {yn2k+a}∞n=1 and {xn2k+a}∞n=1 are all monotone decreasing and
bounded below by zero, so they all converge. Thus we have shown that in case (III)
every solution converges to a periodic solution of not necessarily prime period 2k. Since
in case (III) we have

A =

 0 γk
1

γk
0

 ,

choose initial conditions so that for n > 1 if n 6≡ 0 mod k then vn = 0 and if n ≡ 0
mod 2k then

vn =

(
a
b

)
,
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where a, b ∈ [0,∞) and a 6= γkb and if n ≡ k mod 2k then

vn =

(
γkb
a

γk

)
.

Then the solution given by these initial conditions is a periodic solution of prime period
2k. This concludes the proof of case (III).

Thus, all we must show to finish case (II), is that when the spectral radius is 1 and
either δk = 0 or γk = 0 or both, then every solution converges to a periodic solution of
prime period k.

Assume that we have δk = γk = 0 in case (II). Then we have for 0 < λ < 1,

A =

(
1 0
0 λ

)
or A =

(
λ 0
0 1

)
. Let us focus on the recursive equations for xn and

yn, we get that

xn =
xn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
λyn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N.

So we obtain the following recursive inequalities

xn ≤ xn−k, n ∈ N,

yn ≤ λyn−k, n ∈ N.
So the subsequences {xnk+a}∞n=1 and {ynk+a}∞n=1 are all monotone decreasing and
bounded below by zero, so they all converge and clearly yn → 0.

Or we have

xn =
λxn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
yn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N.

So we obtain the following recursive inequalities

xn ≤ λxn−k, n ∈ N,

yn ≤ yn−k, n ∈ N.
So the subsequences {xnk+a}∞n=1 and {ynk+a}∞n=1 are all monotone decreasing and
bounded below by zero, so they all converge and clearly xn → 0. To construct a peri-
odic solution take the initial conditions so that for n > 1 if n 6≡ 0 mod k then vn = 0
and if n ≡ 0 mod k then

vn =

(
1
0

)
or vn =

(
0
1

)
,
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depending on the case. This is a periodic solution of prime period k.
Thus, all we must show to finish case (II), is that when the spectral radius is 1 and

either δk = 0 or γk = 0 but not both, then every solution converges to a periodic solution
of prime period k. We may assume without loss of generality that δk = 0. If not then
make the change of variables xn = yn and vice versa. Keeping in mind this change of
variables, we may assume without loss of generality that the only case left to be shown is
case (II) when δk = 0 and γk > 0. We can now do a further change of variables ŷn =

yn
γk

.

Keeping in mind this change of variables, we may assume without loss of generality that
the only case left to be shown is case (II) when δk = 0 and γk = 1. Notice from the
eigenvalue calculation earlier that in this case our eigenvalues are λ1 = βk and λ2 = εk.
The spectral radius is 1 so either βk = 1 or εk = 1. Notice that both βk and εk cannot
equal 1, otherwise we fall into case (IV). This leaves us with 2 cases. The case where
βk = 1 and the case where εk = 1. Let us first consider the case where βk = 1. Focusing
on the recursive equations for xn and yn we get that

xn =
xn−k + yn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
εkyn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N,

where 0 ≤ εk < 1. Now consider the function h(x, y) = |x| +
(

1

1− εk

)
|y|. Then we

have

h(xn, yn) ≤ xn−k + yn−k +
εkyn−k
1− εk

= xn−k +
yn−k
1− εk

= h(xn−k, yn−k).

Notice that since 0 ≤ εk < 1, and yn ≤ εkyn−k we have that yn → 0. Also since
h(xn, yn) ≤ h(xn−k, yn−k) we get that both xn and yn are bounded. Moreover the
sequences {h(xnk+a, ynk+a)}∞n=1 are monotone decreasing and bounded below by zero
hence convergent. So we have lim

n→∞
h(xnk+a, ynk+a) = La. Now consider the sequence

{vnk+a}∞n=1 and let {vnjk+a}∞j=1 be a convergent subsequence with lim
j→∞

vnjk+a = wa.

By what we have just shown it must be true that wa =

(
ua
0

)
for some ua ≥ 0

and h(wa) = La. This forces wa =

(
La
0

)
. What this means is that the sequence

{vnk+a}∞n=1 must converge to wa =
(

La
0

)
. Suppose it does not, then for some ε > 0

there is a subsequence {vndk+a}∞d=1 so that

||vndk+a − wa|| > ε

for all d ∈ N. However we know that {vndk+a}∞d=1 is bounded and so it has a convergent
subsequence. This means that {vnk+a}∞n=1 has a convergent subsequence which does
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not converge to
(

La
0

)
. We have already shown that every convergent subsequence of

{vnk+a}∞n=1 converges to
(

La
0

)
. Thus we have a contradiction. This proves that the

sequence {vnk+a}∞n=1 must converge to
(

La
0

)
.

Thus every solution must converge to a periodic solution of not necessarily prime
period k. To construct a solution which is periodic with prime period k we choose initial
conditions so that for n > 1 if n 6≡ 0 mod k then vn = 0 and if n ≡ 0 mod k then

vn =

(
1
0

)
. This is a periodic solution of prime period k. This concludes our proof of

the case where δk = 0, γk > 0, and βk = 1.
All that remains is the case where δk = 0, γk = 1, εk = 1, and 0 ≤ βk < 1. Focusing

on the recursive equations for xn and yn we get that

xn =
βkxn−k + yn−k

1 +
∑`

j=1Bjxn−j +
∑`

j=1Cjyn−j
, n ∈ N,

yn =
yn−k

1 +
∑`

j=1Djxn−j +
∑`

j=1Ejyn−j
, n ∈ N,

where 0 ≤ βk < 1. Notice first that since yn ≤ yn−k, the subsequences {ynk+a}∞n=1 with
a ∈ {0, . . . , k − 1} are all monotone decreasing and bounded below by 0, hence they
all converge. Let lim

n→∞
ynk+a = La. Now let Sa be the limit superior of the subsequence

{xnk+a}∞n=1 with a ∈ {0, . . . , k − 1} and let Ia be the limit inferior of the subsequence
{xnk+a}∞n=1 with a ∈ {0, . . . , k − 1}. This gives us the following

Sa ≤
βkSa + La

1 +
∑`

j=1BjI(a−j) mod k +
∑`

j=1CjL(a−j) mod k

,

Ia ≥
βkIa + La

1 +
∑`

j=1BjS(a−j) mod k +
∑`

j=1CjL(a−j) mod k

.

Thus we have

−La ≤ Sa

(
βk − 1−

∑̀
j=1

CjL(a−j) mod k

)
−
∑̀
j=1

BjSaI(a−j) mod k,

−La ≥ Ia

(
βk − 1−

∑̀
j=1

CjL(a−j) mod k

)
−
∑̀
j=1

BjIaS(a−j) mod k.

This gives us

0 ≤ (Sa − Ia)

(
βk − 1−

∑̀
j=1

CjL(a−j) mod k

)
+
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∑̀
j=1

Bj

(
IaS(a−j) mod k − SaI(a−j) mod k

)
,

for all a ∈ {0, . . . , k − 1}. Now notice that Sa ≤ βkSa + La thus Sa ≤
La

1− βk
for all

a ∈ {0, . . . , k − 1}. Thus

Ia ≥
La

1 +
∑`

j=1
Bj

1−βk
L(a−j) mod k +

∑`
j=1CjL(a−j) mod k

for all a ∈ {0, . . . , k − 1}. Thus if Ia = 0 then La = 0 so Sa = 0. So Ia = 0 if and
only if Sa = 0. We claim that Sa = Ia for all a ∈ {0, . . . , k − 1}. Assume for the sake
of contradiction that this is not the case, then for at least one a ∈ {0, . . . , k − 1}, we
have Sa > Ia > 0. Let G = {a ∈ {0, . . . , k − 1}|Sa > Ia > 0} 6= ∅. Consider the

element b ∈ G so that
Sb
Ib
≥ Sa

Ia
for all a ∈ G. Such an element must exist since G is

finite. We claim
(
IbS(b−j) mod k − SbI(b−j) mod k

)
≤ 0 for all j ∈ N. Indeed, if (b− j)

mod k 6∈ G then S(b−j) mod k = I(b−j) mod k, so(
IbS(b−j) mod k − SbI(b−j) mod k

)
= S(b−j) mod k (Ib − Sb) ≤ 0.

Moreover, if (b− j) mod k ∈ G then

Sb
Ib
≥
S(b−j) mod k

I(b−j) mod k

.

Thus
SbI(b−j) mod k ≥ IbS(b−j) mod k.

So (
IbS(b−j) mod k − SbI(b−j) mod k

)
≤ 0.

Now using the earlier inequality with b we get

0 ≤ (Sb − Ib)

(
βk − 1−

∑̀
j=1

CjL(a−j) mod k

)
+

∑̀
j=1

Bj

(
IbS(b−j) mod k − SbI(b−j) mod k

)
≤ (Sb − Ib)

(
βk − 1−

∑̀
j=1

CjL(a−j) mod k

)
.

This forces Sb = Ib, but we chose b ∈ G. This is a contradiction. This establishes the
claim Sa = Ia for all a ∈ {0, . . . , k − 1}. Thus all of the subsequences {xnk+a}∞n=1
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with a ∈ {0, . . . , k−1} converge. Thus, every solution converges to a periodic solution
of not necessarily prime period k. To construct a solution which is periodic with prime
period k we choose initial conditions so that for n > 1 if n 6≡ 0 mod k then vn = 0 and

if n ≡ 0 mod k then vn =

 1

1− βk
1

 . This is a periodic solution of prime period

k. This concludes our proof of case (II) and the theorem is proved.

8 Conclusion

We have created some analogues for trichotomy behavior for systems of rational differ-
ence equations, but we have barely scratched the surface. There are literally thousands
of special cases of systems of rational difference equations of order greater than one to
explore. This paper leaves several questions for further study. Are there any other exam-
ples of periodic tetrachotomy behavior for systems of two rational difference equations?
Is it possible to make analogues to other trichotomy results in the literature? Further
work should focus on proving a similar result in systems of three rational difference
equations. Note that the results in [22,23] subsume and unify a number of prior results.
For example, the case presented in section 2 is a minor generalization of a case origi-
nally presented in [18]. We list, for the readers’ convenience, the references [1–3, 6],
and [8-25] as these references provide good background on trichotomy character for
rational difference equations.
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