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Abstract

In this work we introduce a new extension of the Virasoro algebra namely frac-
tional Virasoro algebra. Based on the Riemann–Liouville fractional derivatives we
give the representation of the fractional Virasoro operators in terms of the fractional
derivatives. The correspondence between q-deformation and fractional calculus is
also given.
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1 Introduction
The Virasoro algebra is an infinite-dimensional Lie algebra with many applications in
physics, e.g, in conformal field theory, string theory, statistical mechanics and con-
densed matter physics [1, 11]. The centerless Virasoro L0 algebra is the complexifica-
tion of the Lie algebra VectS1 of (real) vector fields on the circle S1 and it coincides
with the algebra of differential operators defined in C− {0} as

Lm = −zm+1 d

dz
. (1.1)

Furthermore the corresponding commutation relations verify the relations

[Lm, Ln] = (m− n)Lm+n. (1.2)
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Recall that L0 admits a unique 1-dimensional central extension Lκ = L0 ⊕ κ with the
commutation relations

[Lm, Ln] = (m− n)Lm+n + κ
m3 −m

12
δm+n,0, [Lm, κ] = 0,

where the parameter κ, called the value of the central charge which characterizes a
theory in context of conformal field theory. The generators l−1, l0, l1 form a subalgebra
isomorphic to algebra sl(2,R).

Here we will introduce a new extension of the Virasoro algebra, which we call frac-
tional Virasoro algebra, and we will give its representation in terms of fractional deriva-
tives. Then the fractional Virasoro algebra is generated by the generators L(α)

m , defined
for α, β ∈ [0, 1] and m,n ∈ Z and satisfy the commutation relations

[L(α)
m , L(β)

n ] = Λ(m+ 1, α)L
(α)
m+n − Λ(n+ 1, β)L

(β)
m+n, (1.3)

where Λ(m,α) is defined using the gamma function Γ(x) in the following ways: For a
nonnegative integer (m ≥ 0), Λ(m,α) is defined by

Λ(m,α) =
Γ(1 +mα)

Γ(1 + (m− 1)α)
,

and for negative integer m, Λ(m,α) is given by

Λ(m,α) =
Γ(1−mα)

Γ(1 + (1−m)α)
.

When α = β, the algebra Eq. (1.3) becomes

[L(α)
m , L(α)

n ] = (Λ(m+ 1, α)− Λ(n+ 1, α))L
(α)
m+n. (1.4)

For α = 1, and a positive integer m, we get Λ(m,α) = m. Then the corresponding
generators satisfy the classical Virasoro algebra Eq. (1.2)

[Lm, Ln] = (m− n)Lm+n.

Similarly, for a nonpositive integer m, we have Λ(m,α) =
1

1−m
. In this case the

generators Lm, (m < 0) satisfy the commutation relations

[Lm, Ln] =

(
1

1−m
− 1

1− n

)
Lm+n =

m− n
(1−m)(1− n)

Lm+n. (1.5)

For n = 0, we have
[Lm, L0] =

m

1−m
Lm.
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Another important case is when m = 1 and n = −1, we have

[L1, L−1] =
1

2
L0.

The paper is organized as follows. In Section 2 we give some definitions of fractional
calculus. Fractional derivatives used in this paper are the fractional order derivative in-
troduced by Riemann–Liouville. In Section 3, we give a realization of the fractional
Virasoro algebra in terms of the Riemann–Liouville fractional derivatives. While Sec-
tion 4 is devoted to the connection between the q-deformation and fractional calculus.

2 Review on the Fractional Order Derivative
In this section we briefly recall some notions of the fractional order derivatives. We refer
interested reader to [3,7, 10]. The theory of fractional calculus has a long mathematical
history. It goes back to more than 300 years. It was initiated by Leibniz and l’Hospital
as a result of a correspondence which lasted several months in 1695. Nowadays it starts
to attract much attention in phenomenological theories for complex systems. It has nu-
merous applications in many areas, essentially in measurement of different phenomena.
Recently it was found that many physical, chemical, biological and medical processes
are governed by fractional differential equations (FDEs) [5, 8, 9]. Note also that the
fractional quantum mechanics and the corresponding stationary fractional Schrödinger’s
equation is studied by many authors [5, 8, 13].

The definition of fractional order derivative is not unique. Several definitions are
introduced by Caputo, Weyl, Riesz and Grünwald [2, 12, 14]. The fractional derivatives
used in this paper are of Riemann–Liouville type [6]. Then the fractional derivatives
Dα
x is defined by its action on the function f(x) of any real number α ∈ [0, 1], and for

x > 0 by

Dα
x (x)f(x) =

1

Γ(1− α)

∂

∂x

∫ x

0

(x− ξ)−αf(ξ)dξ. (2.1)

Since the derivative Eq. (2.1) is defined only for x > 0, as in [3, 4], to calculate the
fractional derivatives for all x ∈ R, we introduce a new variable χ̄ of x and the corre-
sponding derivative D̄α

χ as :

χ̄ = sgn(x)|x|α and D̄α
χ = sing(x)Dα

x (|x|).

Then, we are now able to calculate the α-fractional order derivative for any real number.
For example if f(χ̄) = χ̄p, p 6= 0, then the α-fractional derivative of χ̄p is given by

D̄α
χχ̄

p =
Γ(1 + pα)

Γ(1 + (p− 1)α)
χ̄p−1 = Λ(p, α)χ̄p−1, α >

−1

p
. (2.2)

In general for any real value function f(χ̄), we define its Riemann–Taylor series as

f(χ̄) = |χ̄|
α−1
α

∞∑
n=0

anχ̄
n.
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For α = 1, we obtain the classical Riemann–Taylor series of f(x). The fractional scalar
product of f(χ̄) and g(χ̄) is defined by the form

< f(χ̄), g(χ̄) >=

∫ |χ|
−|χ|

dūf ∗(χ̄)g(χ̄),

where the measure dū is defined on function of the Riemann–Liouville fractional inte-
gral of order α as ∫ |χ|

−|χ|
f(x)dū =

sgn(x)

Γ(α)

∫ x

0

dξ(x− ξ)α−1f(ξ),

for all x ∈ R.

3 Realization of Fractional Virasoro Algebra
In this section, we introduce the realization of the fractional Virasoro algebra in terms
of the variables χ̄ and the corresponding α-fractional derivatives D̄α

χ . Recall that the
classical Eq. (1.2) Virasoro algebra coincides with the algebra of differential operators
defined in C− {0} by Eq. (1.1). Now, if we introduce the operators

L(α)
m = −χ̄m+1D̄α

χ , (3.1)

which is a naturel extension of the differential realization Eq. (1.1) in the fractional case.
From Eq. (2.2) and (3.1), the operators L(α)

m act on χ̄p as follows :

L(α)
m χ̄p = −χ̄m+p Γ(1 + pα)

Γ(1 + (p− 1)α)
, m ≥ 0, (3.2)

and the α-fractional derivative for a nonpositive integer m, is defined by

L(α)
m χ̄p = −χ̄m+p Γ(1− pα)

Γ(1 + (1− p)α)
m < 0. (3.3)

Then from (3.2) and (3.3) and the commutativity property of the Riemann–Liouville
fractional integral on the space Cµ, µ ∈ R (see [7]); the space of a real function
f(x), x > 0 such that f(x) = xpf1(x), (p > µ) where f1(x) ∈ C[0,∞), namely
for f(x) ∈ Cµ, µ ≥ −1, DαDβf(x) = DβDαf(x), it is not difficult to see that the
generators L(α)

m satisfy the fractional Virasoro algebra introduced in Eq. (1.3)

[L(α)
m , L(β)

n ] = Λ(m+ 1, α)L
(α)
m+n − Λ(n+ 1, β)L

(β)
m+n.

For α = β, the above relation becomes

[L(α)
m , L(α)

n ] = (Λ(m+ 1, α)− Λ(n+ 1, α))L
(α)
m+n.

For α = 1, and m,n positive integers we have Λ(m+ 1, α) = m+ 1 and Λ(n+ 1, α) =
n + 1. Then we obtain the classical Virasoro algebra Eq. (1.2). For α = 1, and m,n

nonpositive integer numbers, we have Λ(m,α) =
1

1−m
and Λ(n, α) =

1

1− n
. Hence

we obtain the commutation relations given in Eq. (1.5).
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4 q-Deformation and Fractional Calculus
In this section, we examine the connection between the α-fractional derivative and the
q-deformation theory. We will see that the α-fractional derivative is interpreted as α-
number like it is introduced on the language of the q-deformed Lie algebras [4]. First
recall that the q-deformed Lie algebras, called also quantum groups are the extended (or
deformation) of the usual Lie algebras. Principal elements of the q-deformation are the
q-numbers and the q-derivatives which are defined for any number x and any function
f(x) in the form

[x]q =
qx − q−x

q − q−1
and Dq

xf(x) =
f(qx)− f(q−1x)

(q − q−1)x
. (4.1)

The limits lim
q→1

[x]q = 1 and lim
q→1

Dq
xf(x) = df(x). For a given f(x) = xn, we get

Dq
xx

n = [n]qx
n−1. (4.2)

Here we will extend the construction of Eq. (1.1) to the q-deformed case. We then
introduce the generators Lqm = −xm+1Dq

x. It follows from Eq. (4.1) that

[Lqm, L
q
n] = ([m+ 1]q − [n+ 1]q)L

q
m+n.

By letting q tends to 1, we obtain the algebra Eq. (1.2).
A simple example of the q-deformed algebra is given by the q-deformed oscillator

algebra. This latter is generated by the creation b†, the annihilation b and the number’s
operators N satisfying the commutation relations

[N, b†] = b†, [N, b] = −b and bb† − q±b†b = q±N . (4.3)

From Eq. (4.3), we can also write b†b and bb† in terms of the q-number N as

b†b = [N ]q, and bb† = [N + 1]q.

The Fock space is defined by application of the creation b† at the vacuum state |0 >
which satisfies the condition b|0 >= 0. Then, we have

b†|n >=
√

[n+ 1]q|n+ 1 >,

b|n >=
√

[n]q|n− 1 > b and N |n >= n|n > .

Hence, the corresponding q-deformed Hamiltonian and its eigenvalues on the basis |n >
are given by

Hq =
~ω
2

(bb† + b†b) and Eq(n) =
~ω
2

([n]q + [n+ 1]q).
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In order to establish the connection between the q-deformed algebra and the α-fractional
derivatives, setting the state |n > as χ̄n, n > 0. Then from Eq. (2.2), we have

D̄α
χχ̄

n =
Γ(1 + nα)

Γ(1 + (n− 1)α)
χ̄n−1.

It yields that
D̄α
χ |n >= [n]α|n− 1 >,

where the α-number is defined in terms of the function gamma as

[n]α =
Γ(1 + nα)

Γ(1 + (n− 1)α)
.

So the α-fractional derivative can be interpreted as α-deformation in the q-deformation
language (Dα

x → [n]α) Eq. (4.2).

Dα
xx

n = [n]αx
n−1,

and obviously we have the limit
lim
α→1

[n]α = n.

Due to this connection, the fractional Virasoro algebra takes the form

[L(α)
m , L(β)

n ] = ([m]αL
(α)
m − [n]βL

(β)
m ).

For α = β, we obtain

[L(α)
m , L(α)

n ] = ([m]α − [n]α)L
(α)
m+n,

and for α = 1(q = 1) we have

[L(1)
m , L(1)

n ] = ([m]1 − [n]1)L
(1)
m+n = [Lm, Ln] = (m− n)Lm+n.

5 Conclusion
In this work an extension of Virasoro algebra namely fractional Virasoro algebra is
introduced. Its realization in terms of the fractional derivative is given. The connection
between the q-deformation algebra and the fractional calculus is also investigated. Then,
we have seen that via this correspondence the α-fractional derivative may be interpreted
as α-deformation in the language of the deformation defined by the gamma function.
Finally, we claim that one can extend the oscillator’s representation of the elements L(α)

m

for the fractional Virasoro algebra by introducing the fractional oscillators algebra.
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