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Abstract

This paper investigates the existence of solutions of the nonlinear fractional
differential equation{

cDαu(t) + f(t, u(t),cDβu(t)) = 0, 0 < t < 1, 3 < α ≤ 4,
u(0) = u′(0) = u′′(0) = 0, u(1) = u(ξ), 0 < ξ < 1,

where cDα is the Caputo fractional derivative, β > 0, α− β ≥ 1. The peculiarity
of this equation is that the nonlinear term depends on the fractional derivative of the
unknown function, compared with the available results in literature. The equation
is firstly converted to an equivalent integral equation of Fredholm type, then results
for the existence of its solution are derived by means of Schauder’s fixed-point
theorem. An example is given for demonstration.

AMS Subject Classifications: 34B10, 34B27.
Keywords: Caputo fractional derivative, nonlocal boundary value problem, fixed point
theorem, existence, Green’s function.

1 Introduction
The subject of multipoint nonlocal boundary value problems (BVP), initiated by Il’in
and Moiseev [1], has been addressed by many authors. Gupta [2] studied certain three-
point boundary value problems for nonlinear ordinary differential equations. Since then,
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more general nonlinear multi-point BVPs have been studied by several authors. We re-
fer the readers to [3–9] for some references along this line. The multipoint boundary
conditions appear in certain problems of thermodynamics, elasticity, and wave propa-
gation, see [5] and the references therein. For example, the vibrations of a guy wire of a
uniform cross-section and composed of N parts of different densities can be set up as a
multi-point boundary value problem (see [10]); many problems in the theory of elastic
stability can be handled by the method of multi-point problems (see [11]). The multi-
point boundary conditions may be understood in the sense that the controllers at the end
points dissipate or add energy according to censors located at intermediate positions.

For example, Ma in [6] considers the fourth-order boundary value problem{
u′′′′ = f(t, u, u′′), 0 < t < 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.1)

Under some assumptions of f , the results on the existence of positive solutions are
obtained. Problem (1.1) describes the deformation of an elastic beam whose both ends
simply supported, see Gupta [2].

In some real world problems, fractional-order models are found to be more ade-
quate than integer-order models. The last two decades have witnessed a great progress
in fractional calculus and fractional-order dynamical systems. It has been found that
fractional calculus is a mathematical tool that works adequately for anomalous social
and physical systems with nonlocal, frequency and history-dependent properties, and
for intermediate states such as soft materials, which are neither ideal solid nor ideal
fluid (see [12–25]). Differential equations with fractional-order derivatives/integrals are
called fractional differential equations. Some basic theory for the initial value problems
of fractional differential equations has been discussed by Lakshmikantham [15], El–
Sayed et al. [20] and S. Zhang [26] etc. Moreover, there are some works that deal with
the existence and multiplicity of solutions to nonlinear fractional differential equations
by using a fixed-point theorem or the topological degree theory.

As for fractional BVPs, Bai [7] discussed the nonlinear problem{
Dα

0+u(t) + a(t)f(t, u(t), u′′(t)) = 0, 0 < t < 1, 3 < α ≤ 4,
u(0) = u′(0) = u′′(0) = u′′(1) = 0,

(1.2)

where Dα
0+ is the standard Riemann–Liouville fractional derivative. The author used a

new fixed-point theorem due to Bai and Ge on cone expansion and compression to show
the existence of triple positive solutions.

In [8], Liang et al. studied the nonlinear fractional boundary value problem{
Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 3 < α ≤ 4,
u(0) = u′(0) = u′′(0) = u′′(1) = 0.

(1.3)

By means of lower and upper solution method and fixed-point theorems, some results
on the existence of positive solutions are obtained for the above fractional boundary
value problems.
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In [9], B. Ahmad et al. studied the nonlinear fractional differential equation with
nonlocal boundary value{

cDqx(t) = f(t, x(t)), 0 < t < 1,
x(0) = x′(0) = x′′(0) = · · · = xm−2(0) = 0, x(1) = ax(η),

(1.4)

in which q ∈ (m−1,m], m ∈ N , m ≥ 2. Existence results are based on the contraction
mapping principle and Krasnoselskii’s fixed-point theorem.

Motivated by all the works above, the purpose of this paper is to establish existence
results to the nonlinear fractional differential equation with nonlocal boundary condi-
tions {

cDαu(t) + f(t, u(t),cDβu(t)) = 0, 0 < t < 1, 3 < α ≤ 4,
u(0) = u′(0) = u′′(0) = 0, u(1) = u(ξ),

(1.5)

where cDα is the Caputo fractional derivative, β > 0, α − β ≥ 1, ξ ∈ (0, 1), f :
[0, 1]×X×X → X is continuous. The peculiarity of this equation is that the nonlinear
term depends on the fractional derivative of the unknown function, compared with the
available results in literature. To the best of our knowledge, no one has studied the
existence of solutions for nonlinear fractional boundary value problems (1.5).

We remark that the Caputo fractional derivative is more suitable than the usual Rie-
mann–Liouville derivative for the applications in several engineering problems due to
the fact that it has better relations with the Laplace transform and because the differenti-
ation appears inside instead than outside, the integral, so to alleviate the effects of noise
and numerical differentiation (see [13, 18, 28]).

The rest of the paper is organized as follows. In Section 2, we shall present some
lemmas in order to prove our main results. In analogy with boundary value problem
for differential equations of integer order, we firstly derive the corresponding Green’s
function, named as fractional Green’s function. The proof of our main result is given in
Section 3. In Section 4, we will give an example to illustrate our main result.

2 Preliminaries and Lemmas
For the readers’ convenience, definitions of fractional integral/derivative and some pre-
liminary results are given in this section.

Definition 2.1 (See [16, 21]). The fractional integral of order q > 0 of a function x :
(0,+∞)→ R is given by

Iαx(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, (2.1)

provided that the right side is pointwise defined on (0,+∞).
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Definition 2.2 (See [16, 21]). The Caputo derivative of order s > 0 of a continuous
function ω : (0,+∞)→ R is defined to be

cDsω(t) =
1

Γ(n− s)

∫ t

0

ω(n)(τ)

(t− τ)α−n+1
dτ, (2.2)

where n = [q] + 1, provided that the right side is pointwise defined on (0,+∞).

Lemma 2.3 (See [16]). (1) If x ∈ L(0, 1), ρ > σ > 0, then
cDσIρx(t) = Iρ−σx(t), IρIσx(t) = Iρ+σx(t).

(2) If ρ > 0, λ > 0, then Dρtλ−1 =
Γ(λ)

Γ(λ− ρ)
tλ−ρ−1.

The following lemma is crucial in finding an integral representation of the boundary
value problem (1.5).

Lemma 2.4 (See [21]). For α > 0, the general solution of the fractional differential
equation cDαu(t) = 0 is given by

u(t) = c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1, (2.3)

where ci ∈ R, i = 0, 1, 2, . . . , n− 1(n = [α] + 1).

Lemma 2.5 (See [21]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative
of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα cDαu(t) = u(t) + c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1, (2.4)

where ci ∈ R, i = 0, 1, 2, . . . , n− 1(n = [α] + 1).

To study the nonlinear problem (1.5), we first consider the associated linear problem
and obtain its solution.

Lemma 2.6. Let y(t) ∈ C[0, 1] and 3 < α ≤ 4. The fractional boundary value problem{
cDαu(t) + y(t) = 0, 0 < t < 1,
u(0) = u′(0) = u′′(0) = 0, u(1) = u(ξ),

(2.5)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds, (2.6)

where

G(t, s) =
1

(1− ξ3)Γ(α)



t3[(1− s)α−1 − (ξ − s)α−1]− (1− ξ3)
(t− s)α−1, (0 ≤ s ≤ t ≤ 1, s ≤ ξ),
t3(1− s)α−1 − (1− ξ3)(t− s)α−1,
(0 < ξ ≤ s ≤ t ≤ 1),
t3(1− s)α−1 − t3(ξ − s)α−1,
(0 ≤ t ≤ s ≤ ξ < 1),
t3(1− s)α−1,
(0 ≤ t ≤ s ≤ 1, ξ ≤ s).
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Proof. At first, Lemma 2.4 implies that

u(t) = c0 + c1t+ c2t
2 + c3t

3 −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds, (2.7)

where c0, c1, c2, c3 ∈ R are arbitrary constants. By Lemma 2.3, we obtain

u′(t) = c1 + 2c2t+ 3c3t
2 −

∫ t

0

(t− s)α−2

Γ(α− 1)
y(s)ds, (2.8)

u′′(t) = 2c2 + 6c3t−
∫ t

0

(t− s)α−3

Γ(α− 2)
y(s)ds. (2.9)

Applying the boundary conditions of (2.5), we know that c0 = c1 = c2 = 0, and

c3 =
1

1− ξ3

[∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds−

∫ ξ

0

(ξ − s)α−1

Γ(α)
y(s)ds

]
.

Then, the unique solution of (2.5) is given by

u(t) =
t3

1− ξ3

[∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds−

∫ ξ

0

(ξ − s)α−1

Γ(α)
y(s)ds

]

−
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds =

∫ 1

0

G(t, s)y(s)ds.

This completes the proof.

3 Main Results
In this section, we impose growth conditions on f which allow us to apply the Schauder
fixed-point theorem to establish an existence result for solutions for problem (1.5). We
define the space

X = {u(t)|u(t) ∈ C[0, 1] and cDβu(t) ∈ C[0, 1]}

endowed with the norm ||u||X = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|cDβu(t)|. Then clearly (X, || · ||)
is a Banach space.

As proved in reference [27], the solution of the boundary value problem (1.5) is
equivalent to that of the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s),cDβu(s))ds. (3.1)

Theorem 3.1. Let f be a continuous function. Suppose that one of the following condi-
tions is satisfied.
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(A1) There exist a nonnegative function m(t) ∈ L1([0, 1]) such that |f(t, x, y)| ≤
m(t) + c1|x|p + c2|y|q for all t ∈ [0, 1], c1, c2 ≥ 0, 0 < p, q < 1.

(A2) |f(t, x, y)| ≤ c1|x|p + c2|y|q for all t ∈ [0, 1], c1, c2 > 0, p, q > 1.

Then problem (1.5) has a solution.

Proof. Let T : X → X be the operator defined as

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s),cDβu(s))ds, t ∈ [0, 1]. (3.2)

We shall prove this result by using the Schauder fixed-point theorem. First, let the
condition (A1) be satisfied. Define

U = {u(t)|u(t) ∈ X, ||u(t)||X ≤ R, t ∈ [0, 1]},

where
R ≥ max{(9c1A)

1
1−p , (9c2A)

1
1−q , 3l},

and

A =
1

|1− ξ3|Γ(α + 1)
, l = max

t∈[0,1]

∫ 1

0

|G(t, s)m(s)|ds.

Observe that U is the ball in the Banach space X .
Now we prove that T : U → U . For any u ∈ U , applying Lemma 2.3, we have

|Tu(t)| =

∣∣∣∣∫ 1

0

G(t, s)f(s, u(s),cDβu(s))ds

∣∣∣∣
≤

∫ 1

0

|G(t, s)m(s)|ds+ (c1R
p + c2R

q)

∫ 1

0

|G(t, s)|ds

=

∫ 1

0

|G(t, s)m(s)|ds+ (c1R
p + c2R

q)

(
t3

|1− ξ3|

[∫ 1

0

(1− s)α−1

Γ(α)
ds

+

∫ ξ

0

(ξ − s)α−1

Γ(α)
ds

]
+

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds

)
≤

∫ 1

0

|G(t, s)m(s)|ds+ (c1R
p + c2R

q)

[
1 + ξα

|1− ξ3|Γ(α + 1)
+

1

Γ(α + 1)

]
≤

∫ 1

0

|G(t, s)m(s)|ds+ 3(c1R
p + c2R

q)A,

|cDβTu(t)| = |cDβIαf(t, u(t),cDβu(t))− Iαf(1, u(1),cDβu(1))cDβtα−1|

=

∣∣∣∣Iα−βf(t, u(t),cDβu(t))− Γ(α)

Γ(α− β)
tα−β−1Iαf(1, u(1),cDβu(1))

∣∣∣∣
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≤ 1

Γ(α− β)

[∫ t

0

(t− s)α−β−1m(s)ds+ (c1R
p + c2R

q)

∫ t

0

(t− s)α−β−1ds

+

∫ 1

0

(1− s)α−β−1m(s)ds+ (c1R
p + c2R

q)

∫ 1

0

(1− s)α−β−1ds
]

≤ 2

Γ(α− β)

∫ 1

0

(1− s)α−β−1m(s)ds+ (c1R
p + c2R

q)
2

Γ(α− β + 1)
.

Hence, ||Tu(t)||X ≤ l + 3(c1R
p + c2R

q)A ≤ R/3 + R/3 + R/3 = R. Notice that
Tu(t),cDβTu(t) are continuous on [0, 1]. Thus, we have T : U → U .

Under assumption (A2), choosing

0 ≤ R ≤ min{(6c1A)
1

1−p , (6c2A)
1

1−q }.

Repeating arguments similar to that above we can arrive at

||Tu(t)||X = 3(c1R
p + c2R

q)A ≤ R/2 +R/2 = R. (3.3)

Consequently we have T : U → U .
Due to the continuity of G, f , it is easy to see that the operator T is continuous.

In what follows we show that T is a completely continuous operator. For this we take
L = max

t∈[0,1]
|f(t, u(t),cDβu(t))| for any u ∈ U . Let t, ς ∈ [0, 1] such that t < ς , then we

obtain

|Tu(t)− Tu(ς)| =
∣∣∣∣∫ 1

0

(G(t, s)−G(ς, s))f(s, u(s),cDβu(s))ds

∣∣∣∣
≤ L

[∫ t

0

|G(t, s)−G(ς, s)|ds+

∫ ς

t

|G(t, s)−G(ς, s)|ds

+

∫ 1

ς

|G(t, s)−G(ς, s)|ds
]

≤ L

(1− ξ3)Γ(α)

∫ 1

0

(τ 3 − t3)(1− s)α−1ds

=
L

(1− ξ3)Γ(α + 1)
(τ 3 − t3),

|cDβTu(t)−c DβTu(ς)|

=

∣∣∣∣Iα−βf(t, u(t),cDβu(t))− Γ(α)

Γ(α− β)
tα−β−1Iαf(1, u(1),cDβu(1))

−Iα−βf(ς, u(ς),cDβu(ς)) +
Γ(α)

Γ(α− β)
ςα−β−1Iαf(1, u(1),cDβu(1))

∣∣∣∣
≤ 1

Γ(α− β)

∣∣∣∣∫ t

0

(t− s)α−β−1fds−
∫ ς

0

(ς − s)α−β−1fds
∣∣∣∣
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+
L

Γ(α− β)
(ςα−β−1 − tα−β−1)

∫ 1

0

(1− s)α−1ds

≤ L

Γ(α− β + 1)
(ςα−β − tα−β) +

L

αΓ(α− β)
(ςα−β−1 − tα−β−1).

Now, using the fact that the functions τ 3, t3, ςα−β, tα−β, ςα−β−1, tα−β−1 are uniformly
continuous on the interval [0, 1], we conclude that TU is an equicontinuous set. Obvi-
ously it is uniformly bounded since TU ⊆ U . Thus, T is completely continuous. The
Schauder fixed-point theorem implies the existence of solutions in U for the problem
(1.5) and the theorem is proved.

Remark 3.2. If we impose additionally some restriction on ci in (A1) and (A2), the
conclusion of Theorem 3.1 remains true for the nonstrict inequalities p, q ≤ 1 and
p, q ≥ 1. For example, we suppose that p, q ≥ 1 in (A2), in addition, if p = q = 1, then

ci ≤
1

6A
. Without loss of generality, let p = 1 and q > 1, then we may choose

0 ≤ R ≤ (6c2A)
1

1−q .

One can easily obtain the estimate (3.3). Further arguments such as that in Theorem 3.1
yield our desired result.

4 Example
Finally, we give an example to illustrate the result obtained in this paper.

Example 4.1. Consider the nonlinear fractional differential system cD
7
2u(t) +

cos t

(t+ 5)2
(up + (cD

4
3u)q) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u(1) = u(1/2),
(4.1)

where 0 < p, q < 1 or p, q ≥ 1 are parameters.
Note that m(t) = 0, ci = 1/25. By Theorem 3.1 the existence of solutions is

obvious for 0 < p, q < 1 or p, q > 1. Furthermore when p, q ≥ 1, with the use of

Γ(9/2) =
105

16

√
π, a simple computation shows

1

6A
≈ 1.696, since ci ≤

1

6A
, Remark

3.2 implies that problem (4.1) has a solution.
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